
Детерминированный  § 

Изв.вузов «ПНД», 7.4, № 4,5, 1996 УДК 530.18 

ВИДЫ КОЛЕБАНИЙ ДИССИПАТИВНО СВЯЗАННЫХ СИСТЕМ 
С УДВОЕНИЕМ ПЕРИОДА ПРИ СИЛЬНОЙ СВЯЗИ 

М.Д. Прохоров 

Рассмотрены — колебательные — состояния — двух — симметрично — связанных 
идентичных CHCTEM, демонстрирующих ‘удвоение периода. Для случая диссипативной 
связи показано, что несинфазные режимы колебаний существуют He только в области 
слабой связи подсистем (& ~ 0), но и в области очень сильной связи (& ~ 1). При этом 
области несинфазных режимов в пространстве параметров системы симметричны 
относительно £=0.5. Однако, несмотря на симметрию,'несинфазные режимы в области 
слабой и сильной связи существенно отличны. 

Введение 

Система двух симметрично связанных идентичных объектов, каждый из 
которых демонстрирует при изменении управляющего параметра переход к хаосу 
через последовательность бифуркаций удвоения периода, является одним из 
базовых объектов неливейной динамики, широко представленных B физике, химии 
и биологии. Наиболее детальные исследования поведения связанных систем с 
удвоением периода проводились на точечных отображениях [1-7]. Такие системы 
могут демонстрировать множество различных периодических, квазипериодических 
и хаотических режимов колебаний. Tak, для системы двух диссипативно [1] 
связанных отображений вида 

Х1 :f(xn) + k[f(yn) - f(xn)]’ 

Ynal :f(yn) + k[f(xn) - f(yn)]: 

где X, у - динамические переменные, k - коэффициент связи, а fx,) и Ay.) - 

функции, описывающие поведение изолированных подсистем, B случаях функций с 
одним или несколькими квадратичными экстремумами показаны пути эволюции 
BCEX возможных колебательных режимов, выделены области их существования B 
пространстве параметров, исследованы бассейны притяжения  аттракторов 
мультистабильных состояний [8-10]. При этом изучение динамики модельных и 
экспериментальных систем проводилось при достаточно слабой связи подсистем 
0<k<0.5. B настоящей работе рассмотрено поведение системы (1) при f(x,)=A- x,2, 

Ay)=A-y2 в более шширокой области изменения & (0<k<l) и проведено 
сопоставление результатов для случаев k<0.5 и k>0.5. 

() 
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Виды колебаний связанной системы 

Исследуемая система 

хп+1 = )" - x”:’. + k(xnz - yn2)’ 

(2) 
Ynel = ?\' - yrzz + k(ynz - хп?' 

при k=0 распадается на две идентичные подсистемы: 

Ха = Л - хп2'› 

(3) 
Ynel = A - Уп27 

колебания которых одинаковы, но B связи с дискретной симметрией отображений 
по отношению к временному сдвигу могут быть сдвинуты друг относительно друга 
в зависимости от начальных условий на n=1,2, ... . В результате, каждый режим 
периода N может быть реализован в (3) N способами, отличающимися сдвигом 
колебаний подсистем во времени на величину m=0,1,2, ..., N-1, где т - шаг 
итерации. Для обозначения периодических режимов будем использовать запись N7, 
Случай т=0 соответствует синфазному режиму, его фазовый портрет на 
плоскости (x,, у„) располагается на биссектрисе х=у. Остальные №-1 режимов 
периода N - несинфазные (т + 0). 

На рис. 1, 2 для случая нулевой связи приведены примеры аттракторов 
периода 2 и 4, соответственно, и их бассейны притяжения. На всех рисунках, 
включая последующие, X, и у, указаны в интервалах от -0.6 до 1.5. Область 
начальных условий на плоскости (хо))), стартуя из которой, система имеет 
решение на бесконечности, отмечена на всех рисунках одинаковой штриховкой. 
Правые части уравнений системы (2) содержат только квадраты переменных X и Y, 
поэтому — бассейны — притяжения — колебательных — состояний — системы — (2) 
симметричны относительно линий хо=0, уо=0, где хо, y, - начальные условия 
системы (2). 

В установившемся состоянии периода 2 при итерациях системы имеет место 
цепочка отображений 

(2а»1) — (y2) — () —> .. ) 
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Рнс. 1. Фазовые портреты л бассейны притяжения видов колебаний системы (2) при A=0.85, k=0 
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Рис. 2. Фазовые портреты и бассейны притяжения видов колебаний системы (2) при A=1.33, k=0 

Для несинфазного режима 21 (см. рис.1) известно, что X,=y; И Y,=X{, И, 
следовательно 

(x1:y1) = оь) — () — .. (5) 

В другом предельном случае k=1 система (2) примет вид 

ха = ^ - ), 

(6) 
Уа = ^ - X2 

Для синфазных режимов X,=y,, поэтому для них системы (3) и (6) полностью 
идентичны, то есть связь не влияет на синфазные режимы (выражения, стоящие в 
скобках, в системе (2) обращаются в ноль). 

Легко заметить, что (3) переходит в (6) при замене х1 на У, И У„ На Х. 
Следовательно, итерации системы (6) эквивалентны итерациям системы (3), при 
которых на каждом шаге х и у меняются местами. Так, для значений A, при 

которых в несвязанных подсистемах существуют режимы периода 2, при k=1 
синфазный цикл 20 остается прежним (х;=у, i=1,2 и можно менять местами X; и Y;, 

см. (4)), а вместо несинфазного 21 (см. (5)) в зависимости от начальных условий 
получаем или (x;,y1) — (x,1), или () — (э1‚а). Обозначим последние два вида 
колебаний как 1! и 11 В этих режимах B системе существуют колебания периода 1, 
но величина колебаний в подсистемах разная, (x; * y,)." Таким образом, при 
рассмотренных значениях параметров в фазовом пространстве имеются два цикла 
периода 1 и один цикл периода 2, бассейны притяжения которых делят плоскость 
начальных условий в соответствии с рис.3. Структура этого рисунка аналогична 
таковой рис. 1, но бассейн притяжения цикла 21, существующего при k=0, 
оказывается поделенным между циклами 11 и 110, 

Этот принцип деления бассейнов сохраняется и при отличных от О и 1 
значениях коэффициентов связи, если их сумма равна единице. В силу симметрии 
цикла 21 относительно замены х на у и у на х для него справедливо (5) и при 
ненулевой связи. В то же время, для произвольного & нетрудно показать, что 
замена & на 1-k в системе (2) приводит к замене х„ На У„ И Y, На X, ЧТО 

* Существование в связанной системе двух несинфазных режимов периода 1 может быть 
продемонстрировано иначе (см. приложение 1). 
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Рис. 3. Фазовые портреты и бассейны притяжения видов колебаний системы (2) при A=0.83, k=1 

эквивалентно симметричному отражению точки (х.+1:)„н1) ОТНОСИТельно линии X=Y. - 

Следовательно, имея при некоторых & цикл 21, при связи 1-k будем всегда иметь 
два цикла периода 1: 11 и 10, которые делят между собой его бассейн притяжения 

ис. 4). 
© %ьхделенные особенности сохраняются и при других значениях параметра 

нелинейности . Например, при A, соответствующих существованию B 
изолированных подсистемах циклов периода 4, при &=1, как и в случае k=0 (см.рис. 
2), существуют четыре цикла периода 4, но вид всех трех несинфазных циклов 
иной (рис. 5). Несимметричные циклы 41 и 410, так же как 4! и 43, образуют 
зеркально симметричную пару: замена X, на y, и наоборот переводит WX друг B 
друга. Что касается симметричного цикла 4%, то его фазовый портрет совпадает с 
фазовым портретом цикла 42, HO порядок следования элементов цикла другой. 
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Рис. 4. Бассейны притяжения колебательных режимов системы (2) при A=0.85 для случаев 

k=0.025 (слева} я k=0.975 (справа) 
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Рис. 5. Фазовые портреты и бассейны притяжения видов колебаний системы (2) при A=1.33, k=1 

При произвольных значениях связи подсистем справедливо, что если при 
некоторых & существуют зеркально симметричные 41 и 43, то при 1-К существуют 
зеркально симметричные 4! и 41, а симметричный 42 переходит при замене & на 1-k 
в симметричный 41, 

Аналогичная картина имеет место для BCEX циклов периода 2, n=23, ... , то 
есть при замене & на 1-k несинфазные симметричные циклы остаются, HO порядок 
следования элементов меняется, а вместо зеркально симметричных пар пиклов 
появляются новые пары зеркально симметричных циклов. В фазовых портретах 
при такой замене происходят следующие изменения: половина элементов (на 
каждом нечетном шаге итерации) остается на месте, а другая половина (на четных 
шагах) симметрично отражается относительно биссектрисы х=у, и наоборот. 

Конфигурация бифуркационных множеств связанной системы 

На рис. 6 показана плоскость параметров (k, A) системы (2). Области 
устойчивости — синфазных  циклов — ограничены — горизонтальными — линиями, 
соответствующими линиям бифуркаций удвоения периода. Остальные линии 
ограничивают — области — устойчивости 
несинфазных циклов. 2 2’.' !Я \ "\4п 

Исследование эволюции различ- 4 Н ^ 
ных видов колебаний и — описание 13 #Д A 
бифуркационных переходов для случая 4е | 0 8 \‘{\‚4“1‘ 
k<0.5 приведено B работе [8]. B т 4 ) 
настоящей работе подобная задача для » | 2/ \ а 
случая &>0.5 не ставилась и рис.б й 
следует — рассматривать — лишь — как 
иллюстрапию  областей устойчивости 
синфазных и  несинфазных — циклов 1 
периода 1, 2 и 4. Как видно из рисунка, 
бифуркационные линии симметричны 
относительно k=0.5, TO есть OTHOCH- 0 k 1 
тельно замены & на 1-&. Однако, хотя 
картина и симметрична, бифуркациов- 
ные линии в области малой и болышой 
связи относятся к разным циклам. 

Рис. 6. Плоскость параметров (k, A) системы (2). 
Ттриховыми — линиями — ограничены — области 

устойчивости режимов 4% и 4%, а штрих- 

пунктирными режимов 21 !а 18 
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Объяснение — полученным — результатам MOXKHO JaTb и на — языке 
мультипликаторов. Обозначая мультипликаторы несинфазного пикла 21 через 
М 2020), @ несинфазных диклов ! и 11 через И o1y, МОЖНО показать (см. приложение 

2), что 

“1,2(21)()": k) = и‹2‚1(11,п)2<?\: 1“'1{) 

Следовательно, если / 2(2( k)l < 1 (несинфазный цикл 21 устойчив), то и 

! 2(а (^ 1-5)! <1 (несинфазные циклы периода 1 тоже устойчивы). 
Закономерности, обнаруженные при исследовании дискретной модели (2) в 

области слабой связи, были найдены в реальной осцилляторной системе с 
непрерывным временем [8]. Физический эксперимент проводился на системе 
нелинейных электрических маятников (резистивно связанных колебательных 
контурах с варакторными диодами). Было показано, что виды колебаний и 
конфигурации  бифуркационных линий модели качественно  соответствуют 
обнаруженным в эксперименте. Это дает основания полагать, что полученные 
закономерности соответствуют и системам с непрерывным временем. Однако, в 
области очень сильной симметричной связи физический эксперимент на 
колебательных контурах оказывается труднореализуемым. 

Заключение 

Итак, на примере точечных  отображений B работе  рассмотрены 
колебательные состояния симметрично связанных систем с удвоением периода. 
Ноказаны особенности поведения системы при сильной связи €€ элементов и 
продемонстрированы закономерности изменения несинфазных режимов колебаний 
при замене значения & коэффициента связи на 1-k, то есть при переходе от слабой 
связи к сильной и наоборот. 

Результаты, — полученные — для — системы — связанных — логистических 
отображений (2) являются общими для более широкого класса систем (1), при 
условии идентичности функций f(x,) и Ay, ), демонстрирующих удвоение периода. 

Выражаю признательность Б.П. Безручко и В.В. Астахову за плодотворные 
обсуждения. 

Работа выполнена при поддержке Российского фонда фундаментальных 
исследований, грант N 96-02-16753, а также npu поддержке INTAS, грант 93- 
2492-ext., в рамках программы Международного центра фундаментальной 
физики в Москве. 

Приложение 1 

Введем вместо X, и у, новые переменные и„=(х,- ¥,)/2, v,=(x,+y,)/2. В этих 
новых переменных система (2) запишется в следующем виде: 

U1 = 2(2k- 1,0, 
(T1.1.1) 

[ A Z))12 - unz' 

Для цикла периода 1 u,,.1=u,=u, 0,,1=0,=0 и из (IL.1.1) получаем 

w(1-2(2k-1)v) =0, 
(1-2( )) (T1.1.2) 

i+ +uz- A=0. 

Первое уравнение B (I1.1.2) имеет два решения: и=0 и v= 1/[2(2k-1)]. Случай u=0 
соответствует синфазному режиму (X,=Y,), при этом из второго уравнения: U),= 
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=[-1+(1+41)12]/2. Другое решение cooT- 3 
ветствует несинфазному режиму. Под- 74 
ставив © во второе уравнение (П.1.2), ‹‘;0 | 3 6k 
получим: Uy э=+[)- (4k-1)/[4(2k-1 )2]12. = к З ТР уе 
При k=1 uy,=*+(A-3/4)12 и принимает (2k-1) ьч (2i-1) 
действительные значения при A>3/4. 40 | 

Для  исследования  циклов — на 
устойчивость найдем их — мультипли- A=5/4 
каторы. Мультипликаторы — цикла 20 [ 
периода N являются  собственными лЗА 
значениями матрицы монодромии цикла )р 1 . ! 
и определяются U3 уравнения 02 04 0623 08 & 

p2-puS+J=0, Рис. 7. Область устойчивости HecHE(A3HLIX 

где 5 - след, а / - детерминант матрицы 
монодромии М, имеющей вид: M= 

ЦИКлОВ и 1° в ивтервале значений & от O до 1. 
В заштрихованной области мультипликаторы 
рассматриваемых циклов по модулю меныше 

=My.1 My, ... My [1]. B случае цикла единицы.  Границы — области — устойчивости 
периода 1 для системы (П.1.1) получаем:  Получевы B явном виде из (I1.1.4) 

M= ( 2(2k-1)v 2(2k-1)u \ ‚ 

К- 2u -20 J 

Обозначив мультипликаторы цикла периода 1 через 51y, получим ‚ 

Moy = 20(k-1) + 202 + w2(1-2k) ]2, (I1.1.3) 

Для синфазного цикла 10 и=0 и pyqg=-20, tyag=20(2k-1). Таким образом, B 

интервале - положительных A — ©{=[-1-(1+4%)!/2]/2  соответствует — всегда 

неустойчивой неподвижной точке, а Up=[-1+(1+41)12)/2 - устойчивой при A<3/4 
неподвижной точке (оба мультипликатора при этом по модулю меньше единицы). 

Подставляя в (П.1.3) значения © и uy,, соответствующие несинфазному 

режиму, и обозначая мультипликаторы в точке (0,41) через о(, & в точке (0,uy) 

через Uy г(н), ПОЛУЧИМ 

L д(пу=Ш 20y =(k-1)/(2k-1)2{[ (k-1)/(2k-1) J2+4[k- M(2k-1)2]/(2%-1) 0. (П.1.4) 

To есть существуют два несинфазных, симметричных относительно замены и на -1 
(или х на у и у на х) цикла периода 1, мультипликаторы которых всегда равны. Эти 
циклы устойчивы в широкой области параметров (рис.7). Например, при k=1 

Ш pum=+2(1-A)Y2 и циклы 11 и 10 устойчивы при 3/4<A<5/4, то есть при тех же 

значениях A, что и циклы периода 2 в несвязанной системе. 

Приложение 2 

Матрина монодромии цикла периода 2 системы (2) имеет вид 

M= ( 2a(k-1) —- 2y 2x(k-1)  -2ky, 

К - 2kx1 2}’1(1(-1) ) К -2kx2 2y2(k— 1 ) ) 

где X1, Х, И ур У, - Элементы Циклов B подсистемах х и Y, соответственно. 

Несинфазный цикл 21 является симметричным, и для него: X1=Y,, хо=у1. С учетом 

этого ` 
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HI,Z(ZI):ZkZ(xl +¥ )2+4х1_)'1 ( 1- 2k)i'2k(x1 + ) [k2 (xl +y1)2+4x1y1 ( 1- 2k)]l/2. (H/ZI) 

Выразим теперь значения мультипликаторов L o¢2,) ТОЛЬКО через A и k. Для 
этого запишем систему (2) для симметричного несинфазного цикла 21 

х, = № - у) + k(32 - х)2), 

у = ^& - 2 + k(g2 - уу?). 

Вычитая эти  уравнения, получаем: х|+у:=1/(1-28), а  складывая: х(у:= 

=(1-k)/(1-2k)2- А. Подставляя эти выражения в (П.2.1), имеем 

Н 2(21) = 2](2/(1-2]С)2 + 4[1-,1(— k(l-Zk)Z]/(l—Zk) + 

+ 2k (1-2k){[K/(1-2k)]2 + 4[1-k- М(1-28)2)/(1-2К) ). (I1.2.2) 

Возводя (I1.1.4) B квадрат, окончательно получаем: 

ш 2(г)(^, &) = Н’одаиа)(\, 1-4). (T1.2.3) 

B частном случае, при & = 0 из (П.2.2): ш(г = 4(1-М), а при & = 1 Щ( 

=+2(1-A)12, то есть выполняется (П.2.3). 
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OSCILLATION TYPES OF DISSIPATIVELY COUPLED PERIOD 

DOUBLING SYSTEMS AT STRONG COUPLING 

M.D. Prokhorov 

Oscillation types of two symmetrically coupled identical systems demonsirating 
period doubling are considered. For the case of dissipative coupling it is shown that out- 
of-phase oscillation regimes exist not only at weak coupling between subsystems (k ~ 0), 
but also at very strong coupling (& - 1). In the system parameter space the regions оЁ 
out-of-phase regimes are symmetrical about £=0.5. However, т spite оЁ symmetry the 
out-of-phase regimes аг weak and strong coupling are essentially different. 
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