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ДИНАМИЧЕСКИЙ МЕТОД ОПТИМИЗАЦИИ 

УПРАВЛЕНИЯ ХАОСОМ 

И.М. Старобинеи, B.A. Угриновский 

Предлагается метод управления траекториями на странном аттракторе, 
позволяющий переводить их в заданное неустойчивое состояние с помощью малых 
возмущений параметров. В отличие от классической процедуры Отта - Гребоджи - 
Viopke, данный метод основан на дискретном и непрерывном принципах максимума и 
позволяет оптимизировать среднее время достижения управления. Исследуется случай 
многомерного управления. Предложенный подход апробируется B ряде моделей, как 
дискретных, так и непрерывных, 

Введение 

Данная статья посвящена некоторым вопросам, относящимся к задаче 
управления хаосом. Несколько лет назад Отт, Гребоджи и Иорке (ОСУ) 

предложили  метод  управления — хаотическими — динамическими — системами, 
позволяющий стабилизировать одну или несколько неустойчивых периодических 
орбит, погруженных B хаотический аттрактор, с помощью малых (зависящих от 
времени) возмущений управляющего параметра [1]. Этот метод привлек внимание 
многочисленных исследователей в различных областях науки. Существует уже 
большое число примеров успешного управления хаосом в задачах механики 
жидкостей [2], физиологии [3], лазерной физики [4], химической кинетики [5] и др. 
Позднее ОСУ-метод был теоретически развит для систем с запаздывающими 
координатами [6], а также использован B многомерных системах [7, 8]. 

Все перечисленные работы базируются на ОСУ-методе, использующем 
уравнения, линеаризованные B окрестности требуемой неподвижной точки или 
периодической орбиты. Таким образом, если система находится далеко от 
искомого состояния, управление не применимо: необходимо ждать, пока точка 
попадет в малую окрестность этого состояния, и лишь затем включать управление. 
Поэтому одна из важнейших характеристик - среднее время достижения 
управления из произвольной начальной точки - может оказаться очень велико. 
Задача оптимизации управления хаосом к настоящему времени исследована весьма 
слабо. Так называемый «тагетинг-метод» [9] хотя и примыкает K данной проблеме, 
однако управление B нем HOCHT случайный характер. Отметим также, что ОСУ- 
метод н связанные с ним работы используют однопараметрическое управление, 
стремясь перевесте систему на устойчивое многообразие желаемого состояния. 
ОЧЭВИДНО‚ что в сяльно развитом хаотическом режиме сделать это далеко не 
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всегда BO3MOXHO. Поэтому естественно возникает необходимость B методах 
многомерного управления хаосом. 

В настоящей статье мы описываем иной подход, основанный на дискретном и 
непрерывном принципах максимума и оптимизирующий среднее время достижения 
управления даже на болыших расстоянияя от искомого состояния, В отличне от 
ОСУ-процедуры, B предлагаемом методе траектория направляется не K 
устойчивому многообразию, а непосредственно к требуемой цели. Такой подход 
позволяет использовать не только дискретное, но и непрерывное управление, и 
допускает как однопараметрический, так и многомерный вариант управления 
хаосом. Некоторые предварительные сведения, относящиеся K  предлагаемому 
методу, анонсированы в заметках [10, 11]. 

В разделе 1 с помощью общей методики [12] получены необходимые условия 
оптимальности для дискретной задачи, моделирующей оптимизационный вариант 
управления хаосом. На их основе построены одномерный и многомерный 
численные алгоритмы, определяющие стратегию управления вдали от требуемого 
состояния и B его окрестности. В разделе 2 эти алгоритмы апробируются в задачах 
управления одномерными и двумерными отображениями и сравниваются по 
эффективности как между собой, так и с классическим методом ОСУ. В разделе 3 
по схеме [12] строятся условия оптимальности в модели непрерывного управления 
хаосом, а на WX OCHOBE - численная процедура квазинепрерывного управления. 
Данный алгоритм используется в задаче управления системой непрерывных 
уравнений типа Гинзбурга - Ландау. В разделе 4 сконструйрован метод 
многомерного управления хаотическими системами. На примере управления 
цепочкой связанных одномерных отображений иллюстрируется преимущество 
такого подхода перед однопараметрическими алгоритмами. 

1. Дискретное управление хаосом 

Для простоты изложения рассмотрим задачу о стабилизации системы в 
неустойчивом состоянии равновесия х; (предлагаемый подход может быть также 
применен к задаче стабилизации неустойчивых периодических орбит, торов и 

т.д.). Рассмотрим дискретную отображающую CACTEMY, стартующую из точки Х на 
аттракторе. Зафиксируем некоторое число шагов N и будем стремиться 
максимально приблизить точку за N шагов к требуемому состоянию х,;. Тогда 

можно сформулировать задачу оптимизации [10] 

X1 =F(Xplly), Хо=х, 

1 
J(x)=(xy- Xz)2 — min, 
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где Xe Rr, ue Rm, xp=F(x,0), U ={lu] <% }, а максимально допустимое управление 

U, как правило, достаточно мало. 
Будем — далее — использовать — общую — методику — получения — условий 

оптимальности, разработанную в [12]. Предположим, что {u*, х‚"} - оптимальный 
процесс в задаче (1). Возьмем классическое однопараметрическое семейство 
вариаций управления 

wE =t + £-0uy, 

соответствующую ему траекторию х и приращение функционала / 

M) = () - Ц) 
Тогда вариацию функционала / можно представить [11] в виде 
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м1 
&/ = Шп & 1А (е) =X y;,10F (k)/ou duy, 

£=0 е-30 

где 

дЕ(К)дх = ОЕ (% u,*)ox, ОЕ(Ю)/ди = oF (x*, ц")/ди, дЛдх = oJ{xy*)/ox, 

а м, суть решения сопряженной системы [12] 

м = . дЕ(К)/дх,  wy=dJ/ox. (2) 

Из условия оптиматльности 6/ > 0 получаем, что для всех & дОЛЖНЫ ВЫПОЛНЯТЬсяЯ 
неравенства 

Wi 10F (k)/dudu, 2 0, 

откуда находим оптимальное управление 

п = -н (Y1 0F (k)oul/hy,0F (k)/dul (3) 

(B случае, когда знаменатель отличен от нуля). В частности, если m=1, то 

w = -u sgn{y, 0F (k)/du), (4) 
либо должно быть 

\pk+laF(/c)/au =0 

(так называемое сингулярное управление). 
Теперь применим полученные условия оптимальности (3), (4) для 

построения алгоритмов управления. В начале ограничимся случаем  m=1 

(однопараметрическое управление) и ввиду малости и будем рассматривать 
упрощенный вариант уравнений (1), полагая 

ха =Дхо) + b(Xuy, (5) 

где be В/. Тогда сопряженная система (2) запишется как 

Vi = ЧедДх)/дх, wiy=2(xy" - Xp), 

поэтому из условий (4) находим оптимальное управление B виде 

_ м1 
w = -usgn{(xy* ~ х;)[ П 9F(x)/0x] b(x*)}, (6) 

i=k+1 

либо реализуется сингулярное управление 

N-1 

(ху* - Xp)[ П 0F (x7)/0x] b(x,") = 0. (7) 
i=k+1 

На основе соотношений (6), (7) можно построить одношаговый (N=1) и 
многощшаговый (1< М<< o) алгоритмы управления. Для N=1 используем 

-usgnry, ol > u, 
ЦО* = (8) 

-y, |I'0| < Д‚ 

гне  ro= (f (х) - х;) Ь(; )/іЪ(;)!З. В случае М>1 имеем более «дальновидную» (и, 

следовательно, более эффективную) стратегию управления (при # << 1) 
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-usgn ry, КИ >u, 
иг = — ‚ ок— (9) -то  Ird<E 6=0, М, 

N-1 

где 7= (X0 - Xp)W, bx)/IWb(x )2, W,=TIof (x0)/dx, x;,1 = f(x,0). 
i=k+1 

Ha практике, стратегия многошагового управления выглядит следующим 

образом [10]. Выбрав начальное управление X, мы последовательно для каждого 
N=1,2,...,.Nppa с помощью (9) вычисляем управляющую серию и;, а затем из (5) 
находим соответствующее X(N). Если при малом ге выполнено условие 

IX(N) - x4 < , (10) 

TO данное N дает удовлетворительное управление, и мы используем его, применяя 
на конечной стадии одношаговый метод или метод ОСУ. Всли (10) не достигается 

ни при каких 1 < N < Ма ТО мы Ввовсе не применяем управления и делаем 
итерацию с и)=0. Затем вся процедура повторяется. 

2. Многошаговый метод: переход K глобальной управляемости 

Эффективность алгоритмов (8), (9) была проанализирована на примерах 
систем, описываемых известными дискретными отображениями с хаотическим 
поведением траекторий. Наиболее наглядно специфика этих — алгоритмов 
проявляется в случае одномерных отображений. Рассмотрим, например, задачу © 
стабилизации  неустойчивого состояния равновесия в хорошо — известном 
отображении отрезка 

хь = 1 - 2lx- 051 + и„ О <х <1, an 

J(x) = (x - xz)2— min, 

где М! < И, — хр =2/3. 
При u, = 0 система демонстрирует хаотическое поведение (рис.1,а). 

Применяя одношаговый алгоритм (8), получаем управление 

Г- usgn ry, РИ >, 
Z«lki< = — 

1 -Г |rkl < u, 

где ;; = -1/3 + 2Ix-0.5], то есть мы имеем скорректированное отображение 

Хы =fA (xk) =1- ZIxk— 0.5 + uk*, 

представленное на рис. 1, 6. Для него точка х; становится устойчивой, HO она 
сосуществует с переходным хаосом, и система может долгое время случайно 
блуждать, прежде чем будет стабилизирована в Xp. Многошаговый алгоритм 

приводит к управлению (9), в котором г, имеет вид 

N-1 
r=(x0-2/3) Н (x,0-0.5), 

i=k+1 

а x° соответствует и;=О. Для некоторого Ny, последняя неустойчивая орбита 

исчезает, и отображение принимает вид, приведенный на рис. 1, 6. Здесь более нет 
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Рис. 1. Управляемое отображение (11): а - без управления; 6 - однощаговый метод - локальная 
управляемость, и=0.!: в - многошаговый метод - глобальная управляемость, и=0.1, Ny,,=5 

участков с экспоненциально разбегающимися траекториями: для любых начальных 
условий за конечное время & < Мх траектория стабилизируется B точке х;. Данное 
явление можно трактовать как глобальную управляемость системы. 

В качестве угой модели, позволяющей сравнить  эффективность 
алгоритмов (8), (9), было выбрано двумерное отображение Хенона 

X 1 =6 КИН ЕЙр 

X2 k417K ks 

где J(x) = (x- xp)%, | ul < и, xp1=xp,=(n-1)/2+[(n-1)2+ 4E112, £=1.4, п=0.3. (Заметим, 
что это отображение рассматривалось B работе [1] B качестве иллюстрации K 

й методу OGY). ‘Здесь — одвошаговое 
<T> 

й управление принимает вид (8), где 
10° - ы 

= ® . — 

- °а o= X2+ )- Хрд. 
|- o # _ й 

104 » оЧ ава М№-шаговый — алгоритм — записы- 
Е * РО вается соотношением (9), в котором 
Г e B 

103Ё ш Эв й Fe= к0 - xp)WUIW , 
ik & ` 

Г М›;‹ N-1 2 -0 1 

э * » Wil=| П) оЙ 
10- = ж k ka1 1 О O 

E * i=k+ 

T , [ Результаты pacyeToR MO 9THM 
10° —НН — й алгоритмам представлены на рис. 2. 

10 1073 107° й Здесь также приводятся для сравнения 
данные,  полученные для TeX Ke 
параметров с помощью ОСУ -метода. Bo 
всех случаях очевиден  значительный 
выийгрыш — многошагового метода по 
сравнению с одношаговой процедурой и 
методом OGY. 

Рис. 2. Среднее время достижения управления 

<> для отображения Хенона в зависимости от #; 

® - ОСУ-метод; ® - одношаговый алгоритм (8); 
* - многошаговый алгоритм (9) ¢ Ny, =30 

3. Непрерывное управление хаосом 

Существующие к настоящему времени алгоритмы управления хаосом в 
непрерывных системах имеют дискретный XapakTep, TO есть  позволяют 
использовать управление лишь в отдельные моменты времени (например, через 
период вынуждающей силы, или на секущей Пуанкаре). Однако в прикладных 
задачах чрезвычайно важной явилась бы возможность корректировать управление 
непрерывно (инли достаточно часто) с тем, чтобы использовать его B полной Mepe. 
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Однако попытки получения таких алгоритмов на основе метода OGY серьезных 
успехов пока не принесли. 

Мы рассмотрим непрерывный аналог задачи (1) и на основе метода вариаций 
[12] получим алгоритм квазинепрерывного управления. Предположим, что 
система задается  дифференциальными  уравнениями, = будем  етремиться 
максимально приблизиться к требуемому состоянию х; за некоторое время Т с 
помощью непрерывного управления u(t). Формулировка задачи примет вид 

{ dx/dr = o(x,u), х(0) =х, 
(12) 

J(x) = (x(T) - хв)? —› miny, 

где хеК!, ueRm, 0 << T, U={lu(r)i< и}‚‹р(хр‚О)-%О. 

Пусть {u*x*} - оптимальный процесс в задаче  (12). Постройм 
однопараметрическую вариацию управления 

ue(z) = u*(?) + e-du(?), 

соответствующую ей траекторию х и приращение функционала / 

AJ(e)=J(xe(T) - J(x(T)). 

Тогда вариацию функционала / можно записать [11] в виде 

T 

57 = lim e-1AJ(g) =[ w(?) дф(7)/ди du(?) dr, 
€0 0 

где дф(г)/дх = дф(х", u*)/dx, Je(r)/du = дф(х", u*)/du, дЛдх = dJ(x*(r))/ox, а w(t) - 
решение сопряженной системы [12] 

dyldt = -yoo(t)lox, w(T) = oJ(T)/ox. (13) 

Условие оптимальности &J > О приводит к неравенству 

w(t) дф()/ди du(r) 20 

для почти всех ¢t e [0,Т]. Это дает выражение для оптимального управления 

и°( = -l (1) (£ dul (f)dp(r)/dul, 

справедливое при почти всех : (если знаменатель отличен от нуля). 
В частности, если m=1, TO для почти всех / справедливо 

(1) =-nsgn{w()de(2)/ou), (14) 
либо должно реализоваться особое управление 

\(2) до(г)/ди = 0. 

Теперь применим условие (14) для управления непрерывной системой вида 

dx/dt = g(x) +b(x)u, 051 < Ат, 

где At << 1 (как правило, шаг интегрирования исходной системы). В этом случае 
сопряженная система (13) записывается как 

dyldt = -y aglox, y(At) = dJ(At)/dx, 
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н ее решенне 

Ат 

\(?) = w(Ar)exp] да/дх dr) ~ W(AT)(E + Atdg(t)/ox), 

где Е - единичная (п х п)-матрица. Поэтому (14) определяет управление 

и"(7) = - usgn{ дЛ(Ат)/дх(Е + Atdg(1)/dx)bx(1))}. (15) 

Кроме того. заметем, что при х - XA <<1 

ах/@ = 9g{xz)ox(x - Х;) + b(x)u = 0. (16) 

На основе (15), (16) строим алгорятм, использующий на интервале [0, Ат] 

управление 

- usgn{ д./0(Ат)/дх (Е + At 0g0(2)/ox)b(x0(2))}, !> и, 
и* = _ (17) 

- 7 | Я < и, ` 

где г = Ib(x)-2b(x) 0g(xs)/dx (X - Xg), а выражения д/0/дх, да'/дх, х° соответствуют 
управлению и(/)=0. Этот алгоритм в дальнейшем включается в численную схему 
интегрирования системы. 

Метод квазинепрерывного управления (17) был апробирован нами на 
примере системы уравнений 

dwidt=w;- (1 +i3) о2 + e(1 - 1е)(н - 2w+ w; ),  j= I,]T{[ (18) 

с периодическими условиями Wy = Wy, Wy.1 = Wi, моделирующей комплексное 
уравнение Гинзбурга - Ландау [13]. Делая замену 

о; = w; exp (iBr) 

и ДОбЭВЛЯЯ управление, получаем систему 

dojdr =(1 + В)(1 - 10)2)0у+ е(1 - ic) (01~ 20+ 0, () + Вн, j=2,M,  (19) 

где by =(1,0); b;=(0,0); ! <m 

321118.‘[[/1 o СТЭ‚бИЛИЗ&ЦИИ НЁУСТОЙЧИ:ВЬХХ периодических ОрбИТ ставились как 

задачи минимизапии фУНКЦИОНЗЛОВ IBYX видовВ 

N N 
J(v) =2(v; - 1)2 либо  J(v) = (log2 - 1)2+ Z(v; - 01)?. 

м = 

При решении быля использованы как алгоритмы дискретного управления (для 
отображения на секущей Пуанкаре)‚так и квазинепрерывное управление (17). 

Некоторые результаты численных расчетов представлены на рис. 3-5 (см. 
также [11]). На рис. 3 показана стабилизация в системе (18) периодической 
орбиты, имеющей одно неустойчивое собственное направление, с помощью 
непрерывного алгоритма (17). На рис. 4 продемонстрировано преимущество 
непрерывного  управления — перед - дискретным — для — случая — стабилизации 
неустойчивого тора в фазовом пространстве системы (19). Режим развитой 
стохастичности (см. рис. 4,‚а) удается частично стабилизировать с помощью 
дискретного управления (см. puc. 4,6) и полностью - с помощью непрерывного 
алгорвтма (17) (ем. рнс. 4,в). Наконец, на рис. 5 изображен случай, когда даже с 
помощью — непрерывного  управления — удаётся — добиться  лишь — частичной 
стабилизации - режима, имеющего  несколько — неустойчивых — собственных 
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Рис. 3. Стабилизация периодической орбиты B системе (18) с В=с=3!1/2, е=0.2: а - реализация в 
отсутствие управления; 6 - траектория, стабилизированная квазинепрерывным управлением (17), 
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Рис. 4. Стабилизация тора B системе (19). Отображение Пуанкаре на секущей Re vy=0: а - 
хаотический аттрактор, управление отсутствует; 6 - дискретное управление на секущей 
(частичная стабилизация); в - квазинепрерывное управление (17) 

направлений. Видно, что управляемый режим (cM. рис. S, 6) имеет более 
упорядоченную структуру, чем исходный неуправляемый (см. рис. 5, а). Это 
подтверждают и оценки фрактальной размерности соответствующих аттракторов. 
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Рис. 5. Частичная управляемость в системе (19): д - проекция траектории на плоскость ©) в случае 

развитого хаоса, управление отсутствует; 6 - то же для квазинепрерывного управления (17) 

4. Многомерное управление 

Заметим, что отсутствие полной управляемости в последнем примере вполне 
естественно. В случае развитой стохастичности неустойчивые инвариантные 
состояния могут иметь несколько (и даже много) неустойчивых собственных 
Направлен:ий, TO есть несколько положительных характеристических показателей 

Лянунова. Трудно гарантировать стабилизацию таких режимов с помощью 
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одномерного  VIIPaBASIOWEro HapaMeTpa. Естественно — предположить, UTO 
стабилизации можно добиться, повышая размерность управления (что вполке 
допустимо с помощью предложенных вьвие методов). 

РЭССМОТРШ\Ё такую возможность на примере ДИСКРБТНОЙ периодически 

замкнутой цепочки лиффузвонно связанных одномерных отображений отрезка [0, 1] 

— 1-40 
Х[_А?і[:(]_ - 4D)(1- fib’)f(xkl) + D(AX’kl + 2) + —71'" (ЪТ+ Ц]<[)Ь1, (20) 

где Дх)=00х(1-х); Avi=x-1- 2xi+xi1; X=(x1,...,xm) - вектор состояния; u=(ul,....m) - 

управление: b=(b1,.. ,bm) - весовой вектор, позволяющий использовать управление 
газличной размерности (от 1-мерного при b=(1,0,..,0) до т-мерного при 
b=(1/mi2.... 1/m12)), 

При @=3.83 и u=0 в системе (20) существует странный аттрактор, 
содержащий неустойчивую неподвижную точку Х;=(ху!,...хр"), Xz/=0.735, которую 
требуется стабилизировать, то есть 

J(x) = (х - х»)? —> miny, (21) 

где U={ ш! < и }. 
Используя в задаче (20), (21) одношаговую стратегию, на основе условий (3) 

получаем алгоритм многомерного управления 

—ur/ied, к >u, и = Y I vt й (22) 

-Г к < , 

где ги=(1 - 4D)(1- ub!) ((хи) + 1/2(1-4D)ub! +р(Ахи +2) - xf. 

При m=1 и малых и ситуация аналогична той, что описана выше для задачи 
(11) в случае локальной управляемости (см. рис. 1,6). Из почти любых начальных 
условий, пройдя период переходного хаоса, — траектория стабилизируется B 
требуемой точке. Заметим, однако, что при увеличении и точка х, теряет почти 

всю свою область притяжения: система очень быстро выходит на периодический 

режим, изображенный на рис. 6, @, что связано с появлением при и =~ 0.04 6- 
кратного суперустойчивого цикла в отображении X; — х (рис. 6, 6). Подобная 
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Lo} 0.6 \ N К 
0.8 I, ‘ М :‘ - | | . ! ‚ / ‘,!‘ Ё 

06 m J‘l \;ч \Ю‘г |№ M {1\“ іъ W \Ч 0.4 j}le /\l/&/f / \j : 

0.4 | f ! 0.2 _:,": и ""‹.‘_ 

02 - :5 Ё 

ао'%юо 3120 3140 3160 3180 & ;'О 02 04 06 03 Xy 

Рис. 6. Рождение устойчивого цикла в модели (20) при m=1: а - реализация хц при D=0.001, 
u=0.04; 6 - отображение X;— Yy, (пунктир) и его 6-я итерация (сплошная линия), & - номер 
итерации 
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картина наблюдается и при больших т, если и достаточно велико, а управление 
одномерно (то есть Bee  wl=...=ugn=u;). На рис. 7, 8 изображены временные (по k 
при /=1) и пространственные (по / при k=1000) реализации системы (20). B 
первом случае B системе реализуется указанный выше б-кратный пикл (см. рис. 7, 
а); кроме того, управление приводит к частичной пространственной синхронизации 
(см. рис. 7, 6). Во втором случае появляется устойчивый дикл кратности 2 (см. 
рис. 8, а) и полная синхронизация в пространстве (см. рис. 8, 6). Таким образом, за 

счет увеличения и систему удается стабилизировать с помощью одномерного 
управления, однако не всегда в желаемом состоянии (подобная же ситуация, по- 
видимому, приводит к частичной стабилизации в задаче (19) из предыдущего 
раздела). 

Если же и мало (и < 0.02), а m>1, то разрушить хаотический режим B 
системе (20) посредством однопараметрического гг›дношагового) управления не 
удается. В этом случае мы использовали  управление  соответствующей 
размерности т (то есть Б=(1/т!/,...1/т/2) ), задаваемое одношаговым алгоритмом 
(22). Этого оказалось вполне достаточно для стабилизации состояния Х; (рис. 9). 
Естественно, что при этом среднее время достижения управления <T>, растет с 
увеличением размерности системы M. В частности, проведенные расчеты 

показывают, что для и=0.02. <т>4 = 330, <т>; = 2600, <t>¢= 22000 и т.д. Однако, 
как следует из раздела 2 настоящей статьи, значения <T>, можно существенно 

уменьнить, перейдя к многошаговой стратегии управления. 
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Puc. 7. Временная (а) и пространственная (6) Рис. 8. Временная (а) и пространственная (6) 
реализации системы (20) при m=20, D=0.001,  реализации системы (20) при т=20, D=0.001, 
и=0.04 (пунктирная — линия - распределение u=0.1 (пунктирнаэі линия - Мраспределение 

начальных условий); & - номер итерации, / - начальных условий); & - номер итерации, 

номер отображения { - номер отображения . 
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Рис. 9. Многомерное управление B системе (20) при m=3: а - реализация x;t, D=0.001, и=0.01; 
6 - соответствующее распределение ш)); & - номер итерации 
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A DYNAMICAL METHOD FOR CONTROLLING CHAQOS OPTIMIZATION 

LM. Starobinets, V.A. Ugrinovskii 

A control method is presented to direct a trajectory on a strange attractor towards a 
desirable unstable set by small parameters perturbations. The method is alternative to the 
classical Ott - Grebogi - Yorke control procedure. The proposed approach is based on 
the discrete and continuous maximum principles and optimizes the mean time 10 achieve 
control. The case of multidimensional control 18 investigated. The proposed method 15 
tested both in discrete models and continuous systems. 
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