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МОДЕЛИРОВАНИЕ ДИНАМИЧЕСКИХ СИСТЕМ ПО 

ЭКСПЕРИМЕНТАЛЬНЫМ ДАННЫМ 

Н.Б. Янсон, B.C. Анищенко 

В работе осуществлена попытка создания качественных моделей реальных 
биологических систем: изолированного сердца лягушки, сердца человека и системы 
кровообращения белой крысы. В качестве исходных данных  были — взяты 
дискретизированные одномерные реализации. Для оценки размерности вложения 
рассчитывались корреляционные размерности аттракторов. Результатом работы 
являются дифференциальные уравнения, приближенно описывающие динамику 
исследуемых систем. 

Введение и постановка задачи 

Проблема реконструкции динамических систем (ДС) по экспериментальным 
данным имеет давнюю историю. Можно выделить два аспекта данной проблемы. 
Первый состоит B решении задачи реконструкции фазового портрета системы O 
данным измерения зависимости от времени лишь одной переменной @а(р). 
Результатом решения этой задачи является М№-мерная реконструированная 
траектория х(/), в заданном приближении воспроизводящая фазовый портрет 
исходной системы. В эту же задачу входит прогнозирование зависимости a(f) на 
время >l , где Iy - длительность экспериментальной реализации. Этой задаче 
нпосвящено большое количество работ и достигнуты конструктивные результаты 
[1-3]. Второй, более общий аспект проблемы включает решение неоднозначной 
задачи  математического моделирования системы в виде соответствующих 
дискретных или дифференциальных эволюционных уравнений. Если модель 
найдена, TO решение эволюционных уравнений должно с заданной степенью 
точности воспроизводить экспериментальную зависимость а() и давать прогноз на 
время г>10. Кроме того (и это главный результат), наличие реконструированных 
уравнений дает возможность описания не только процесса a(f), но и его 
зависимости от управляющих параметров модельной системы. Решению данной 
задачи на примере некоторых модельных систем было также посвящено много 
работ (например, [4-5] и ссылки в них). Одна B3 проблем, возникающих при этом, 
состоит B TOM, что результирующие уравнения получаются негрубыми, TO есть 
малое изменение ях Параметров приводит к уходу ТРШЗКТОРИИ на беСКОНб‘ШОСТЬ. 

Отметим, что решение задачи реконструкции математической модели безусловно 
включает необходимость решения задачи реконструкции №-мерной фазовой 
траекторий. 
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Целью нашей работы является попытка реконструкции исследуемых 
биологических систем, причем под  реконструкцией мы будем  понимать 
нахождение явного вида уравнений, приближенно моделирующих их поведение. 

1. Описание метода 

Первым шагом X реконструкции является восстановление  фазового 
портрета по известной исходной реализации. Известно несколько способов 
решения этой проблемы [4-7], но в данной работе мы остановимся на двух из них. 
Первый использует метод задержки Такенса 

х(2) ={a(r), a(t +рАд),..., а(Е + р(М -1)Ar)}, (1) 

где x(¢) - фазовый вектор в N-MepHOM фазовом пространстве, N - размерность 
вложения, р - задержка, ! - текущее время, А; - шаг выборки исходной 
реализации — а(!). Второй — метод — заключается — в — последовательном 
дифференцировании координат вектора х 

х\=а, — хма=х, [=1,N-1. (2) 

Заметим, что часто производные X аппроксимируются по формуле 

=[xt + A1) - х(Р)/Ах. | (3) 

Однако, используемые нами реализации были сняты с шагом дискретизации 
слишком болышим для такой аппроксимации. Поэтому для более точного 
вычисления производных нам пришлось интерполировать фазовую координату 
между двумя известными точками с помощью полиномов степени т, чтобы 
получить точку х{(7 + Ar*), где А7 << At. B этом случае производные вычислялись 
10 формуле (3), в которой А/ заменялось на А. 

Следующим этапом решения задачи является построение математической 
модели исследуемой системы, например, получение системы N обыквновенных 
дифференциальных уравнений 1-го порядка 

kl =f1(x17x27'"5-xN)7 

х = H(xi,x0,0..0), 4) 

Xy = /У( Xi) 

или дискретного отображения B RY 

Хь =]“1(хд.‚1,х,<‚2‚...,х,`.)„)‚ 

Xi+1,2 :fZ(xk,lrxk,Za--'rxk,N)) (5) 

xk+1,N=fN(xk,17xL;2r-->xk,N)‘ 

Существует много способов аппроксимации функций / и самый простой из 
них - представление искомых функций в виде полиномов степени у 

=1 

v N N 

[@ = ® Cup.wllxk  Zh<vy (6) 
k=1 olawedy=0 
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и нахождение коэффициентов этих полиномов методом наименьших квадратов. В 
нашей работе мы использовали этот способ. Использование этого метода требует 
большого количества оперативной памяти компьютера, поэтому аттрактор должен 
рассматриваться HE во всех доступных точках, а лишь B относительно небольшом 
их количестве /ах при выбранном шаге 5 вдоль траекторий. 

2. Исследуемые системы 

Описанные атгоритмы были протестированы на широко известных моделях, 

в частности, на системе УРЗВНСРШЙ ЛОРСЪЩ& со стандартными значениями 

параметров: с = 28, г = 10, у = 8/3; на системе уравнений Ресслера при значениях 
параметров с=0.38, 5=0.3, а=4.82, а также на системе уравнений генератора 
Анищенко -  Астахова — (модифицированного генератора с — инерционной 

нелинейностью), который рассматривался в хаотическом режиме при т = 1.5, 
¢ = 0.2 [8]. Из-за экономии места мы не приводим результатов восстановления 
этих систем по одной реализации. Убедившись B TOM, что написанные программы 
работают правильно, мы приступили к рассмотрению более сложных систем 
медико-биологического происхождения. 

Первой системой было изолированное сердце лягушки (ИСЛ). Эксперимент 
по измерению исходной реализации проводился следующим образом: ИСЛ 
помещалось в специальный физиологический раствор, где OHO начинвало 
сокращаться. В него вводился металлический крючок, который двигался вместе с 
поверхностью сердца. Дискретизированная зависимость от времени текущей 
координаты крючка давала исходный временной ряд. Частота дискретизации 
составляла 60 Гц, а количество точек временного ряда равнялось 8192. Для 
экспериментов с реконструкцией описанной системы была выбрана наиболее 
типичная реализация колебаний точки на поверхности сердца лягушки!, 

Вторая система, исследованная нами, была сердцем человека (СЧ). 
Исходной реализацией являлась Hambonee типичная ЭКГ здорового человека, 
снятая с частотой выборки 200 Гц и состоящая из 10240 точек. 

Наконец, последняя система, с которой мы работали, была системой 
кровообращения лабораторной белой крысы. В качестве исходных данных бралась 
временная зависимость артериального давления крови крысы (АДК), которая 
измерялась с помощью датчика, введенного непосредственно B  артерию 
животного. Частота дискретизации и количество точек были теми же, что и для 
ЭКР CY. 

Реализации, полученные в ходе экспериментов, состояли из целых чисел, 
изменяющихся в диапазоне [-256,256] для ИСЛ или [-512,512] для СЧ и АДК. Для 
удобства работы с ними осуществлялась перенормирсвка каждой из реализаций к 
интервалу [0,1]. Для получения более «заполненных» фазовых портретов систем 
СЧ и АДК мы, путем интерполяции, определяли в промежутках между каждыми 
двумя соседними точками по 4 дополнительных. Гаким образом, количество точек 
B исходных фазовых портретах увеличилось в 5 раз и, соответственно, B 5 раз 

уменьшился шаг их выборки. Далее будем считать шагом выборки А/ этот новый 
уменьшенный шаг. 

Исходные временные ряды  характеризовались  достаточно — заметным 
уровнем шума. Быди предприняты попытки фильтрации шумов (например, 
методом Брумхеда - Кинга [9]). Однако, эксперименты показали, что 
использование — отфильтрованных BPEMEHHBIX PS03  для  решения — задачи 
реконструкции уравнений не дает результата. В связи с этим все приводимые ниже 
данные мы получали путем обработки исходных зашумленных реализаций. 

! Экспериментальные данные были предоставлены нам Цектральной научной лабораторией 
Медицинского университета (руководитель профессор Г.Е. Брилль). 
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3. Восстановление фазовых портретов - 

При — восстановлении — фазового портрета 1O  реализации — методом 
производных мы получаем лишь один вариант результата, поскольку BCE 
координаты связаны между собой однозначно соотношением (2). Конечно, можно 
варьировать параметры для достижения наибольшей точности этого соотношения, 
В частности, при интерполяции данных с помощью полиномов, можно менять 
степень последних, а, следовательно, и количество используемых соседних точек, 
которые могут влиять на результат. Можно также менять величину Arf. Но 
качественных изменений фазового портрета вариации этих параметров не 
вызывают. : 

Иная ситуация реализуется при восстанавлении фазового портрета методом 
задержки, технически более простым. В этом случае нам предстоийт правильно 
выбрать время задержки T = р Af. B работе [10] утверждается, что, в принципе, оно 
может быть любым дия незашумленных данных бесконечной длины. Однако, если 
это время окажется слишком мало, /-ая и 1+1-ая координаты фазовой точки 
станут практически неотличимы друг от друга. Реконструированный аттрактор B 
этом случае будет располагаться вблизи главной диагонали пространства 
вложения, что очень затрудняет его диагностику. При выборе слишком большого T 
координаты оказываются некоррелированными, и структура реконструированного 
аттрактора по данным тестовых экспериментов теряется [11]. 

В ряде работ предлагается выбирать в качестве времени задержки первый 
нуль автокорреляционной функции (АКФ), первый минимум функции взаимной 
информации ан [12-13] или первый минимум логарифма обобщенного 
корреляционного интеграла [14]. На рис. 1 представлены двумерные проекции 
восстановленных методом задержки фазовых портретов систем ИСЛ, СЧ и АДК 
при различных T: BHA3Y т=Туь а BBEPXY T <Ty;, Видно, что увеличение времени 
задержки усложняет фазовый портрет и увеличивает размерность вложения, хотя 
топология аттракторов сохраняется. Поэтому в нашей работе мы остановились на 
фазовых портретах, изображенных на рис. 1,а-в, отвечающих условию T<Tpin2. 

X, 

0.87 

02 04 0.6 0.8 X 
a 6 

2 д 

Рис. 1. Фазовые портреты колебаний исследуемых CHCTEM, реконструированные методом 'Гакенса 
при различных значениях задержки по BPEMEHH при р = 5 и т<Т: @ - ИСЛ, 6 - СЧ, в - АДК; при 

T=Tmin: & - ИСЛ р = 54, д - СЧ р = 75, е - АДК р = 18 

2 В дальнейшем будем указывать Ty, B едИНицах AL 
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4. Оценка размерности вложения исследуемых систем 

Для оценки минимальной размерности вложения N для реконструкции 
уравнений мы использовали корреляционную размерность в силу преимуществ €€ 
расчета, указанных в [15-20]. Использовался стандартный метод вычисления 
корреляционной размерности ДС по тангенсу угла наклона линейного участка 
графика функции [gC (Ige), где С - корреляционный интеграл, рассчитанный по 

формуле 
/И(Е) 

С(е) = 16 {{JF. (7) 

Здесь е - длина стороны кубической ячейки разбиения реконструйрованного 
фазового пространства, p; - вероятность попадания фазовой точки в ячейку с 
номером I, М(е) - количество нелустых ячеек. Заметим, что в силу проведенной 
нормировки исходных данных к интервалу [0,1] максимальный размер ячейки 
равен 1. Размерность D, рассчитывалась для диапазона изменения размерностей 
вложения N от 1 до 10. B качестве «истинной» D, выбиралась размерность, 
полученная при N=10, хотя сходямость к этой величине начинала наблюдаться при 
существенно меныших значениях — № Результаты расчета корреляционной 
размерности привелены в таблице. 

Таблица 

Система | Корреляционная размерность D, 

ИСЛ 1.19 

сч 2.79 

АДК 214 

Корреляционная размерность . аттрактора системы ИСЛ оказалась меньше 
двух и близка к единице. Можно предположить, что аттрактором системы ИСЛ 
является предельный цикл. Этот вывод подтверждает также вид реализации, 
медленно спадающая АКФ, почти линейчатый спектр на фоне шумового пьедестала 

и форма одномерной плотности распределения, характерная для предельного цикла 
[21]. Несколько завышенное значение размерности, по-видимому, связано с 
использованием — сильно — зашумленных — экспериментальных — данных. — Для 
реконструкции этой системы мы использовали размерность вложения N < 3. 

Корреляционная размерность, рассчитанная для системы CY, оказалась 
принципиально нецелым числом3. Это говорит о TOM, что мы имеем дело с 
хаотическим аттрактором. Согласно теореме Такенса, необходимой является 

размерность пространства вложения N 2 2D +1 [10], что требует в нашем случае 
задания N =7. Однако, эксперименты показали, что значение N =7 является B 

нашем случае завышенным, и мы огравичились заданием М=3. 
Для системы АДС мы получили значение корреляционной размерности 

немного болыше IBYX, что говорит о возможном хаотическом характере колебаний. 
Этот результат хорошо согласуется с утверждением O TOM, что в системе 
реализуется аттрактор близкий к разрушившемуся тору [23]. Для восстановления 
уравнений этой системы также ограничимся размерностью вложения равной трем. 

B целом, обнадеживающим результатом является малость вычисленных 
корреляционных размерностей. Это свидетельствует O TOM, YTO динамика 
исследуемых систем не сложнее динамики систем с одним положительным 
Ляпувовским показателем. 

3 Приведенное в таблице значение согласуется с результатом, полученным в [22). 
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5. Реконструкция уравнений 

$.1. Получение уравнений и свойства ux решений. Первой нашей попыткой 
написать модель ИСЛ стала работа [21], в которой удалось получить лиии 
соответствующую двумерную дискретную модель. В настоящей работе были 
восстановлены  системы W3 JBYX и трех  дифференциальных | уравнений, 
приближенно моделирующих данную систему. Для этого фазовый портрет, как и в 
[21], восстанавливался методом задержки с р=т/Ай=5 при А/ = 0.01(6) (см. рис. 1, а). 
Свойства решений дифференциальных уравнений как двумерных, так и 
трехмерных, полностью совпадают со свойствами решений дискретных уравнений. 
Наблюдается соответствие спектров мощности, АКФ и одномерных плотностей 
распределения, вычисленных O реализациям обоих типов уравнений, с TEMH же 
характеристиками исходных данных. 

Следующим шагом работы с ИСЛ стала реконструкция фазового портрета 
методом производных с использованием размерности вложения N=3. В силу 
зашумленности исходной реализации получившийся фазовый портрет оказался 
гораздо более хаотичным, чем изображенный на рис. 1, 4, и совершенно не 
напоминал предельный цикл. Но мы все же сделали попытку реконструкции 
системы по такому фазовому портрету. Ee можно было считать успешной только 
после очень тщательного выбора параметров реконструкции 5% = 54 (15,,=54), 

Ar=10-10, m=10, v=3. При других значениях этих параметров разумных результатов 
получено не было. Решением восстановленных уравнений являлся предельный 
цикл, по форме напоминающий исходный фазовый портрет (полученный методом 
дифференцирования). Временные зависимости соответствующих координат 
оказались также очень похожими. 

Теперь обратимся к системе СЧ. Ee фазовый портрет, восстановленный 
методом Такенса, показан на рис. 1, 6. Попытка реконструкции данной системы по 
такому фазовому портрету оказалась неудачной. Далее, мы выбрали в качестве 
исходных данных первую производную от экспериментальной реализации и уже по 
ней методом — задержки  восстановили  фазовый — портрет, эквивалентный 
показанному на рис. 1, 6. По этому фазовому портрету при s=1 (Ar=0.001), т=10, 

Ar=10-10, § . =3500, v=4 (N=3) были получены уравнения с предельным циклом, 
близким по форме к исходному фазовому портрету. 

Затем мы восстановили аттрактор системы СЧ методом производных. На 
рис. 2, а- в показаны его двумерные проекции. Следует обратить внимание на 
топологическую -— эквивалентность — данного — аттрактора H — аттрактора, 
изображенного на рис. 1, 6. Разумные результаты для этого случая получились при 
нескольких вариантах задания параметров реконструкции. Например, при s=16 
(tmn=75), m=10, Ar=10-10, y=3 удалось — получить — систему H3 — трех 
дифференциальных уравнений, проекции решения которой показаны на рис. 2, 2- €. 
Временные зависимости координат исходной и реконструированной систем 
изображены на рис. 3. В этом случае мы также имеем предельный цикл как 
результат реконструкции, хотя исходный аттрактор напоминал хаотический (o 
чем, кроме размерности, свидетельствует и характер АКФ). Эффект, при котором 
вместо хаотического режима восстанавливается регулярный, может быть связан с 
усредняющим действием метода наименьших квадратов°. Фазовая траектория 
системы СЧ He является периодической, HO фазовая точка хаотическим образом 
движется в окрестности некоторого периодического режима, который и 
восстанавливается данным методом. Форма восстановленной первой координаты 
(см. рис. 3, г) также отлична от формы исходной ЭКГ (см. puc. 3, а), хотя B ней 
присутствуют все характерные для ЭКГ Р, O, R, §, T - зубны. 

4 Параметр § указан в единицах А/. 
5 Мы не исключаем возможности TOro, что аттрактор СЧ в действительности периодический, 

а результаты, приведенные на рис. 2, а- 8, являются следствием влияния флуктуаций. › 
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Рис. 2. а - в проекции фазового портрета системы ©СЧ, реконструированного методом 
производных и дополненного промежуточными точками; 2 - € проекции решения соответствующих 
реконструированных дифференциальных уравнений 

Процедуре реконструкции мы подвергли также систему АДК. Отметим, что 
реконструкция этой системы так же, как и системы ИСЛ по фазовому портрету, 
полученному с помощью метода Такенса, не удалась. Фазовый портрет данной 
системы был восстановлен методом производных. При этом мы реконструийровали 
уравнения с решением в виде хаотического аттрактора, по форме напоминающего 
исходный, HO поведение его координат несколько отличалось от поведения 
соответствующих исходных координат. 
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Рис. 3. Временные зависимости исходных координат системы СЧ: а - a(t), 6 - а(г), в - a(t); г- е - 
соответствующие временные зависимости координат решения реконструированных уравнений 
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6.2. Свойства реконструированных уравнений. Мы не будем приводить B 
статье полученные нами дифференциальные уравнения ввиду их сложности. Правые 
части трехмерных дифференциальных уравнений имели вид (6), причем количество 
коэффициентов C;p, 4 При v = 3 равнялось 60. Пределы изменения значений 
коэффициентов оказались довольно значительными (+104). 

Очень важным результатом оказалась грубость полученных уравнений, то 
есть при малом изменении их параметров решение уравнений также менялось 
мало. При более значительном изменении некоторых параметров наблюдались 
бифуркации решений. Интересным является следующий факт. В результате 
реконструкции системы СЧ были получены уравнения с периодическим решением, 
хотя исходный аттрактор обладал хаотической динамикой. Но изменением одного 
U3 управляющих параметров можно перевести реконструийрованную систему B 
режим динамического хаоса (рис. 4), визуально напоминающий исходный фазовый 
портрет (см. рис. 2, а- в). Расчет старших показателей Ляпунова для этих двух 
режимов — дал — приблизительно — совпадающие — значения:  для — исходной 
электрокардиограммы было получено значение примерно равное 3.6, а для режима 
динамического хаоса, существующего в реконструированной системе, это 
значение было примерно равно 3.24. 

а & 

Рис. 4. Двумерные проекции фазового портрета системы уравнений, реконструированной MO 
электрокардиограмме сердца человека, в режиме динамического хаоса (ср. с рис. 2, д- в) 

А теперь обратим внимание на следующее. В случае, когда мы 
реконструийровали фазовую траекторию методом последовательного 
дифференцирования координат, TO ожидали получить уравнения B виде 

x=y, y=z, z=F(xyz2). (8) 

Ho, несмотря на качественное соответствие фазовых портретов и реализаций, мы 
He получили дифференциальных уравнений вида (8), хотя при реконструкции этим 
методом тестовых систем мы получали ожидаемый результат. Все три 
реконструированные уравнения имели сложную форму правых частей (6), и 
никакими коэффициентами нельзя было пренебречь. Это может быть связано с 
сильной зашумленностью исходных данных, с тем, что размерность вложения, 
которой мы были вывуждены ограничиться из-за нехватки оперативной памяти 
ЭВМ, оказалась недостаточной, а также с возможной нестационарностью 
исходных данных: исходные фазовые траектории не принадлежали аттракторам 
систем B силу воздействия каких-то побочных факторов в процессе снятия 
реализаций с живых организмов. 

Выводы 

1. Построен алгоритм реконструкции динамических систем MO одной 
° реализации, который протестирован на известных модельных системах, что 
подтвердило его работоспособность. 

2. Проведен расчет корреляционной размерности аттракторов исследуемых 
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биологических систем: изолированного сердца лягушки, сердца человека и 
системы кровообращенвия белой крысы IO их одномерным реализациям. 

3. Осуществлена попытка применения метода реконструкции динамической 
системы по наблюдаемой к перечисленным реальным медико-биологическим 
сястемам. В результате получены некоторые грубые уравнения, решение которых 
качественно соответствует исходным данным. 

4. Найдены управляющие параметры реконструированных систем, изменение 
которых приводит к бифуркациям решений. 

Нашу первую попытку  создания  качественных — моделей — реальных 
биологических систем не следует рассматривать как конечный результат. Мы 
лишь показали, что алгоритмы реконструкции систем B принципе применимы K 
зашумленным данным, полученным в ходе эксперимента (B нашем случае, 
биологического). Объем работы не позволяет привести данные более подробного 
исследования полученных уравнений, в TOM числе результаты их интегрирования с 
шумом различной интенсивности. Следующим шагом в — наших дальнейших 
исследованиях в этой области будет увеличение размерности вложения при 
реконструкции уравнений, использование более точных методов аппроксимации 
правых частей уравнений, изменение снособа вложения данных в фазовое 
пространство. 

Мы выражаем — глубокую — благодарность — профессору — Саратовского 
медицинского университета Г.В. Бриллю за любезно предоставленные нам 
экспериментальные реализации ИСЛ, П.И. Сапарину и Н.Б. Игошевой за 
предоставленные записи ЭКГ, профессору СГУ T.I'. Анищенко и А.Н. Мурашову 
за предоставленные экспериментальные реализации артериального давления белой 
крысы. 

Работа частично финансировалась Международным научным фондом 
(грант RNO 000) и Русским фондом фундаментальных естественных наук 
(грант 93 - 8.2 - 10). 
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MODELLING DYNAMICAL SYSTEMS ON EXPERIMENTAL DATA 

N.B. Jenson, V.S. Anishchenko 

An attempt is made in the work to create qualitative models of some real biological 
systems, i.e., isolated frog's heart, а human's heart and а blood circulation system оё а 
white rat. Sampled one-dimensional realizations of these systems were taken as the 
initial data. Correlation dimensions were calculated 10 evaluate е embedding 
dimensions оЁ е systems' attractors. 

The result of the work are the systems of ordinary differential equations which 
approximately discribe the dynamics of the systems under investigation. 
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