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УПРАВЛЕНИЕ ЧАСТОТОЙ В ОДНОМ КЛАССЕ 

РАСПРЕДЕЛЕННЫХ ДИНАМИЧЕСКИХ СИСТЕМ 

Ю.П. Блиох, М.Г. Любарский, В.О. Подобинский 

Рассмотрена возможность управления частотой в динамической системе с 
распределенными параметрами, задаваемой отображением комплексной плоскости в 
себя. Управление осуществляется аддитивным монохроматическим сигналом г(:), 
добавляемым в правую часть отображения. Определены области параметров го, V, В 
которых отображение имеет устойчивое монохроматическое решение exp(ivi). 
Показано, что с двумерностью отображения связаны два различных механизма потери 
устойчивости монохроматического решения. Необходимость стабилизации внешним 
воздействием одновременно двух этих механизмов существенно сужает область 
параметров, при которых возможно управление частотой решения. Проанализирована 
возможность связи между амплитудным порогом управления (синхронизации) и 
степенью хаотичности движения автономной системы рассматриваемого типа. 

1. Постановка задачи 

В настоящее время особый интерес вызывает возможность управления 
динамическими системами, демонстрирующими стохастическое поведение [1]. В 
этом случае благодаря разбеганию (неустойчивости) траекторий управление 
возможно с помощью очень слабого воздействия на систему. Аналогичная идея O 
возможности сильного изменения характера движения с помощью малого 
воздействия в неустойчивых системах была высказана ранее в работе [2]. В 
предлагаемой работе исследуется одна из задач теории управления, характерная 
для распределенных динамических систем, то есть систем с функциональным 
фазовым пространством. Такие системы возникают при изучении эволюции 
физических объектов, мгновенное состояние которых невозможно описать с 
помощью конечного числа параметров. Примером могут служить динамические 
системы, задаваемые уравнениями в частных производных или обыкновенными 
дифференциальными — уравнениями с  запаздывающим — аргументом. Ниже 
рассматриваются распределенные динамические системы, являющиеся наиболее 
простым обобщением конечномерных систем, задаваемых итерацией отображения 
Е комплексной плоскости в себя 

хин = Fx), п = 1,2... (1) 
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Естественным обобщением такой динамической системы — является 
распределенная система, определяемая формулой 

(r+ 1) =F{x}, (ге %), (2) 

где х, - функция, такая что x(t) = x(¢ + т), т < 0; и Р^ - нелинейный функционал, 
определенный на пространстве комплекснозначных функций, заданных на 
отрицательной полуоси т. Точкой фазового пространства этой динамической 

системы является комплекснозначная функция x(T), заданная на интервале 

(-ее < т < г + 1). Ве движение явно определяется итерацией отображения (2). 
В настоящей работе рассматриваются динамические системы вида (2) с 

наиболее простыми функционалами вида 

Ех} = FIG {x H)exp(i arg С^{х,}), 
где 

Gx} =G-x,=] G(1- x(x) 

- линейный функционал, а F - нелинейная комплекснозначная функция*. 
Хотя это наиболее простой вид функционала в том смысле, что его 

«распределенность» линейна, а «нелинейность» скалярна, динамическая система 
(2) описывает, как показано в работах [3,4], целый ряд широко известных 
генераторов высокочастотных электромагнитных колебаний. Это во многом 
объясняется тем, что наложенные ограничения на вид функционала опираются на 
такие естественные с физической точки зрения предположения, как принцип 
причинности, автономность системы и инвариантность относительно начальной 
фазы. Последнее, например, определяет зависимость функции Е только от модуля 
значения функционала ©“, что эквивалентно инвариантности пространства 
экспонент вида 

х()) = exp(ivt), (ve R) (3) 

относительно отображения (2). 
Отметим особо, что функционал (2) естественно рассматривать именно на 

пространстве комплекснозначных функций. Это объясняется, во-первых, тем, что 
для задач, допускающих усреднение по «быстрому» времени, амплитуда и фаза 
решения, как правило, не могут рассматриваться отдельно. Во-вторых, как это 
будет видно из дальнейшего, поведение изучаемых динамических систем в 
пространстве комплекснозначных функций с точки зрения их стохастизации 
намного интересней, чем в пространстве вещественных функций. 

Решение вида (3), пользуясь радиотехнической терминологией, будем 
называть монохроматическим, а число у, соответственно,- его частотой. Очевид- 
но, что дискретным аналогом монохроматического решения является неподвижная 
точка отображения (1). 

Предположим, что функционал зависит от параметра г: Е^ = F*{x, г}. Задача 

управления частотой динамической системы заключается в том, чтобы подобрать 
этот параметр так, чтобы для заданной частоты существовало устойчивое 
монохроматическое решение. В данной работе рассматривается способ 
управления, уже хорошо изученный для конечномерных динамических систем, 
определяемых обыкновенными дифференциальными уравнениями (CM., например, 
[5,6]). Он заключается в аддитивном добавлении управляющего члена в правую 

часть уравнения 

Fx, ry=F x} +r. 

* Имеется в виду функция F(x), для которой d argF/dx = 0. В противном случае отображение 
(2) заменой переменной сводится к отображению с вещественной функцией F. 
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Это можно интерпретировать так, что управление He меняет параметры прибора, a 
осуществляется подачей внешнего сигнала, который в дальнейшем будем называть 
управляющим. Чтобы последнее было ясно, выпишем основное уравнение 
полностью 

x(t + 1) = F(|Gx/)exp(iarg G-x,) (4) 

и заметим, что его можно рассматривать как уравнение кольцевого генератора, 

состоящего из полосового фильтра С^{.}, нелинейного усилителя F(.), линии 

задержки / — 1+1 и цепи обратной связи. Управление г в этом случае естественно 
представить как внешний сигнал, добавляемый на входе системы к сигналу, 

пришедшему по цепи обратной связи. Следует подчеркнуть, что «фильтр» С^{.} 
отнюдь не обязательно должен быть отдельной частью реальной системы, а может 
появиться как описание свойств движения системы с распределенными параметрами. 
Такими свойствами обладают, например, системы, описывающие распределенное 
резонансное взаимодействие пучков заряженных частиц с волнами В 

2. Устойчивость монохроматических решений на собственной 
частоте без управления 

Функционал С^ в дальнейшем удобно описывать его амплитудно-частотной 
характеристикой а(у) 

G {em} =a(v)exp(ivt), | (& уе R) (5) 

или, что TO же самое, преобразованием Фурье ero ядра С. 
Уравнение (4) при г = 0 имеет монохроматические решения, если в 

некоторой области частот функция у(х) = Е(а(у)х!) такова, что график ee модуля 
пересекает прямую у = x при x # 0. Будем предполагать это условие выполненным. 
Тогда собственные частоты, то есть частоты всех монохроматических решений, 
лежащие в этой области, определяются из уравнения «фазового баланса», 
непосредственно вытекающего из уравнения (4) при х(г) = xpexp(ivet) 

фа vy + argF(la(vo)xl) + arga(vy) + для = 0, п = 0, +1,... (6) 

Таким образом, собственные частоты расположены дискретно. При наличии 
управления, то есть при г # 0, из уравнения (4) следует, что для существования 
монохроматического решения управляющий сигнал также должен быть 
монохроматическим: (i) = rexp(iv.t). Тогда благодаря свободному параметру г 
решение может иметь любую частоту, равную частоте у, управляющего сигнала. 

Амплитуды решения хо (будем считать ее вещественной и положительной) и 
управляющего сигнала г удовлетворяют при этом соотношению 

72] = x2 + |F12 - 2x|Flcose, (7) 

получаемому также из основного уравнения (4). 
Чтобы определить устойчиво ли соответствующее монохроматическое 

решение x(t) = xpexp(iv.t), линеаризуем вблизи него уравнение (4) и будем искать 
решение в виде пары сателлитов 

8x = exp(iv.)(C exp(ivt) + С. exp(iv't)). 

Опуская очевидные выкладки, придем к следующему характеристическому 
уравнению: 

(+ plz)2- (1/2) {10 +p). + (1 +p). "] (1 + ReFy) + (8) 

+ ДО +p)o.- (1 + р)о. "Пт } + оо “Вел = 0. 

14



Здесь z=exp(iv), р=т/(хо- г), as=a(vtv)lay, ay=a(v,), Fi=lagx(In FY, производная 
(In FY берется в точке laglxg. 

Ниже мы будем предполагать, что носитель в функции G мал; & << 1. Это 
означает, что амплитудно-частотная характеристика а(у) мало меняется Ha 
масштабах изменения у порядка расстояния между собственными частотами. При 
r = 0 равенство (7) выполнено только на собственной частоте. В силу сделанного 

предположения все входящие в него выражения кроме ф практически не зависят от 

у на интервале между любыми двумя собственными частотами, то есть при 
0 < ф < 27. Это показывает, что управляющий сигнал может быть малым по 
сравнению с решением только в окрестности собственной частоты. 

При г = 0 характеристическое уравнение (8) имеет следующие семейства 
корней, приведенные ниже с точностью до старших членов разложения мнимой и 
вещественной частей по указанному выше малому параметру & 

vil) = жк - inlay IF) + п/2, (1 - signlF’l), (9) 

»,@) = дл - 2i(rk)[lal"/lay) - (arg а)” ПаЕ/(1-ВеР,)] - 

- 2i(mk)2[(lal/lag))2(2ReFy/(1-ReFy) + (ImFy)2(1+ReF,)/(1-ReF,)3)], (k=0,£1,...). (10) 

Монохроматический режим неустойчив, если по крайней мере один из 
мультипликаторов 

zi =exp(ivi®) и го = exp(ivi®) 

по модулю больше единицы. Условия неустойчивости удобно записать в виде 

А) = 121! - 1 > 0, А» = 12)! - 1 > 0, 

где А и A; - параметры надкритичности. 

При a(v) = const может быть выполнено только условие A; > 0. Это случай, 

когда ядро функционала С^ является 6-функцией и речь идет об итерации 

одномерного отображения вида (1). В другом крайнем случае, когда F(x) = const, 
неустойчивость может возникнуть только благодаря выполнению условия A, > 0, 

что предполагает наличие непостоянной амплитудно-частотной характеристики 
a(v). В дальнейшем механизм возникновения неустойчивости, связанный с 
выполнением первого из этих условий, будем для краткости называть 
амплитудным, а механизм, связанный со вторым условием - частотным. 

Переход от регулярной к стохастической автомодуляции при итерировании 
точечных отображений осуществляется, как известно [8], рядом бифуркаций 
удвоения периода. Близкая картина наблюдается и при итерировании 
функционального отображения в случае амплитудного механизма. Переход к 
стохастике при увеличении параметра надкритичности A; идет через ряд удвоений 
периода решения. Для частотного механизма вместо удвоений периода при 
увеличении параметра надкритичности А, наблюдается явление, аналогичное 

перемежающейся турбулентности, когда участки регулярного поведения сигнала 
сменяются все более длинными участками его случайного поведения. 

Отметим, что при частотном механизме нарастают возмущения фазы 
монохроматического решения, а при амплитудном - возмущения амплитуды. 
Объединение этих двух неустойчивостей в рамках одной модели связано с 
комплекснозначностью исследуемого отображения. 

Механизмы автомодуляции различаются и по спектральным характери- 
стикам решения, Действительно, как следует из формул (9), (10); при разрушении 
монохроматического решения сателлиты развиваются при частотном механизме 
вблизи собственных частот генератора, а при амплитудном механизме - посредине 
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между ними. (Это утверждение выполняется и в следующих порядках малости по € 

вблизи максимума амплитудно-частотной характеристики, где производная lal’ 
близка к нулю.) При дальнейшей стохастизации системы удвоению периода 
решения при амплитудном механизме соответствует каждый раз появление новых 

промежуточных частот, в то время как при частотном механизме спектр решения 

локализуется Ha собственных частотах, которые ясно выделены даже в режиме 
развитой стохастической автомодуляции. 

3. Устойчивость монохроматических решений при управлении 
в окрестности собственной частоты 

Выясним в этом разделе, как влияет малое (по сравнению с решением х) ) 
управление г на устойчивость монохроматических решений. Ясно, что изменение 
устойчивости решения с помощью малого управляющего сигнала возможно 
только при небольших значениях параметра надкритичности и, как отмечено в 
разделе 2, только вблизи собственных частот. Аналогичная задача для 
несобственных частот и больших значений параметра надкритичности обсуждается 
в конце раздела. 

Рассмотрим сначала управление на одной из собственных частот. Считая 

отношение р=//хо малым, можно сохранить только линейные члены разложения 
параметров надкритичности по этой переменной и получить таким образом 
следующие формулы: 

А(р) = Art АВР,  Ay(p) =) + Blpl, (11) 
где 

A = [laglxo(ReF)( 1 - ReF;) + Тт2Р, Ве! |/[В2(1 - ReF,)?], 

в = {1 + [наРу/(1 - ReF,)]}12. 

Знаки + в этих формулах означают, что при р () имеется два монохроматических 
решения уравнения (4) - x, и х., и соответственно этому пара параметров 
надкритичности распадается на две, отличающиеся друг от друга знаком при 
линейном члене. В рассматриваемом управлении на собственной частоте решениям 
Xs; соответствуют случаи, когда фаза управляющего сигнала совпадает с фазой 

решения либо сдвинута на 7. Из равенства (11) вытекают следующие условия 
устойчивости монохроматических решений на собственных частотах: 

+5120 Alpl > A/(IAIB), (12) 

tip! > А/В. (13) 
Из этих неравенств следует, что одновременно оба решения X, и X. могут быть 

устойчивы только при А; < О и A; < 0), то есть когда монохроматическое решение 
устойчиво и в отсутствие управляющего сигнала. В остальных случаях область 
значений параметра р, где монохроматическое решение устойчиво, представляет 
собой интервал (будем для краткости называть его интервалом управления), 
который может быть конечным, полубесконечным или пустым. 

Рассмотрим в качестве примера случай, когда функция а(у) постоянна, то 
есть когда динамическая система задается одномерным отображением вида (1). 
Поскольку A; = О и В > 0, устойчивым в силу неравенства (13) может быть только 

решение х.. Причем, если A; > 0, то согласно неравенству (12) это решение 
устойчиво только при sign А > 0. Например, для хорошо изученного [8] 
отображения вида (1) с «параболической» функцией F(x) = (1 - x), A> 0 
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последнее условие эквивалентно неравенству FI” > 0 и поэтому не выполняется, 
Таким образом, если монохроматический сигнал без управления неустойчив, 
подача управляющего сигнала в последнем примере ситуацию не меняет. Здесь 
еще раз проявилась двумерность (комплексность) рассматриваемого отображения: 
в приведенном выше примере неподвижная точка х, устойчива по одному 
направлению и неустойчива по другому. Если же ограничиться только классом 
вещественных функций и не допускать появления комплексных возмущений, то в 
данном примере управление возможно [9]. 

Возможности управления частотой повышаются в случае функционального 
отображения, то есть когда a(v) # const. В рассмотренном выше случае 
отображения с параболической функцией Р область устойчивых решений 
существует при Ay > О и A, < 0 для x, и при А, < О и А, > 0 для х.. (Отметим, что 
первый из этих случаев, как следует из формулы (10), возможен при выпуклой 
амплитудно-частотной характеристике: |@(у)” < 0, а второй - при вогнутой: 

la(v)l">0.) Соответствующие интервалы управления задаются неравенствами 

АВ < Ipl < IAJ/(1AIB), AJ(IAIB) < Ip! < АВ. (14) 

Если величины Aq, Ay, А и В не удовлетворяют какому-нибудь из этих 

неравенств, то соответствующий интервал управления пуст. 
В случае A; > О и A; > 0 интервал управления для отображения с 

параболической функдией F как следует из неравенств (12), (13) всегда пуст. 
Рассмотрим теперь вопрос о влиянии управляющего сигнала на устойчивость 

монохроматического решения на частотах, отличных от собственных частот 
генератора, но близких к ним. Формулы (11), справедливые для собственных 
частот, обобщаются на этот случай следующим образом: 

А1(р, А») = А; A(Bplz- Ау 2)12 + С Ay, 

Здесь Ау - отклонение частоты монохроматического сигнала от собственной 
частоты генератора и 

Формулы (15) прежде всего отражают тот факт, что не на собственных 
частотах генератора решение может быть монохроматическим только при наличии 
управляющего сигнала. Причем уровень этого сигнала определяется из условия 
положительности выражения под квадратным корнем. То есть в плоскости с 
координатами Av, pl область существования монохроматических решений лежит 

выше прямых 1р! = B-1Av. Границы области управления определяются равенствами 

А, (р, Av) = О и А,(р, Av) = 0. При С = 0 эти границы в указанной плоскости 
представляют собой гиперболы, лежащие в верхней полуплоскости, с асимптотами 
|! = +В-1Ау, которые совпадают с границей области существования моно- 
хроматических решений. Поскольку гиперболы проходят через концы интервала 
управления на собственной частоте, то зная последний, легко представить себе 
область управления на частотах, близких к собственной. В частности, если 
интервал управления на собственной частоте пуст, то управление на частотах, 
близких к собственной, невозможно. 

На рис. 1 и 2 представлены области устойчивости для yXe 
рассматривавшегося выше отображения с параболической функцией F в двух 
случаях, когда амплитудно-частотная характеристика вогнута и  выпукла. 

Напомним, что различие между ними состоит в знаке параметра A,, приводящем к 
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Рис. 1. Область управления в окрестности соб- Puc. 2. Область управления в окрестности соб- 

ственной частоты при амплитудном механизме ственной частоты при частотном механизме 

неустойчивости автономной системы; A; > 0, неустойчивости автономной системы; Aq < 0, 

А; < 0, С=0 Аз > 0, С = 0 

тому, что в первом случае интервал управления существует при амплитудном 
механизме разрушения устойчивости монохроматического решения (A; > 0, А, < 0), 

а во-втором - при частотном (А, < 0, А, > 0). 
При C + 0, что возможно только для отображений с комплекснозначной 

функцией FF, гипербола, в уравнение которой входит этот параметр, смещена вдоль 

оси Ау относительно собственной частоты на величину AC/(A2 + C2). В этом 
случае, несмотря на отсутствие интервала управления на собственной частоте, 
управление может быть осуществимо на близких к ней частотах. Область 
управления кроме рассмотренных гипербол может быть дополнительно 
ограничена отрезками прямых |р! = В-1Ау из-за того, что последние, определяя 
область существования монохроматических решений, в этом случае могут 
пересекаться со смещенной гиперболой. На рис. 3 приведен пример области 
управления для отображения с комплекснозначной параболической функцией 

F(x) = (1 - x)exp(ipx), (16) 

и выпуклой амплитудно-частотной характеристикой. 
Рассмотрим вопрос о нахождении области управления для частот, 

существенно отличающихся OT собственных. Аналитические трудности не 
позволяют получить общие формулы для этого случая. Однако задача легко 
решается численно в каждом конкретном случае. На рис. 4, а- в приведены области 
управления (то есть области существования устойчивых монохроматических 

решений) на плоскости Av, |р! для уже упоминавшегося отображения с парабо- 
лической функцией я выпуклой ампли- 

yy тудно-частотной характеристикой. 

62 Параметры A и lal” подобраны так, что 
на собственной частоте в отсутствие 

Wi управляющего сигнала  монохромати- 
hon, ческий сигнал неустойчив благодаря 

ъ амплитудному механизму — разрушения 
устойчивости (А, > 0, А, < 0). От а кв 

параметр A PacTeT, остальные параметры 
1 ——з Нейзменны. 

-02 6.0 02 Ау Аналогичная серия рис. 5, а- в 

Рис. 3. Область управления в окрестности ОТНОСИТСЯ К случаю отображения с 
собственной частоты динамической системы с ВЫПУуклой амплитудно-частотной харак- 
комплекснозначной функцией отображения; теристикой и с комплекснозначной 

А) < 0, Ао > 0, С < 0 параболической функцией F, определен- 
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Рис. 4. Динамика изменения глобальной области — Рис. 5. Динамика изменения глобальной области 
управления системы с вещественной функцией — управления системы с комплекснозначной функ- 
отображения при увеличении параметра цией отображения при увеличении параметра 
надкритичности А, > 0 надкритичности Ay > 0 

ной равенством (16). Параметры A, Н и lal” выбраны так, что на собственной 
частоте, в отсутствие управляющего сигнала монохроматический сигнал неустой- 
чив благодаря частотному механизму разрушения устойчивости (A; < 0, А, > 0). В 

этой серий меняется только один параметр - |, который растет от а к в. 
Приведенные иллюстрации показывают, что форма областей управления 

может быть очень сложной и в большой степени зависеть от вида механизма 
разрушения устойчивости монохроматического решения. Кроме того хорошо 
видно, что область управления быстро уменьшается с ростом параметра 
надкритичности, связанного с этим механизмом. Таким образом, при управлении 
частотой, особенно при больших значениях параметра надкритичности, уровень 
управляющего сигнала должен существенно зависеть от частоты. 

4. Связь порога синхронизации с характеристиками движения 
автономной системы 

Задача управления частотой динамической системы с распределенными 

параметрами, рассмотренная выше, тесно связана с вопросом о связи порога 
синхронизации и мерой стохастичности движения автономной системы. Нод 
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порогом синхронизации понимается минимальное возможное значение амплитуды 
управляющего монохроматического сигнала, воздействие которого на систему со 
стохастическим движением переводит ее в монохроматический режим. Гипотеза о 
связи порога синхронизации с энтропией движения системы выдвинута в [6] и 
подтверждена на ряде примеров динамических систем [5-7]. 

В рассмотренном выше классе динамических систем такая связь также имеет 
место в ряде случаев. Она проявляется в зависимости минимальной амплитуды 
управляющего сигнала от параметра надкритичности А,, который, в свою очередь, 
является мерой хаотичности движения системы. Функциональная связь этих 
величин может быть весьма сложной и иметь различный вид в различных областях 
изменения А, Так, например, изображенные на рис. 4 области управления 
демонстрируют изменение зависимости минимальной амплитуды п управления от 
параметра А). При малых A; > 0 и С = 0 величины iy, И A; пропорциональны друг 
другу, как это следует из (15). Увеличение параметра надкритичности A; приводит 
к разрыву области управления (см.рис. 4, в) и Ip, Достигается уже He Ha 
собственной частоте. Узкие «языки» области управления быстро стягиваются к 
значению г ~ 1 при Ау = п/2, и при дальнейшем увеличении A; значение га Практи- 
чески не меняется. Изменение функциональной связи ry (A) при С # 0 может 
произойти и при малых А > 0, что также связано с возникновением разрыва 
области управления (см. рис. 3). 

Следует отметить, что при использовании одномерных функций F, 
описывающих отображение конечного отрезка в себя, исследование неавтономной 
системы может потребовать доопределения функции вне этого отрезка (см., 
например, [9]). Поведение неавтономной системы очень сильно зависит от способа 
доопределения функции F, в то время как движение автономной системы И, 
следовательно, мера его хаотичности, определяются только значениями функции 
на исходном отрезке определения. В частности, вид верхней границы областей 
управления, приведенных на рис. 4, также определяется способом доопределения 
функции F(x) = Ax(1 - x) при x > 1. Таким образом, поведение системы в 
автономном и неавтономном (с управлением) режимах могут определяться 
совершенно различными функциями 4 в этом случае порог синхронизации никак не 
связан со статистическими характеристиками автономного движения. Это 
относится, конечно, к динамическим системам, описываемым отображениями, 

рассмотренными в данной статье, и далеко не всегда может быть распространено 
на системы, описываемые дифференциальными уравнениями, в ряде которых связь 
Fmin(A) имеет место и носит универсальный характер [5 - 7]. 

Таким образом, в рассмотренных динамических системах с распределенными 
параметрами и описываемых функциональным отображением вида (2), связь 
порога синхронизации с мерой хаотичности движения автономной системы далеко 
не всегда имеет место, а если и существует, то не всегда носит универсальный 
характер. 

Заключение 

Сформулируем основные результаты, полученные в работе. 
1. Комплекснозначность и функциональность отображения привносят новый 

механизм потери устойчивости монохроматического решения, отсутствующий в 
одномерных отображениях. Необходимость выполнения одновременно двух 
классов условий устойчивости существенно сужает область параметров внешнего 
сигнала, при которых возможно управление частотой данной динамической 
системы. В частности, в некотором диапазоне частот управление может 
отсутствовать при любых значениях амплитуды внешнего воздействия. 

2. Вид функциональной зависимости минимальной амплитуды внешнего 
сигнала, при котором возможно управление, от параметра надкритичности авто- 

номной динамической системы меняется в различных областях значений 
последнего. 
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THE FREQUENCY CONTROL IN ONE CLASS 

OF DISTRIBUTED SYSTEMS 

Yu.P. Bliokh, М.С. Lyubarskii, V.O. Podobinskii 

The possibility of frequency control in the dynamical system with distributed pa- 
rameters is considered. The dynamical system is defined as the complex-valued map. 

The control is executed by monochromatic signal (¢) = гоехр (ivt) that is added to 
the right part of the map. The interval of parameters го, у, when the map has stable mono- 
chromatic solutions ~ exp (гиг), is defined. It is shown that two different mechanisms of 
monochromatic solution instability are connected with two dimensions of the map. The 
necessity of stabilization by external influence of both these mechanisms substantially re- 
stricts the interval of parameters, when the frequency control is possible. The possibility 
of connection amplitude threshold of frequency control (synchronization) and the degree 
of stochastization in the independent system are examined. 
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