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НЕПАРАКСИАЛЬНЫХ ЭЛЕКТРОННЫХ ПОТОКОВ 

В ПЕРИОДИЧЕСКОМ МАГНИТНОМ ПОЛЕ 

Ю.А. Калинин, А.Г. Лазерсон, Г.В. Чемичев 

Представлены результаты исследования режимов сложной — динамики 
пространственных колебаний в электронных потоках, формируемых статическими 
магнитными полями. Установлены факторы, влияющие н устойчивость пучка. 
Рассмотрено подавление параметрической неустойчивости при  стохастизации 
движения. 

Введение 

Принцип фокусировки электронного потока в магнитном поле лежит в 
основе элёектронно-оптических систем многих приборов СВЧ. Поэтому 
регулярная динамика электронных пучков в системе «электронный поток- 
магнитное поле» хорошо изучена. Менее известны примеры сложной динамики 
интенсивных электронных пучков, фокусируемых статическим магнитным полем. 
Между тем, как показано в работах [1,2], режимы нерегулярных, хаотических 
колебаний в интенсивных потоках представляют ивтерес как с точки зрения 
теории динамических систем, так и с точки зрения приложений, поскольку в этих 
режимах можно обеспечить более устойчивую фокусировку пучков в более 
широкой области параметров фокусирующего магнитного поля, чем это позволяет 
регулярная динамика. Впервые на связь сложной динамики электронных пучков с 
улучшением фокусировки засчет подавления «шланговой» неустойчивости 
обратили внимание исследователи релятивистских электронных — потоков, 
фокусируемых ионным фоном [3]. В работах [1,2] было теоретически обнаружено 
явление подавления параметрического резонанса разрушающимся нелинейным в 
системе «электронный пучок - периодическое магнитное поле». Однако, 
полученные в этих работах результаты не могут быть непосредственно 
использованы для улучшения фокусировки реальных электронных потоков, 
поскольку заложенная в них физическая модель электронного пучка, а именно, 
параксиальное приближение и рассмотрение одного граничного электрона, не 
всегда справедливы в приборах с интенсивными электронными пучками. 

Настоящая работа посвящена исследованию режимов сложной динамики 
пространственных ~~ колебаний в — электронных — потоках, — фокусируемых 
статическими магнитными полями, с учетом факторов, типичных для реальных 
электронных пучков. К числу таких факторов, в первую очередь, следует отнести 
непараксиальность электронных пучков, зависимость амплитуды фокусирующего 
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магнитного Поля OT радиальной координаты и наличие неламинарности в 

электронном потоке. 

1. Параксиальная модель граничного электрона 
{основные результаты) 

С делью иллюстрации физики явлений динамического хаоса рассмотрим 
вкратце основные результаты, полученные на упрощенной параксиальной модели 
граничного электрона азимутально-симметричного электронного потока в 
периодическом — магнитном — поле, описываемой — уравнением — нелинейного 
параметрически возбуждаемого осциллятора [5]: 

@Ка22 + о(1 + cos2Z)R - BIR - k/IR3 = 0. (1) 

Здесь R = г/т - нормированный радиус границы пучка, Z = 2л2/Т, - норми- 
рованная продольная координата, 2L - период магнитного поля, & - параметр 
катодных условий, @ = еВ)!2/(тб4п2,) - безразмерный параметр магнитного 

поля, В = 1.53103P(L/2ry)? - безразмерный параметр пространственного заряда, 
Р = И/32 - первеанс пучка, го - равновесный радиус пучка. 

Нелинейное параметрическое уравнение (1), описывающее динамику 
неавтономного гамильтонова осдиллятора, допускает существование хаотических 
пространственных колебаний, причиной возникновения которых, согласно [4], 
является перекрытие нелинейных и параметрических резонансов. Как показано в 
работе [1], в соответствии с критерием перекрытия резонансов (критерий 
Чирикова) для перекрытия, например, основного нелинейного и параметрического 
резонансов осциллятора (1) необходимо выполнение соотношения 

К2 = 1/(4п) (о/В)12/( 17(0) - Inr(0)! ) > 1, (2) 

где К - значение критерия, r(0) - начальное значение радиуса граничного 
электрона. Как следует из (2) и критериев перекрытия других резонансов системы, 
на плоскости параметров (с, В) могут существовать многочисленные зоны 
стохастичности, когда колебания огибающей пучка носят нерегулярный, 
хаотический характер. 

Численное моделирование динамики нелинейного осциллятора (1) показало 
[1,2], что в различных областях параметров с, В, & существуют периодические, 
квазипериодические и хаотические колебания. Наиболее важным результатом, 
полученным на основе упрощенной модели (1), является тот факт, что устойчивые 
хаотические колебания границы — электронного пучка существуют при 
определенных значениях параметра фокусировки ао, соответствующих областям 
параметрической неустойчивости, в TO время, как периодические или 
квазипериодические колебания при этих же значениях параметра приводят к 
развитию — параметрической неустойчивости в пучке [1,2]. Подавление 
параметрической — неустойчивости — объясняется срывом — параметрического 
резонанса разрушающимся при стохастизации движения перекрывающимся с ним 
нелинейным резонансом пучка. 

2. Модель непараксиального неламинарного пучка 

Более точной, чем описанная выше, представляется модель, в которой пучок. 
разбивается на № цилиндрических слоев, каждый из которых заменяется 
бесконечно тонким заряженным цилиндром [6,7]. Рассчитывая траектории 
каждого циллиндрического слоя, получаем представление о форме всего пучка. 
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Уравнение траектории для j -го электрона в поле с потенциалом U(r,z) 
может быть записано в следующем виде: 

п = [1 + (77)2][20(7), 2)] QU, 2)/дг, - r/0U(ry, z)l0z), j=1,..,N, (3) 

где /, : - координаты j-ro электрона. При наличии аксиально-симметричного 
магнитного поля, потенциал U(r, z) имеет вид 

U(r, 2) = пФст + ПФ - W(8r22)(w(ry 2) - wir)? (4) 

где ‚ 

(г, 2) = дл] B.(r, z)rdr. (5) 
0 

Для МПФС B.(r, z) = Восо5(Вог) (Вог), Во = 2л/!, 1 - полупериод магнитного поля 

QUI = NO.OF + дфи/ду - дФуагн/д?), 

(6) 
д/дз = п(дфег/ 02 - 004/07 = дФианн/д2). 

Подставляя (4)-(6) в уравнение (3) получаем уравнение, описывающее 
поведение электронного пучка в периодическом магнитном поле 

ФВ /а22 = (1 + (dR;1dZ)?)(B;/R - Зо БСК) (YR) - [2(YR)YR Дсов2(2) + 

+ (dR; /dZ)(12(yR))2)sin(2Z)} + 08k) 2{[1/(R2y) I,(YR)Ryy - 21; (YR)]cos(Z) + 

+ (dR; 1dZ)(I;(YR)/R; )sin(Z)} + ok;/ Rp,  j=1,..,N. (7) 

а = nB22/(64Un?) - параметр магнитного поля, В = [p/(dm3e,(2n)v2)|[l2r)2 - 
параметр пространственного заряда, & - параметр катодных условий, ry - 

равновесный радиус граничного электрона, у = 2n/L, L = Ито, R = rlry, Z = 2nz/. 
Рассматриваемая модель позволяет учесть поперечное распределение 

нлотности тока н поперечных скоростей в пучке по заданным их распределениям 

на катоде (при z = 0). Так, при постоянной плотности тока по сечению пучка Ha 
катоде 

J = const, В, = (КИК. )2В, > (8) 

а при «колоколообразном» распределении 

„= Асоз(к/2 R,/R,) + С, 

д 1: © 

[ЕКВ - В) (Асов (п/2-К Во) + C)] + R{(Acos(t/2-Ri/Ry) + С) 

Отсчет ведется от внешнего слоя. К, -радиус граничного слоя, & = №. Расчет В, в 
процессе движения производится по формулам (8), (8a) с учетом Ry(Z), В{(27). 
Пересечения слоев описываются следующим образом: 

2% К 
В, = /(Ап2ео(2п)2у32)[1/(2то)2 ХЗ,  RiSR,, Л = дл. уа. 

Rin 

Распределение начальных углов наклона траекторий считалось либо постоянным 
(нулевые углы вылета), либо углы вылета линейно зависели от радиуса (см.[6]). 
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В параксиальном приближении (К = 0, у = 0) при № = 1 уравнения (7) 
сводятся к уравнению (1). В случае постоянного фокусирующего магнитного поля 
B(r, 2) = В, = const, уравнения, описывающие поведение электронного потока, 
приобретают следующий вид; 

Таким образом, динамика неламинарного непараксиального аксиально - 
симметричного электронного пучка сводится к решению системы уравнений (7) 
или (7а). Анализ электронных траекторий в данной системе проводился на основе 
численного решения указанных систем уравнений методом Рунге-Кутта 4-го 
порядка. 

Результаты численного анализа. В частном случае № = 1 уравнение (7) 
описывает траекторию  граничного электрона — азимутально-симметричного 
непараксиального пучка. Численный анализ данной динамической системы 
позволил выявить следующие закономерности. 

‚Как и в параксиальном случае, при малых @, В в фазовом пространстве 
систёмы (7) существуют замкнутые периодические траектории. С ростом o, В 
возникают двухчастотные колебания. При этом в спектре присутствует 
собственная частота 0 и частота вынуждающей силы @. С ростом @ собственная 
частота @) приближается к частоте накачки @, что приводит к появлению в 
спектре комбинационных частот (рис. 1). В случае, когда отношение собственной 
частоты колебаний и частоты накачки становится рациональным, в системе 
возникают резонансы различных порядков, в окрестности которых на плоскости 
параметров существуют области  стохастичности. Наибольший — интерес 
представляет подавление хаосом экспоненциального нарастания амплитуды 
колебаний электронов в области параметрического резонанса 1:2 и на границах 
области устойчивости. Спектр, реализация, и фазовый портрет в области сильного 
резонанса 1:2 представлены на рис 2. В целом сценарий усложнения колебаний 
аналогичен подробно исследованному в работах [1,2] для параксиального пучка. 

Картина же возможных режимов колебаний граничного электрона в 
непараксиальном пучке сильно отличается от соответствующей картины для 
параксиального пучка. Так, при оптимальном встреле (&(0) = 0, &(0) = 1) при & = 0 
на бифуркационной диаграмме системы (7) (рис. 3) видны следующие отличия от 
диаграммы системы (1) 

1. Неустойчивость в системе (7) возникает при меныших значениях 
параметров а и В, чем в системе (1). Область устойчивых колебаний сужается, при 
этом большая ее часть соответствует стохастическим колебаниям. 

2. При увеличении параметров & и у зона неустойчивости, а также 
предшествующая ей область стохастичности начинаются при меньших значениях 
параметра @. 

3. При отклонениях начального радиуса R(0) от бриллюэновского значения, 
области стохастичности расширяются, но сама 1-ая зона устойчивости 
уменьшается. Устойчивые хаотические колебания сохраняются вплоть до of = 1 
при очень малых В (0) и В (рис. 4). : 

4. Анализ поведения системы при начальных углах траектории, отличных от 
оптимального значения показал, что система критична к изменению R'(0) и уже 
при R’(0) = -0.2 наблюдается параметрическая неустойчивость в области сильного 
резонанса 1:2. При больших углах наклона неустойчивость может возникнуть и 
при меныших: © в. областях параметров, соответствующих рациональному 
отношёнию частот. 0/0. При этом области стохастического поведения заметно 
расширяются на фоне сужения зоны устойчивых колебаний, о чем свидетельствует 
бифуркационная диаграмма (рис. 5). Типичная реализация, фазовый портрет и 
спектр колебаний при R’(0) = О представлены на рис 6. 

5. Область режимов устойчивых колебаний во 2-ой зоне устойчивости, B 
отличие от соответствующих режимов параксиального пучка (1) (где существуют 
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Puc. 1. Типичные реализация и фазовый портрет 
колебаний в квазипериодческом режиме (а); 
спектр колебаний в квазипериодическом режиме 
(число отрезков усреднения 2, шаг 
дискретизации 0,031400, число отсчетов на 

отрезке 3000) (6); @ = В = 0.58, К = 0, 

у = 0.00001, М = 1 
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Рис. 3. Бифуркационные диаграммы осцилля- 
торов М (7) на плоскости параметров @, В, 

области стохастичности заштрихованы): 
1- R(0) = 1, К = 0, параксиальное уравнение 0: 
2 - R(0) = 1, K = 0), непараксиальное уравнение 
(7), у — 0; 3 - R(0) = 1, К = 0, непараксиальное 
уравнение (7), у = (.5 
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Рис. 5. Бифуркационные диаграммы осцилля- — Рис. 6. Реализация и фазовый портрет стохасти- 

RO) = -0.2, К = 0, у — 0; 6 - RO) = 1, дискретизации 0.031400, число отсчетов Ha 

В'(0) = -0.3, К = 0, у— 0 отрезке 2000) (6); при К’(0) = 0 (R(0) = 1, R’(0)= 

= -0.25, a = 0.53, В = 0.6, К = 0, у = 0.00001, 
N=1) 

широкие области устойчивых колебаний BO второй и даже третьей зоне), очень 
мала, и можно утверждать, что эта область параметров непригодна для 
фокусировки пучка. 

3. Динамика непараксиального неламинарного пучка 
(модель крупных частиц) 

Периодическое магнитное поле. В случае, когда электронный пучок 
разбиваается на № цилиндрических слоев, мы получаем № осцилляторов, связанных 

через параметры пространственного заряда В, парциальных частиц (при 

пересечении слоев величина В, для этих частиц изменяется). Исследовалась 

зависимость поведения пучка от типа распределения плотности тока и углов 
наклона траекторий Ha влете в МПФС j = j(R). 

В случае «прямоугольного» распределения плотности тока при N = 10 и 
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0.000 пучка, N = 10, R(0) = 0.8, R'(0)=0, @ = 0.25, 

К = 0, у = 0.00001 (в) 
0.00 0.10 0.20 0.30 0.39 F 

я
 

оптимальных начальных условиях влета пучка и в широком диапазоне параметров 
наблюдалось ламинарное поведение слоев. Они не пересекались, и граничный 
электрон вел себя так же, как в модели с одним граничным слоем. Пересечение 
наблюдалось на большой длине, порядка 30 периодов МПФС, и было сильнее 
выражено при больших углах влета слоев. Бифуркационная диаграмма при этом 
незначительно отличалась от диаграммы для модели граничного электрона. 

Численное моделирование динамики системы (7) при «колоколообразном» 
распределении плотности тока на входе показало значительные отличия OT 
предыдущего случая, причем область устойчивого поведения пучка заметно 
уменьшается, В результате интенсивного пересечения слоев динамика системы 
усложняется. Почти во всей устойчивой зоне наблюдается стохастическое 
поведение, как результат перекрытия нелинейных резонансов отдельных 
осцилляторов (рис.7). При неоптимальных начальных условиях зона устойчивых 
колебаний еще болыше сужается (рис. 8). Таким образом, при распределении 
плотности тока, отличном от «прямоугольного», представляется важным 
применение метода крупных частиц для расчета фокусировки электронного 
потока. В то же время для «прямоугольного» распределения, особенно при малых 
параметрах o и В, оправдывает себя применение уравнения (7) и даже уравнения 
(1) для модели граничного электрона. 
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Постоянное магнитное nose. 
Как следует из уравнений (1) u (7a) при 
N = 1, в постоянном магнитном поле 060 
стохастизация движения — граничного 0.45 

электрона — невозможна. Однако, в 

модели неламинарного потока при N > 1 030 
стохастизация возможна и в TIOCTOSHHOM 
магнитном поле за счет механизма 045 
перекрытия ~~ резонансов — различных I ПОЛОН ЛОЛ 
электронных слоев. 0 0.15 0.30 0.45 a 

7 Исследование системы уравнений Рис. 8. Бифуркационные диаграммы динами- 
(7а) методом крупных частиц показало ческой системы (7), вычисленные с использова- 
усложнение динамики — электронного нием метода крупных частид (N=10); I - 
потока в этом случае. Для «прямо- «прямоугольное» распределение (8); 2 - 
угольного» распределения при N = 10 «колоколообразное» распределение JR) 

взаимодействие — слоев — практически 
отсутствует, и каждый слой ведет себя как изолированный нелинейный 
осциллятор, а в случае «колоколообразного» распределения в широком диапазоне 
параметров наблюдается взаимодействие слоев пучка, приводящее к стохастизации 
колебаний. 

Таким образом, проведенные исследования показывают, что неламинарный, 
непараксиальный электронный поток демонстрирует стохастическое поведение в 
широкой области параметров с, В. Стохастизация движения электронных слоев 

усиливается вблизи зоны неустойчивости в результате перекрытия и разрушения 
резонансов как отдельных, так и различных электронных слоев. Полученные 
результаты подтверждают предположение, сделанное в работах (1, 2] о том, что 
установление режима пространственного хаоса является причиной подавления 
неустойчивости в результате нарушения условий параметрического резонанса в 
области стохастичности. 
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SPATIAL CHAOS IN NONLAMINAR NONPARAXIAL 

ELECTRON BEAMS GUIDED BY MAGNETIC FIELDS 

Yu A. Kalinin, А.С. Lazerson, С.М. Chemichev 

Spatial oscillations of the nonparaxial nonlaminar electron beams in periodic and 
quasiperiodic magnetic fields are considered. Both qualitative and numerical analysis 
confirm the conclusions previously made in the investigations of the more simple model 
of the paraxial and laminar electron beam. 

Thus, it is shown that in the vast domains of the beam parameters chaotic oscilla- 
tions exist due to the resonance overlapping mechanism. 

In these domains the electron trajectories, instead of exponential deviation from the 
beam center, display large and irregular oscillations around it, so that the beam as a whole 
still remains in the limited space domain. Thus, the decline of nonlinear resonances sup- 
presses the parametric instability of the beam, and enables the stable focusing of the 
beam. 

On the contrary to the case of the laminar and paraxial beam, the cases of non- 
laminar and nonparaxial one show a great variety in the beam parameters and initial con- 
ditions leading to the spatial chaotic oscillations. Although the domains of stable oscilla- 
tions in the nonparaxial nonlaminar case are confined to less area on the parameter plane 
than in the former case, chaotic oscillations occupy almost the whole space inside them. 
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