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СТАБИЛИЗАЦИЯ СИММЕТРИЧНЫХ СЕДЛОВЫХ ЦИКЛОВ В 

СВЯЗАННЫХ СИСТЕМАХ С ХАОТИЧЕСКОЙ ДИНАМИКОЙ 

В.С. Анищенко, В.В. Астахов, Г.И. Стрелкова, А.В. Шабунин 

В работе предлагается метод стабилизации симметричных седловых циклов в 
связанных идентичных системах с хаотической динамикой посредством малых, 
надлежащим образом выбранных возмущений динамических переменных системы. 
Работоспособность — метода — иллюстрируется результатами компьютерных 
экслеримевтов на двух связанных через емкость идентичных цепях Чуа. Анализируется 
влияние флуктуаций и неидентичности подсистем на процесс управления хаосом. 

В настоящее время активно разрабатываются вопросы, связанные с 
управлением хаотическими колебаниями, которое заключается в преобразовании 
хаотического движения в регулярное с помощью малых воздействий на 
динамическую систему. 

Kak известно, хаотический аттрактор включает счетное множество 
седловых диклов. При помощи надлежащим образом выбранного возмущения 
динамических переменных либо управляющего параметра системы можно 
стабилизировать фазовую траекторию около одного из таких циклов. Разработке 
разнообразных методов и алгоритмов управления хаосом в различных 
динамических системах посвящен ряд работ [1-4]. Один из подходов к решению 
этой проблемы заключается в следующем. В фазовом пространстве системы 
определяется Ws - устойчивое многообразие соответствующего седлового цикла, 
представляющее собой некоторую гиперповерхность №; < М, где N - размерность 
фазового пространства системы. Затем, при подходе траектории к этому 
многообразию либо траекторию «направляют» к нему с помощью малых 
возмущений переменных, либо смещают гиперповерхность Ws к фазовой точке 
посредством малых возмущений параметра системы. Поскольку для болышинства 
нелинейных систем практически невозможно аналитически задать форму 
соответствующих ‘многообразий в фазовом пространстве, их определяют в 
линейном приближении локально, в окрестности выбранного цикла. Для этого 
переходят при помощи сечения Пуанкаре от системы с непрерывным временем к 
дискретному отображению. При этом седловому циклу соответствует неподвижная 
седловая точка отображения. Линеаризуя отображение  последования в 
окрестности этой неподвижной точки и определив собственные вектора матрицы 
линеаризации, находят касательную гиперповерхность, отвечающую локально 
устойчивому многообразию седловой неподвижной точки. Затем определяют вид 
стабилизирующего воздействия. 

Применительно к некоторому классу вырожденных динамических систем для 
определенного подмножества  седловых циклов форму HX — устойчивых



многообразий (или подмногообразий устойчивых многообразий) в фазовом 
пространстве можно найти аналитически. В этом случае процедура стабилизации 
соответствущих седловых периодических движений существенно упрощается. 
Примером может служить вырождение типа симметрии, в частности, 
реализующееся в случае симметрично связанных идентичных систем 

ня - f(xy, и) + [к] f(x) - f(xy) (1) 

Xz f(xy, 1) (хо) - fi(x;) 

где симметричная матрица [К] характеризует степень связи между подсистемами, 

X| й X, - векторы-столбцы динамических переменных 1-ой и 2-ой подсистемы, 

f - вектор-функция правой части уравнения х = f(X), описывающего динамику 
индивидуальной системы, Ё-вектор-функция, определяющая вид связи, и - вектор 
параметров. 

Для симметричных типов колебаний, когда Xi(f) = X,(¢), уравнение (1) 
сводится к уравнению для индивидуальной системы. То есть предельные циклы или 
более сложные предельные множества, существующие в индивидуальной системе, 
реализуются также и в связанных системах. Причем располагаются они в 
симметричном подпространстве (X; =X;) размерности №2 полного фазового 
пространства системы (1), размерность которого М. Однако, циклы, являющиеся 
устойчивыми в индивидуальной системе, в связанных системах могут быть как 
устойчивыми, так и седловыми, причем в последнем случае они устойчивы K 
симметричным возмущениям и неустойчивы к несимметричным. Таким образом, 
подпространство размерности №2, задаваемое уравнениями X; = Xp, будет либо 

устойчивым многообразием, либо подмногообразием устойчивого многообразия 
для тех симметричных циклов, которые устойчивы в индивидуальной системе. 
Этим положением можно воспользоваться при стабилизации указанных седловых 
симметричных циклов в связанных системах. Если система (1) при некоторых 
значениях параметров находится в хаотическом режиме, аттрактор которого 
включает в себя помимо других интересующие нас симметричные седловые циклы, 
то фазовая траектория рано или поздно окажется в окрестности симметричного 
подпространства. 'Гогда, направляя с помощью малых возмущений динамических 
переменных фазовую точку к этому подпространству (X; = Xp) и удерживая 
фазовую траекторию около него, мы сможем перевести систему на указанный 
выше седловой предельный цикл и стабилизировать её в его окрестности. 

Подтверждением работоспособности данного метода стабилизации седловых 
симметричных циклов в связанных системах служит проведенное нами численное 
исследование управления хаосом в системе двух связанных при помощи линейной 
емкости идентичных цепей Чуа, схема которой приведена на рис.1. Уравнения, 
описывающие систему, при соответствующей нормировке имеют вид 

х, = aly; - x1 - (к), 

у = м yz + (Со = x) = (о = 1) + (ва = п), 
2 = -Ву (2) 

x = ay; - Xo - h(x), 

у» =x - Yat zp + (п - x2) - (С) = №2) + (21 - 2), 

= Py 
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Рис. 1. Схема двух цепей Чуа с емкостной связью 

где 
‚бх- a+b, если х < -1, 

#(х) = 1 ax, -. если Ix < 1, 
bx+a-b, если х>1, 

Динамика системы исследовалась нами в зависимости от значений параметра 
о и коэффициента связи между генераторами у при фиксированных значениях 

а = -8/7, Ь = -5/7, В = 22. При y = 0 получаем уравнение одиночной цепи Чуа, 
динамика которой детально исследована и широко описана в литературе ( см. 
например [5-6]). При вариации значений параметров в ней наблюдается каскад 
бифуркаций удвоения периода циклов, завершающийся возникновением хаоса. 
Эволюция хаоса приводит к образованию хаотического аттрактора, получившего в 
литературе название «double scroll» [5]. При введении связи система (2) ведет себя 
существенно более сложным образом. Помимо бифуркаций удвоения периода 
циклов происходят бифуркации потери симметрии, рождения тора и образования 
хаоса в результате бифуркаций разрушения квазипериодических движений. 
Наблюдается ряд глобальных бифуркаций, в результате которых происходит 
объединение различных хаотических множеств. 

Переход к хаосу в связанных системах происходит при меньших значениях (, 

чем в парциальном генераторе. Поэтому, при значении ©, соответствующем 
регулярному периодическому режиму в индивидуальном генераторе, в связанной 
системе при определенном у может существовать развитый хаос, в аттрактор 
которого встроены седловые симметричные циклы. В этом случае мы можем их 
стабилизировать, используя описанный выше метод. Алгоритм управления 
выбирался следующим. Мы отслеживаем разность между — значениями 
динамических переменных системы |X; - Х!/у1 - yol,lz; - zl и определяем момент, 
когда они одновременно оказываются достаточно малыми, в пределах выбранного 
нами значения € 

|, - xl < &, 

1 - yal < ©, 

zy - Zl < Е, 

В этом случае включается вненщнее воздействие. Для чего составляется вектор 

расстройки системы от синфазного режима: (x, у, z, 0, 0, 0), где x = x; - xy, 

у = 2 - Yi, Z = 2, - 2, Который добавляется к вектору динамических переменных 
системы. Величина возмущения зависит от выбранного в и может быть сделана 

достаточно малой, В наших экспериментах € выбиралось порядка 1% от 
максимального уровня колебаний в системе. 

Результаты управления некоторыми хаотическими режимами в системе (2) 

показаны на рис.2 и 3. При а = 11.04, у = 0.22 в системе (2) наблюдается 
хаотический режим, проекции аттрактора которого изображены на рис. 2, 6. 
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Рис. 2. Временная реализация (а) и проекции фазовых портретов (6, в), иллюстрирующие 

процесс управления хаотическим режимом в системе (2) при @ = 11.04, у = 0.22 

Хаотический аттрактор включает неустойчивые циклы, расположенные в 
симметричном подпространстве системы. В индивидуальном генераторе этим же 
значениям параметров отвечает устойчивый предельный цикл периода 1. При 
«включении» управления  хаотическая фазовая траектория системы о) 
стабилизируется в окрестности этого предельного цикла (см. рис. 2, а), который 
под действием возмущений стал устойчивым (см. рис.2, 6, в). 

На рис. 3 проиллюстрирован процесс управления хаосом в системе (2) при 

значениях параметров o = 11.3, у = 0.2. В связанных генераторах им соответствует 
более сложный хаотический режим «double-double scroll» [7], а в индивидуальной 
системе устойчивый цикл периода 2. Из рисунка видно, что фазовая траектория 
стабилизируется в окрестности симметричного седлового цикла периода 2. 

При исследовании процессов управления хаосом важное значение имеет 
вопрос об устойчивости метода к воздействию флуктуаций на динамическую 
систему, а для рассматриваемого класса систем - И к влиянию неидентичности 
парциальных генераторов. Для изучения указанных вопросов в правые части 
уравнений системы (2) был добавлен аддитивный источник 5-коррелированного 
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Рис. 3. Временная реализация (а) и проекции фазовых портретов (6, в), иллюстрирующие 

процесс управления хаотическим режимом в системе (2) при © = 11.3, у = 0.2 

шума определенной интенсивности, задаваемый генератором случайных чисел, а 
также введена расстройка генераторов. Измененная система выглядит следующим 
образом: 

xi = (уу - x - A(x) + а), 

у = м = y+ + (о - м) - (= м1) + (га = 72) + ag, (1), 3) 

г, = -Ву, + a.£.(0), 

хо = (р + Loy, - Хо - h(x,)) + a,&u(t), 

»› = (2 + (0 - »› + 2о + (Са = ха) = 01 = v2) + (21 - 2) + a(t), 

z= (р + 1)(-Вуз) + a.5,:(0), 
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где а, - интенсивность шумового воздействия, E(t), (1), (0), бо (1), &.(1), &(1) - 
независимые случайные функции, р - коэффициент, характеризующий расстройку 
генераторов. Система (3) более полно отражает динамику реальных связанных 
генераторов. Проведенные исследования показали, что предложенный способ 
управления хаосом эффективен при внесенных изменениях в систему до тех пор, 
пока интенсивность шумового воздействия и величина расстройки остаются 
малыми по сравнению с выбранным €, то есть уровнем управляющего воздействия. 

Итак, в данной работе предложен метод управления хаосом в симметрично 
связанных системах. Он позволяет эффективно стабилизировать существующие 
симметричные седловые циклы в хаотическом аттракторе. Предложенный метод 
устойчиво работает также при наличии в системе флуктуаций и введении 
расстройки между парциальными системами. Следует отметить, что указанным 
способом можно переводить связанные системы из некоторого хаотического 
режима в режим симметричных хаотических колебаний, в том случае, если 
выбранным ~~ значениям параметров соответствует —хаотический режим B 
индивидуальной системе. 

Данная работа была поддержана Международным Научным Фондом 
(грант RNO 000; RNO 300) и Российский Фондом  Фундаментального 
Естествознания (грант 93-8.2-10). 
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STABILIZATION OF SYMMETRIC SADDLE CYCLES IN COUPLED 

SYSTEMS WITH CHAOTIC DYNAMICS 

V.S. Anishchenko, V.V. Astakhov, G.I. Strelkova, А.М. Shabunin 

In this work a method of stabilization of symmetric saddle cycles in coupled iden- 
tical systems with chaotic dynamics by means of small properly chosen pertubations of 
dynamical variables of system is suggested. The effectiveness of this method is illustrated 
by the results of computer experiments with two coupled via capacity identical Chua’s 
circuits. The influence of fluctuations and nonidentity of subsystems on controlling chaos 
is analyzed. 
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