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ПРОСТРАНСТВЕННЫЕ СТРУКТУРЫ В ЛАЗЕРК 

С НОВОРОТОМ ПОЛЯ 

К В. Прокофьева, В. И. Шмальгаузен 

В работе исследуется — пространственная — динамика — цилиндрически 
симметричного однонаправленного кольцевого лазера со сферическими зеркалами и 
элементом, осуществляющим поворот поля на некоторый угол ©. В качестве такого 
лемента может использоваться призма, Угол поворота поля влияет на частоты мод 
пустого резонатора H позволяет формировать частотно-вырожденные семейства, 
которые не существуют в резонаторе без поворота, например, семейство, состоящее из 
бесконечного числа мод. Угол поворота позволяет воздействовать на формирование 
пространственных структур в лазере. Выполнено численное моделирование для двух 
моделей активной среды лазера: двухуровневой модели и модели, учитывающей 
вращательные подуровни молекулы СО». Последняя модель приводит к появлению 
дополнительного диссипативного слагаемого, которое в ряде случаев изменяет 
динамику системы, Число вращательных подуровней увеличивает скорость релаксации 
системы к стационарному состоянию. 

Введение 

Анализ пространственных HW пространственно-временных явлений в 
нелинейных системах с оптической обратной связью представляет значительный 
интерес как с практической, так п с теоретической точек зрения. Работы в этой 
области касаются пассивных систем без инверсии населенности, регенеративных 
усилителей, лазеров [1]. В течение последних 15 лет лазерные системы 
преимущественно исследовались с точки зрения временных явлений. Это связано 
прежде всего с простотой математических вычислений при использовании 
приближения плоских волн. В этом случае предполагается, что поле внутри 
резонатора является однородным в плоскости, ортогональной к направлению 
распространения пучка. Это приближение исключает возможность описания 
пространственных явлений. Последние работы в данной области касаются 
рассмотрения пространственных задач [2]. Авторы работы [2] описывают три 
режима работы лазера. В одномодовом режиме поперечный профиль выходного 
пучка формируется с помощью одной пространственной моды. Стандартный 
многомодовый режим определяется взаимодействием двух или более мод. В этом 
случае возможны — осцилляции, которые могут быть — периодическими, 
квазипериодическими пли хаотическими. При режиме кооперативного захвата 
частоты моды, формирующие стационарную попересную конфигурацию поля, 
имеют одинаковую частоту 1 фазу. 
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В работе [2] рассматривается кольцевой лазер со сферическими зеркалами и 
цилиндрической симметрией относительно лазерной оси. Модами такого 
резонатора являются моды Гаусса - Лагерра. Пространственные явления 
описываются в терминах взаимодействия мод пустого резонатора. В лазере могут 
формироваться различные структуры, которые сменяют друг друга при изменении 
контрольных параметров, таких, например, как параметр накачки или ширина 
накачиваемой области. 

Мы исследуем пространственные и пространственно-временные явления в 
кольцевом однонаправленном лазере с поворотом поля. Также, как в [2], 
предполагается наличие цилиндрической симметрии резонатора. В некоторых 
типах лазеров на каждом проходе осуществляется поворот электрического поля на 
определенный угол, например, в лазерах с неплоскими резонаторами. Для 
упрощения теоретических вычислений мы будем рассматривать кольцевой лазер, в 
который дополнительно вставлена призма, осуществляющая поворот поля на угол 

6. В работе показано, что в таком лазере частоты мод зависят от 6. 
Зависимость частот мод от угла поворота поля предоставляет различные 

возможности. Прежде всего, состав частотно-вырожденного семейства зависит 
теперь от угла поворота поля. Это позволяет управлять модовым составом 
частотно-вырожденных семейств. Формирование пространственных структур 
также зависит от угла поворота поля. Существует некоторый угол, величина 
которого зависит от геометрии резонатора, при котором частотно-вырожденное 
семейство состоит из бесконечного числа мод. В этом случае частоты мод не 
зависят от углового индекса /. Семейство определяется только радиальным 
индексом р. 

В работе [2] для описания активной среды используется двухуровневая 
модель. Экспериментальные исследования касаются прежде всего СО, лазера. 
Более точная модель активной среды использована в [3] для описания динамики 
СО, лазера в плосковолновом приближений. В этой модели учитываются 
вращательные подуровни молекулы СО,. Мы будем использовать эту модель для 
описания пространственной динамики лазера за пределами плосковолнового 
приближения. 

2. Моды резонатора с поворотом поля 

Рассмотрим кольцевой однонаправленный лазер, состоящий #з двух 
сферических и двух плоских зеркал, с цилиндрической симметрией вокруг OCH 
лазера (рис. 1). В качестве элемента, осуществляющего поворот поля, 
используется призма. После прохождения через призму электрическое поле 

поворачивается на некоторый угол ©. Величина этого угла изменяется при 

повороте призмы вокруг направления распространения поля. 
Будем искать моды резонатора с 

поворотом поля C помощью BOJHOBOTO 

уравнения [4], записав его с учетом 

поворота поля 1 2 

YU(p,9) = exp(ikA)P[U(p,¢- 0)]. 
Здесь Р^ - интегральный оператор, 
который описывает — преобразование 
поля при обходе резонатора. А - полная 

длина резонатора. Пусть Ag, Bg,Co, Dy - 

элементы BOJIHOBOH матрицы 3 
резонатора. Torga волновое уравнение 

резонатора с поворотом поля будет рис, 1. Кольцевой резонатор с поворотом поля. 
иметь ВИД В-угол поворота 

4 
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YU(p.0)=lexp(ikA)/iB Il, Лехр({Рор2+-Аору2- 2ppicos(@- 0) 2B} U(p1.01- Oprdp:day. (1) 

Ero решения могут быть найдены в виде U(p,0) = А(р) = exp(ilp). Заметим, 

что множитель ехр(!/0) не зависит от переменных интегрирования. Это дает нам 
возможность легко найти частоты мод 

yy = с/Л [19 + (2р + Hl + 1)агссо5(А,) + ла], (2) 

где р = 0, 1. 2 - радиальный индекс, / = 0, +1, £2 - угловой индекс моды. Мы 
используем как положительные, так и отрицательные значения углового индекса, 
этим обусловлено появление модуля / в отдельных местах. Поперечный профиль 
моды не зависит от угла поворота поля 

App.) = mye) pl/ (p+) 21 и(2р2)ехр(-р2)ехр(1ф). (3) 

Здесь LL - ортогональные полиномы Лагерра, 

2. Особенности лазера с поворотом поля 

Основное отличие нашей системы от лазера без поворота поля состоит в 
том, что состав частотно-вырожденного семейства зависит от угла поворота поля. 
Поэтому пространственные структуры, возникающие здесь, могут отличаться OT 
описанных в [2]. Предположим, что линия усиления такова, что могут 
возбуждаться две моды: Ap и Ag. В отсутствие поворота поля они имеют 
одинаковые частоты. В этом случае взаимодействие между ними приводит к 
появлению статической структуры, показанной на рис. 2, а. При наличии поворота 
поля частоты этих мод становятся различными и в поперечной плоскоств может 
возникать вращающаяся структура. Действительно, электрическое поле имеет вид 

Е = Ао/(р‚ф)ехр(10о1)+ Ag. (p,d)exp(io. 1). 

Интенсивность [ = ЕЕ*. Тогда 

Г = 1Ам(р,ф)Р + Ао-1(р,ф)Р + 2(2/к)(2р)ехр(-2р2)сов[( ор - wy, )7+24]. 4) 

Вращение пространственной структуры вызвано биениями между модами. 
Скорость вращения равна разности частот мод и зависит от угла поворота поля 
Q=001- 00. =2¢6/A. На рис. 2, 6 показана пространственная конфигурация поля в 

момент времени / = 2л/60. Таким образом, изменяя угол поворота поля, можно 
менять скорость вращения структуры. 

ФЭдним из наиболее интересных вопросов является вопрос о возбуждении 

частотно-вырожденного семейства, состоящего из бесконечного числа мод. При 

A 
Рис 2. Пространственная структура, образованная модами Аду. Ар.1: a - 9=0: b - 6=0, момент 

времени г = 21/60



угле поворота поля 8 = -arccos(Ag) и 1 > 0 из (2) следует, что частоты мод не 
зависят от индекса [. Takum образом, пространственная структура будет 
определяться взаимодействием большого числа мод. Конкретное число 
взаимодействующих мод зависит от параметра накачки. ФЗдесь возможно 
возникновение различных неустойчивостей, Однако эта задача требует дальнейших 
исследований. 

3. Поперечные структуры в лазере с поворотом поля. 
Двухуровневая модель 

3.1. Динамические уравнения. Пусть активная среда представляет собой 
систему  двухуровневых атомов. Тогда распространение поля описывается 
уравнениями Максвелла - Блоха [2] 

oF [dz + (1/c) oF fot + 1/(2ix) AF = oP. (5) 

OPI0t = у [FD - (1 + iA, )P). (6) 

oD/ot = -y[Re(F"P) + D = (p)]. (7) 

Где А, - поперечный лапласиан; @ - коэффициент усиления на единицу длины; 

Yi» YL - скорости релаксации инверсии населенности и поляризации; А„7=(0,т О, )/у.. 

- отстройка от центра линии усиления. Представим амплитуду лазерного поля в 
виде разложения по модам пустого резонатора 

F(p,¢,2.t) = У э(2,)А (Р.Ф). (8) 

Граничные условия для лазера с поворотом поля имеют вид 

F(z = 0,p,0,1) = RF(z = Лор,ф- 0,1). (9) 

Учтем, что моды A, являются ортонормированными решениями стационарного 
уравнения (5) в отсутствие нелинейной среды, а также модами резонатора с 
поворотом поля. Предположим также, что ширина активной среды настолько 
мала, что поперечный профиль поля не зависит от переменной г, изменяющейся 
вдоль направления распростравения поля. В этом случае амплитуды мод также не 

зависят от переменной 7 и динамические уравнения имеют вид 

„9 т ) 

фай = (1 + day), - 2C J, | А"„Ррараф). (10) 

Здесь a, = (Oy - Фо)/К. Эти уравнения по виду совпадают с уравнениями для 
амплитуд мод в [2]. В случае лазера с поворотом поля, однако, частоты мод зависят 
от угла поворота поля. 

Амплитуды мод в уравнении (10) могут быть комплексными величинами. 
Это означает, что может существовать некий дополнительный сдвиг частоты 
относительно @,,, обусловленный нелинейной динамикой системы. 

Предположим, что ширина линии такова, что могут возбуждаться только две 
моды. Пусть частоты этих мод различны. Тогда амплитуда поля Р записывается в 
виде 

F = Ifil2exp(-i8)A; + Ifhl2exp(-i8;)A,, (11) 

re 8), - частотный сдвиг относительно (Oy. В адиабатическом приближении из 

уравнений (6,7) найдем 

P=FD(1 - А) + А), В =х(1 + А) + Аа + ЕР").



Рассмотрим случай, когда система находится вблизи порога генерации. Это 
означает, что нормированная амплитуда поля Fl2<<l+A,2 Таким образом можно 

ввести приближение 

WL + дай + ЕР") = (1 + А„2) - РР + AR) 

Уравнения для Л ; будут иметь вид 

difiliar + КАТ = 2kClaulfil - ВВ - ИА}. 

difl/dr + МА! = 2kClonlfl - ВЫ - ТАНИ}, 
(12) 

fil (-81+a,) = -2АСА ДОНА! - ВЛАВ - IFA), 

ol (-б+аз) = -2kCA „ДА! - Balai? - НА}. 

Здесь а, 6, 9 определяются выражениями 

о, = 2т/(1-нА,2) Jy IA ж(р)рар, By = 2/(1+A,2) ГА х(р)рар, 13) (13 

0 = 3n/(1+A,2)2 ПЛАТА»? х(рурар. 

Существует несколько возможных стационарных решений этой системы: (o/B,0); 

(со/В..0); (0.0); (1/2). Для формирования пространственных структур наибольший 
интерес представляет последнее двухмодовое решение. Стационарные значения 
амплитуд имеют вид 

2 = [2С(о,В, - 08) - Во + OJ 2C(B1B, - 02)], 

52 = [2С(соВ, - 4B) - В, + 9)/[2С(В;В, - 02)], (14) 

65 = а» + kA, 

Проведя анализ линейной устойчивости этого решения, получим 

72 > 0, (15) 

В.В, > v2. (17) 

Следует отметить, что условия линейной устойчивости двухмодового решения 
вблизи порога зависят только от поперечного профиля взаимодействующих мод и 
не зависят от угла поворота поля, 

Мы исследовали на устойчивость двухмодовое решение, образованное 
модами Ay, Ам. Оно является устойчивым вблизи порога, где справедливы 

формулы (15-17). При д=агссовА) частоты этих мод одинаковы H в поперечной 

плоскости образуется стационарная картина. 
Рассмотрим взаимодействие между модами А), Аст. Из (15-17) получим, что 

это двухмодовое решение всегда неустойчиво. Действительно, как видно из puc.2, 

структура, образованная этими модами, представляет собой He цилиндрически 
симметричную картину. Таким образом, она не может быть устойчивой в 
резонаторе, обладающем цилиндрической симметрией. В реальном лазере 
CVITIECTBYIOT различные пространственные неоднородности и картина может стать 

устойчивой. 
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4. Пространственные структуры в CO, лазере. 
Уточненная модель среды 

Уточнение модели среды сводится к переходу от двухуровневой к более 
точной модели, учитывающей реальную структуру энергетических уровней 
молекулы CO,. Известно, что СО, лазер относится к типу молекулярных лазеров и 
кроме колебательных уровней, имеет также систему вращательных подуровней. 
Соударения между молекулами приводят к быстрому установлению теплового 
равновесия в системе вращательных подуровней, принадлежащих одному 
колебательному уровню. Это позволяет использовать различные приближения для 
учета вращательных подуровней. Вся система вращательных подуровней может 
рассматриваться как некий энергетический резервуар. В работе [3] авторы 
используют модель, в которой вращательные уровни, относящиеся к одному 
колебательному уровню, объединены в одну группу. Каждая группа состоит из J 
вращательных подуровней. Генерация происходит на двух выделенных уровнях. 
Мы также используем эту модель (рис. 3), которая фактически может 
рассматриваться Kak четырехуровневая. Ясно, что увеличение — числа 
рассматриваемых уровней приведет к повышению сложности системы. В работе 
[3] авторы показали, что в плосковолновом приближении описание среды с учетом 
вращательных уровней может быть выполнено в терминах модели всего с двумя 
степенями свободы. 

Мы покажем, что уменышение числа степеней свободы системы может быть 
выполнено также и за пределами плосковолнового приближения. 

Пусть D - нормированная инверсия населенности между лазерными 
уровнями 1, 2; М - нормированная инверсия населенности между двумя группами 
вращательных подуровней; у, определяет скорость релаксации с каждого 
вращательного уровня на резонансный уровень; Лу; представляет собой полную 
скорость релаксации с резонансного уровня на группу вращательных подуровней. 

Динамические уравнения за пределами плосковолнового приближения имеют 
вид 

ео 27 

фиае = -k[(1 + iay)fy - 2C Jo Jo А ДРР(1 - ia, )I(1 + А,?)}рараф], (18) 

aD/ot = - (yy + Jy)D + ve + yx, = ЕО + Аа?) |1 + Си + vz) J. (19) 

oM/ot = - С + ув) М + Jz D + vit. (20) 

Здесь учтено, что Y,>>Y;, и таким образом исключено уравнение для Р. По 

сравнению с двухуровневой моделью среды, здесь появляется еще одно 
дополнительное уравнение, описывающее систему вращательных подуровней. 

Учтя, что Yp>>Y) , введем малый параметр и= (у/Г;)1/2, a также величины 

м ——— 
К = (М - р) + 1), х = К, Ps 

2 # J подуровней 
т = Г», О - (1 + A2)2C=pW. р , 

Здесь OQ - средняя инверсия населен- Tr 
ности. КВ описывает отклонения OT 
среднего. — Переписав — уравнения B 
терминах переменных х, /,‚ Можно Вод 
доказать, что скорости релаксаций fi; и 1 TT 7rnoayposHed 

У’ гораздо меньше, чем скорость —  ——_ TTT 

релаксации х. Таким образом оправдано У т 
адиабатическое приближение для 
переменной x. Тогда в — старых 
переменных получим 

Рис. 3. Модель среды с учетом вращательных 

подуровней молекулы СО»



. . ^ pl , 
фас = -К(1 + iay)f,- 2C(1 - А) + Аг) (О - 1W2FyQ)- 

A nf 

аО/й = [0 - х + yQJ. (22 
Здесь 

у =1РВД(1 + A200 + D1 + Лк Сп + ve) = 

= 1X, FA [(1 + AA + DT + Лу См + v=) (23) 

^ се, AM 

$ интегральный оператор, введенный для удобства записи (7 - произвольная Куй , : 

функция). Переход от уравнений (21), (22) к двухуровневой модели среды 
осуществляется при |. = 0, J = 0. 

Отметим, что число вращательных подуровней влияет на интенсивность 
насыщения 

I = Letd(1 + Лу {y+ ук). (25) 

Анализ линейной устойчивости вблизи порога генерации, аналогичный 
проведенному для случая двухуровневой среды, показал, что условия устойчивости 
сохраняются неизменными и описываются уравнениями (15)-(17). Действительно, 
вблизи порога генерации мы предполагаем выполнение условия |7? << 1 + 42, а 
при этом уравнения (21), (22) близки к двухуровневой модели. Из (21) видно, что 
учет вращательных подуровней в рассматриваемой модели привел к появлению 
НОВОГО диссипативного  слагаемого. Это слагаемое пропорционально 12, 

следовательно, является малой величиной. Тем He менее, возможно, оно окажет 

влияние на динамику системы. Исследуем этот вопрос с помощью численного 

моделирования. 

5. Численное моделирование 

Мы исследуем динамику лазера с помощью численного моделирования 
уравнений (21), (22). Здесь мы не делаем никаких предположений относительно 
величины поля. Следует отметить, что О, как и F, является функцией переменных 

р, фФ. Это существенно усложняет численное решение. В работе [5] авторы 
описывают разложение поля по модам пустого резонатора как метод, приводящий 
к упрощению вычислений. Представим О, также как и F, в виде разложения по 
модам пустого резонатора 

'Гогда динамические уравнения для Я дт будут иметь форму 

^ gm, fin 

X Урата JEN 1 ) } Ы (27) 

ее In 
^ дп! 

Здесь Spm) = |) fo A* AAA он врараб. 

Уравнение (21) также следует представить в терминах дд»: Для численного 
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решения уравнений (21,27) использовался метод Рунге - Кутта четвертого порядка. 

Величины 5 вычислялись заранее с помощью программы Mathematica 2.3 for Windows. 
Число слагаемых в разложении (26) ограничивалось величинами 4==0, те (-4, 4). 

Мы численно исследовали динамику лазера для случая взаимодействия мод 

Ао, Ао... 
5.1. Угол поворота поля равен нулю. При этом частоты этих мод равны. 

Вблизи порога двухмодовое решение Ay, Ао: является неустойчивым. За 

пределами околопороговой области численное моделирование демонстрирует 
возможность существования сложной динамической картины. 

На рис. 4 показана динамика двухмодового решения. Амплитуда fp 
изображена пунктиром, fy; - сплошной линией. На рис. 4, а, относящемся к 

двухуровневой среде (/=0), в момент времени =0 значения fy,=f,.,;=¢, где £ - малый 
начальный шум. Таким образом, показано зарождение генерации из шумов. В 
течение некоторого интервала времени модальные амплитуды fy, 7-1 сохраняют 
одинаковые значения. Происходит установление квазистационарного режима. При 
численном моделировании на каждом шаге вычислений присутствуют некоторые 
погрешности. Эти ошибки накапливаются. После некоторого промежутка 
времени, который зависит от точности вычислений, ошибки приводят к появлению 
существенной разницы между амплитудами мод. Так как эти моды неустойчивы, 
разница возрастает со временем. Одна из амплитуд мод уменьшается, в то время 
как другая возрастает. После некоторого промежутка времени происходит 
установление режима переключений между модами. Энергия периодически 
перекачивается от одной моды к другой. 

Рассмотрим изменение динамики системы при переходе к уточненной модели 
среды. На рис. 4, 6 динамика системы рассчитана при J=2. Также, как при J=0, в 
течение некоторого времени амплитуды мод совпадают, затем происходит 
установление режима переключений. Скорость установления квазистационарного 
режима и режима переключений возросла по сравнению со случаем J=0. 'Гаким 
образом, можно сказать, что число вращательных подуровней влияет на скорость 
переходных процессов. 

Пусть теперь J=10. Это значение ближе к реальному числу вращательных 
подуровней молекулы СО, [3]. На рис. 4, в видно, что скорость релаксации к 

квазистационарному состоянию возросла еще больше. Однако изменился также 
характер динамики. Режим переключений не возникает. Одна из мод затухает, а 
другая стремится к стационарному состоянию. 'Гаким образом учет вращательных 
подуровней оказал влияние на динамику системы. 

5.2. Влияние угла поворота поля (6+0). В этом случае частоты 
взаимодействующих мод различны. Анализ линейной устойчивости вблизи порога 
генерации показывает, что двухмодовое решение / и fy. не является устойчивым 
ни при каких значениях угла поворота поля. Динамика двухмодового решения за 
пределами околопороговой области показана на рис.5. 

На рис. 5, а приведены численные результаты для случая 9=0.1 и J=0 

(двухуровневая модель). При этом моды имеют различные отстройки от центра 
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Рис. 4. Динамика модальных амплитуд fq1, fo-1 при: а - 9=0, 7 = 0, С=1.5; 6 - 6=0. 7 = 2, С=1.5; в - 

9=0,./ = 10, С=1.5 
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Рис. 5. Динамика модальных амплитуд fo, fp. при: a - 8=0.1,/=0,C=1.5;6 - 9=0.1, 7 = 20, С=1.5 

линии и, следовательно, различные условия для выживания, Частота моды fi 

находится ближе к @,,, поэтому эта мода выживает в конкурентной борьбе. 

На рис. 5, 6 динамика мод fy; И fy.; показана для случая 9=0.1 и J=20. Число 
вращательных подуровней оказало влияние на скорость релаксации системы. 
Характер переходного процесса перестал быть осцилляционным. 

Моды Ао Ag. имеют различные частоты. Если они одновременно 

существуют в выходном поле лазера, то в поперечной плоскости может 
образоваться вращающаяся структура (4). Для этого обе моды должны иметь 
одинаковые условия для выживания. Это возможно, если они имеют равные 
отстройки от центра линии. При численном моделировании такое решение 
наблюдалось, однако вопрос его устойчивости требует дальнейших исследований, 

Заключение 

Поворот поля в лазере предоставляет возможность изменять частоты 
резонаторных мод. Можно формировать частотно-вырожденные семейства, 
состав которых отличен от существующих в лазере без поворота поля. При 
определенном угле поворота поля может формироваться частотно-вырожденное 
семейство, состоящее из бесконечного числа мод. Более сложная модель среды, 
учитывающая вращательные подуровни молекулы СО,, приводит к появлению в 

уравнениях для модальных амплитуд дополнительных диссипативных слагаемых, 
что изменяет динамику системы. Например, режим переключений между модами 
Ap, Ао, Имеющий место при двухуровневой модели среды, исчезает при 

увеличении J. 

Работа была поддержана РФФИ no проекту 95-02-04345-a. 
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SPATIAL STRUCTURES IN THE LASER WITH FIELD ROTATION 

К.У. Prokofjeva, V.I. Shmalhausen 

In this work a dynamics of a cylindrically symmetrical unidirectional ring laser 
with spherical mirrors was investigated. Prism inserted in the cavity is used to rotate 
electric field to some angle 6. The value of this angle depends on prism orientation. Angle 

of rotation has influence on mode frequencies in the empty cavity. Frequency degenerated 
families in this cavity differ from commonly known ones. At a certam angle of rotation 
frequency degenerated family consists of infinite number of modes. Spatial structures in 
this laser will differ from patterns in the laser without field rotation mechanism. We in- 
vestigate laser dynamics for two medium models: two-level model and model taking into 
account rotation sublevels of CO, molecule. The last model leads to appearance in the 
equations for mode amplitudes an additional dissipative term. In some cases this term can 
change dynamics of the system. The number of rotational levels takes influence on the 
speed of relaxation to the steady state. Our results show that one can control a spatial 
structure formation by means of changing the angle of rotation. The number of rotational 
sublevels of CO, molecule has influence on the system dynamics. 
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