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СЛОЖНАЯ ДИНАМИКА СИСТЕМ С НЕЕДИНСТВЕННЫМ 
СОСТОЯНИЕМ РАВНОВЕСИЯ 

В.П. Пономаренко, И.А. Заулин 

Представлены результаты  качественно-численного исследования динамики 

систем с частотным и фазовым управлением с фильтром третьего порядка в цепи 

управления. Установлены режимы и особенности поведения систем вне области 

локальной устойчивости СОСТОЯНИЙ равновесия. Выяснена сильная зависимость 

динамики систем от параметров инерционности цепи управления. 

Введение 

Нелинейные динамические системы с  неединственным состоянием 
равновесия являются моделями ряда автоколебательных систем, в том числе 
автогенераторных систем и усилительных устройств C частотным и фазовым 
управлением. К таким системам относятся системы частотной автоподстройки 
частоты, автофазирования и слежения 3a задержкой во времени 3] 
узкополосные фильтры C фазовым — управлением, системы автонастройки 
колебательных контуров [4,5] -и° др. Обобщенная схема систем содержит 
управляемый автогенератор или усилитель, нелинейный элемент — дискриминатор 
рассогласований с апериодической или периодической характеристикой и 
линейную часть — инерционную цепь управления с фильтром низких частот. 

Основной интерес к рассматриваемым системам обусловлен многими 
задачами радиофизики и радиотехники, требующими формирования высоко- 
стабильных колебаний с управляемыми параметрами (частотой и фазой). В этих 
задачах основным режимом систем является синхронный режим, в котором 
параметры управляемого и опорного (входного) колебаний минимально 
отличаются. Условие реализации синхронного режима в значительной степени 
определяется числом состояний равновесия и инерционными свойствами фильтра 
в цепи управления, в зависимости от которых в системах могут развиваться 
процессы, приводящие к возникновению автоколебательных — (автомодуля- 
ционных) режимов. В связи с этим приобретает актуальность исследование 
явлений нелинейной динамики, происходящих в системах из-за неединствен- 
ности состояний равновесия и инерционности цепи управления. Устанавливаемые 
при этом закономерности возникновения и развития автоколебательных режимов 
представляют интерес, в том числе и для реализации на основе рассматриваемых 
систем устройств с новыми функциональными возможностями. 

Согласно — результатам [3,6,7] автоколебательные режимы в 
рассматриваемых системах с частотным и фазовым управлением могут возникать 
при наличии в цепи управления фильтра не ниже третьего порядка. Данная работа 

развивает исследования [3.6,7]. В ней — изучены динамические режимы и 
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бифуркационные явления в моделях систем с апериодической и синусоидальной 
характеристикой дискриминатора и фильтром третьего порядка, имеющим 
коэффициент передачи К(р) = (1+ a,p)/(1+b,p+b,p* + b, p*). Исследуемые модели, 
получаемые из общих уравнений систем с частотным и фазовым управлением 
[1 - 7], представляются следующими уравнениями: 

dx dy dz 
pra yakl рн (о-Ф()) ~ (A +b Ф'(х))у -2)/, (*) 

где х — рассогласование частот или фаз управляемого и опорного (входного) 
колебаний; Ф(х) = x + D(x) — обобщенная нелинейность | систем; D(x) — 
характеристика дискриминатора: апериодическая для систем с частотным 
управлением — модель I, синусоидальная для систем с фазовым управлением — 
модель 2; с — начальное рассогласование; A, b, и —-параметры инерционности: 
A=(b,—a, YNb, , b=a, Nb, u=b/(b\b,), №. > 0. Исследование системы уравнений 
(*) выполнено — методами — компьютерного моделирования, основанными на 
построении и изучении фазовых портретов и сечений Пуанкаре при изменении 
параметров, HA вычислении мультипликаторов периодических движений и 
ляпуновских показателей. Нелинейность D(x) аппроксимировалась функциями 
D,(x)=2ax/(1+a’*) и D,(x) = asinx, где a — параметр. Направление исследований 
состояло в выявлении возможных сценариев развития режимов при изменений 
параметра A. 

1. Устойчивость состояний равновесия 

Модель 1 в зависимости от параметров с иа может иметь одно или три, а 

модель 2 — одно, три и более состояний равновесия. Границы областей значений с 
и а с различным числом состояний равновесия определены в [6,7]. Состояния 
равновесия A, (x,,,(6,2),0,0), tne j = 0,1,2,..., соответствующие — участкам 

обобщенной нелинейности P(x) с положительной крутизной (Ф’(х) > 0), являются 

устойчивыми при значениях A > (сари) = —(b-w®(x,, (ca) и 

неустойчивыми (типа седло или седло-фокус) при A< A, (0,a,b,1); состояния 

равновесия Ay,.,(%,;,,(0,a),0,0), соответствующие участкам | Ф(х) ¢ (x) < 0, 
являются неустойчивыми типа седло или седло-фокус. Координаты х);;1 И xy.) 

находятся из уравнения o—x—D(x)=0. На рис.1 показано расположение Ha 

илоскости параметров (а,\) границ A=Mhyj,, при значениях | и=1, b=0.1 для 

нелинейности D(x) при с=0.75 (см. рис.1, а) и для нелинейности D, (x) при 

6=1.57078 (см. рис.1, 6). 
Первая ляпуновская величина, вычисленная в соответствии с [8], при 

рассматриваемых значениях параметров является отрицательной, т.е. границы 
устойчивости А=%,,,, — безопасные. При пересечении этих границ с уменьшением 

2 или с возрастанием а в фазовом пространстве мягко рождаются устойчивые 
предельные циклы Гр содержащие внутри себя ставшие неустойчивыми 

состояния равновесия Ay), ;- 

Неединственность устойчивых состояний равновесия означает, что системы 
могут формировать различные — значения частоты или фазы управляемого 

колебания в зависимости от начального — состояния. Устойчивое состояние 

равновесия А, (х,,0,0) с наименьшей по модулю величиной расстройки х 
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Puc. 1. Границы областей устойчивости состояний равновесия модели 1 (а) и модели 2 (6) 

определяет синхронный режим, в котором X; существенно меньше начальной 

расстройки со. Остальные устойчивые состояния равновесия определяют 

стационарные режимы с расстройками, близкими к с или большими по модулю, 

чем с. Устойчивые предельные циклы „у определяют автоколебательные 
режимы систем в окрестности состояний равновесия А). 

Для значений > A (o,a,b,0) модели I u 2 имеют структуру 5 фазового 
портрета, когда предельные циклы отсутствуют и аттракторами системы являются 
состояния равновесия A „у. Двумерные аналоги структуры $ приведены в 
[3,6,7]. В области значений 0 < A < A; (0,a,b,1) существуют различные 
автоколебательные — режимы, — претерпевающие бифуркации при изменении 
параметров № и а. Ниже приводятся результаты численного исследования 
моделей 1 и 2 в случаях, когда они имеют три или пять состояний равновесия, 
показывающие, какие новые режимы и бифуркации возникают в исследуемых 
системах с частотным и фазовым управлением B области значений 0 <A < М. 

2. Динамика модели 1 

При численном исследовании модели 1 были выбраны значения параметров 

о =0.75, Б = 0.1, и = 1.0, а = 20, при которых бифуркационные — значения 
№ = 21.6845, №, = 0.7078. Рассмотрим эволюцию синхронного режима с 
уменышением A , взяв за исходное состояние структуру S фазового портрета с 

двумя аттракторами A, и А,. На рис. 2 показаны проекции фазовых портретов 

аттракторов модели 1 в окрестности состояния равновесия A; , возникающих при 

уменьшении № . При переходе через значение A=A, состояние равновесия А, 

становится неустойчивым и в области значений 6.973 < A < A; аттракторами 

модели 1 служат предельный цикл L,, характеризующий стационарный режим 

колебаний относительно А, , и состояние равновесия А, (диаг. 1). В области 

значений 6.1< A < 6.973 наблюдались бифуркации удвоения периода цикла L, 

вслед за которыми при A < 6.1 в фазовом пространстве возникает хаотический 

аттрактор P,, который сохраняется до значения A = 5.1495. Фазовый портрет и 

сечение Пуанкаре, соответствующие аттрактору FP, , при A =5.5 показаны Ha 

диаг. 2, 3. 
С уменьшением 2. аттрактор P| сменяется при < 5.1495 регулярным 
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Рис. 2. — Фазовые портреты аттракторов модели 1 при A=7.3 (1); 5.5 (2,3); 5.134 (4); 4.8 (5); 
4.765 (6); 4.7 (7); 4.6 (8); 4.4 (9); 4.36 (10); 4.3 (11); 4.275 (12) 

периодическим режимом, определяемым устойчивым двухоборотным предельным 
циклом L,, возникающим в результате седло-узловой бифуркации (диаг. 4). 

Затем цикл L, претерпевает последовательность бифуркаций удвоения периода, 

завершающуюся возникновением при 2 < 4.85 хаотического аттрактора P, 

(диаг. 5). При продолжении уменьшения A аттрактор P, сменяется при A < 4.773 

устойчивым шестиоборотным предельным циклом Г, (диаг. 6), который через 

последовательность бифуркаций удвоения периода переходит при < 4.755 в 

хаотический аттрактор Pj (диаг. 7), существующий до значения A = 4.68. При 

последующем уменьшении A аттрактор P, сменяется при A< 4.68 устойчивым 

двухоборотным предельным циклом Lg (диаг. 8), далее в интервале значений 

4.4< < 4.5455 следуют бифуркации удвоения периода цикла Ди при < 4.4 в 
окрестности A, снова возникает хаотический аттрактор P, (диаг. 9); аттрактор 

P, при A< 4.3716 сменяется устойчивым шестиоборотным предельным циклом 

Lg (диаг. 10), претерпевающим последовательность бифуркаций удвоения периода, 

завершающуюся при A < 4.34 возникновением хаотического аттрактора Pj 
(диаг. 11), затем  аттрактор Ps — сменяется устойчивым шестиоборотным 

предельным циклом С) при < 4.29075 (диаг. 12),  исчезающим в 

шестиобходную петлю сепаратрисы седла А, при A е (4.22875, 4.228). При 

дальнейшем уменьшении A система выходит на стационарный режим, 

определяемый устойчивым состоянием равновесия A. 

В интервале значений A, < < 4.228 в фазовом пространстве модели I, 

наряду с A,, существуют одно-, двух- и шестиоборотные устойчивые предельные 

циклы, возникающие и исчезающие в результате седло-узловых бифуркаций и 
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И! 

Рис. 3. — Хаотический аттрактор модели I при A=3.1 

бифуркаций петель сепаратрисы седла A ,. При изменении A в этом интервале 

некоторые циклы испытывают бифуркации удвоения периода, завершающиеся 
рождением хаотических аттракторов. В качестве примера на рис. 3 показаны 
проекции фазового портрета и сечение Пуанкаре на секущей у =—0.08, соответст- 

вующие — хаотическому  аттрактору при A = 3.1 , возникающему на базе 

однооборотного предельного цикла с увеличением A . 

При переходе с уменьшением ) через значение A = A, состояние равновесия 

А, становится неустойчивым и в области значений 0.457 <A < №, | аттрактором 

модели 1 является предельный цикл L,, характеризующий стационарный режим 

колебаний относительно A, С уменьшением A цикл Г, теряет устойчивость в 

результате бифуркации удвоения периода и в интервале значений 0.4319 < A < 

0.457 аттрактором модели 1 является двухоборотный предельный цикл Г”. При 

Ae (0.4319, 0.44175) цикл L,> исчезает в двух-обходную петлю сепаратрисы 
седла А,, после чего система выходит Ha автоколе-бательный режим, 

определяемый предельным циклом — Г, динамический диапазон которого 

значительно превосходит рабочую область нелинейности | (х). 

3. Динамические режимы и бифуркационные явления 
в модели 2 

В качестве характерных примеров поведения модели 2 приведем результаты 
ее исследования при значениях рн=1, Б = 0.1 в двух случаях: во-первых, при 

а = 4.6, с = 0.78539, когда она имеет три состояния равновесия А, A,, А; BO— 

вторых, при а = 8, с = 1.57078, когда она имеет пять состояний равновесия A, A,, 

А, Ад, As. Для описания эволюции состояния системы при изменении параметра A 
построены качественные диаграммы смены динамических режимов (рис. 4, 5), на 
которых светлые области соответствуют регулярным движениям — (состояниям 
равновесия или предельным циклам); области, отмеченные однократной 
штриховкой, отвечают бифуркациям удвоения периода — предельных циклов; 
области, выделенные двойной — штриховкой, соответствуют — хаотическим 
колебаниям. Уменышению A соответствует движение по диаграммам слева 
направо; линиями со стрелками обозначены переходы системы из одного режима 

в другой в результате бифуркаций. Значения A, соответствующие этим 
переходам, приведены в таблице. Приведенные диаграммы смены режимов 
позволяют наглядно представить поведение модели 2 при изменении A. 
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Таблица 

Значения а = 4.6 а = 8. 

A с = 0.78539 с = 1.57078 

A (4.999; 5) (7.989; 7.99) 

A (2.385; 2.386) (7.047; 7.048) 

As (4.647; 4.648) 

м (1227203225; 1.22720325) (2.79153125; 2.7915625) 

A, (1.172829087; 1.172829089) | (2.1976;2.1978) 

Ay (0.852; 0.8535) (1.6625;1.675) 

м (0.78475; 0.785393) (0.86545;0.86548) 

As (0.91106; 0.91175) (1.6835;1.69) 

Ae (1.13015; 1.31) (2.2195;2.22) 

A (1.172851252; 1.1728512575) | (2.7925535;2.7925575) 

Ag (1.2296275; 1.2296325) 

Ag (1.2638625; 1.2638685) (3.11; 3.115) 

Mo (0.902; 0.902658) 

М (0.993035; 0.994) 

Мо (0.837; 0.838325) 

Ма (2.3096; 2.3097) 

Из диаграммы, приведенной на рис. 4, устанавливаем, что если в качестве 

исходного состояния системы рассмотреть синхронный режим, определяемый 

устойчивым состоянием равновесия A;, тогда с уменьшением — № — развитие 

режимов идет по следующему сценарию. При A >A; — синхронный режим; при 

значениях A; < № <A; — переход в автоколебательный режим, определяемый 

устойчивым предельным циклом L,, бифуркация удвоения периода цикла L, и 

В, В В В, 

А, Г г PAL Г 
У 

МА т 
Ly 77 Ly 3 

УИ 

A 4 53 = жж 

Ay AsY А Rio Ay 

А, к [8 йй |Z ©. 
ма] Rg Ж Kip 

Ly Я Cs 

Рис. 4. — Диаграмма смены режимов модели 2 при a=4.6, 6=0.78539 
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Рис. 5. JInarpamma смены режимов модели 2 при a=8., 6=1.57078 

переход Ha двухоборотный цикл L,%, бифуркация, обратная удвоению и переход на 

цикл 1, бифуркации удвоения — периода цикла Г. и бифуркации, обратные 

бифуркациям удвоения, завершающиеся переходом системы на цикл L% при 

A=\" — исчезновение цикла /? в результате седло-узловой бифуркации и 

переход на другой двухоборотный предельный цикл 1 при значениях м” <A< М, 

— бифуркация удвоения периода цикла 1)? и переход на четырехоборотный 

предельный цикл L,Y, при A =), — исчезновение цикла L,Y и переход на 
двухоборотный предельный цикл /.°. 

В области значений A; < A < A, с уменьшением A происходят 
следующие события: бифуркации удвоения и обратные удвоениям периода цикла 

„”, переход на однооборотный предельный цикл  L,, бифуркации удвоения 

периода цикла L,, завершающиеся возникновением хаотического аттрактора Pi; 

разрушение аттрактора P, ий переход Ha трехоборотный предельный цикл 1, 

бифуркации удвоения и обратные удвоениям периода цикла Г, хаотический 

аттрактор FP, на базе цикла Г”, разрушение аттрактора FP, и переход на 

двухоборотный предельный цикл Lg, бифуркации удвоения и обратные удвоениям 

периода цикла Lg’, хаотический аттрактор P, Ha базе цикла Г? ; разрушение 

аттрактора fF, и переход вновь на предельный цикл д, бифуркации удвоения 

периода цикла Г, завершающиеся возникновением хаотического аттрактора P,. 

На рис. 6 приведены проекции фазовых портретов и сечения Пуанкаре, 

соответствующие хаотическим аттракторам FP; при A=1.025, P, при A=0.961, 

Р, при 2 = 0.948 и P, при 2. = 0.86. При A=\,” аттрактор P, разрушается и 

система переходит на двухоборотный предельный цикл  С\?; при значениях 

A, < № < 2, C уменьшением A происходит бифуркация, обратная бифуркации 
2 (3) o 

удвоения периода цикла C,° и переход Ha однооборотный предельный цикл С. 

При A=A, цикл С) исчезает в результате седло-узловой бифуркации; система 

переходит на предельный цикл Lj, динамический диапазон которого значительно 

превосходит размах цикла С’. 

Если же рассмотреть в качестве исходного состояния системы, например, 
режим автоколебаний, определяемый предельным циклом С, при значениях 
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Рис. 6. — Хаотические аттракторы модели 2 P(1,2), Po(3,4), Р. (5,6), Р (7,8) 

Ay < №< №", и увеличивать A, то в соответствии с диаграммой на рис. 4 в системе 

фиксируется следующая, отличная от рассмотренной выше при уменьшении A, 

цепочка событий. При значениях A,” <A <A; происходят бифуркации удвоения и 

обратные удвоениям периода предельного цикла Cp; при \=М,° цикл С, исчезает 

в результате седло-узловой бифуркации и система переходит Ha однооборотный 

предельный цикл C,. При значениях №, < A < № происходят бифуркации 
удвоения и обратные удвоениям периода цикла С; при A=) цикл С, исчезает в 

результате седло-узловой бифуркации и система переходит на двухоборотный 

предельный цикл Г. В интервале значений № < A < №° следуют бифуркации 

удвоения и обратные удвоениям периода цикла Г; при A=A," цикл Г? исчезает 

в результате седло-узловой бифуркации, система выходит на четырехоборотный 

предельный цикл L,*. При дальнейшем увеличении A цикл L,' испытывает 
бифуркацию, обратную бифуркации удвоения периода; при A = М исчезает в 

результате седло-узловой бифуркации цикл L,2, и система переходит на другой 

двухоборотный предельный цикл L,% затем следуют бифуркации удвоения и 

обратные удвоениям периода цикла 1}? и переход на предельный цикл Lg, 

который при A = A, исчезает в результате стягивания к состоянию равновесия Aj. 

При >, в системе наблюдается синхронный режим. 

Из диаграммы на рис. 4 следует, что имеются значения A, отвечающие 

сосуществованию в фазовом пространстве модели 2 двух, трех или четырех 

аттракторов. В качестве примера на рис. 7 изображены (х,у)- проекции фазового 

портрета модели 2, отвечающие сосуществованию устойчивых трехоборотного 

предельного цикла Г. и двухоборотного предельного цикла С? при A =1.015925, 

предельных циклов С}, С, и хаотического аттрактора P, при A = 0.993035, 
устойчивых предельных циклов Г, C,, C,, С, при A =0.91106. 

Из представленных результатов исследования — моделей I и 2 следует, что 
динамика рассматриваемых управляемых систем с фильтром третьего порядка при 

варьировании параметра инерционности A характеризуется наличием между 

синхронным режимом и автоколебательным режимом с большим динамическим 

диапазоном чередующихся сложных регулярных и хаотических автоко- 
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Рис. 7. — Сосуществование аттракторов модели 2 при A=1.015925 (1); 0.993035 (2); 0.91106 (3) 

лебательных режимов. При этом в модели I  бифуркационные явления и 

сложные режимы в окрестности состояния равновесия А, — наблюдаются при 

существовании устойчивого состояния равновесия А,, в то время как в модели 2 

эти события происходят при тех значениях A, когда A, неустойчиво. 

Сосуществование в фазовом пространстве двух и большего числа аттракторов 

дает возможность наблюдать явление гистерезиса при варьировании параметра A . 

Рассмотрим теперь диаграмму смены режимов, приведенную Ha рис. 5, 

которая показывает усложнение динамики модели 2, обусловленное возрастанием 

параметра a. Если при значениях A> A, зафиксировать начальное состояние 

системы в синхронном режиме, определяемом состоянием равновесия А, и 

уменьшать A , то при A < A, возникает устойчивый предельный цикл L,, 

представленный на рис. 8, диаг. I, в интервале значений A,” <A < A, этот цикл 

испытывает бифуркацию удвоения периода, и система переходит на 

двухоборотный предельный цикл L? (см. рис. 8, диаг. 2). Kak видно из 

диаграммы на рис. 5, при A,” < A < A; — в фазовом пространстве модели 2 

одновременно могут существовать еще устойчивый — предельный цикл L, B 

окрестности неустойчивого состояния равновесия А,, устойчивый предельный 

цикл Lg в окрестности неустойчивого состояния равновесия А, и хаотический 

аттрактор Оу, возникающий B результате последовательности бифуркаций 

удвоения периода цикла L,. 

При A=A,” цикл 14? исчезает в результате седло—-узловой бифуркации, и 

система переходит на устойчивый четырехоборотный — предельный цикл 5, 

(см.рис. 8, диаг. 3,4). В области значений A, <A <A,” в фазовом пространстве 

существуют — устойчивые — предельные — циклы: шестиоборотный Ss, 

четырехоборотный $, трехоборотный S,, однооборотный Sg, двухоборотный Sg 

(см. рис.8, диаг. 6, 8, 10, 12, 14). При уменьшении A циклы $), 55, 53, Эд» Ss 

претерпевают бифуркации удвоения периода, завершающиеся возникновением 

хаотических аттракторов О, Oy, O05, Oy Os (см. рис. 8, диаг. 5, 7, 9, 11, 13); цикл 5 

испытывает бифуркации удвоения и обратные удвоениям периода. Кроме этого, 

при значениях Aj; < A < A," в фазовом пространстве существуют устойчивый 

предельный цикл Lg, претерпевающий серию бифуркаций удвоения периода, и 

хаотический аттрактор 7, возникающий в результате этих бифуркаций (см. рис.5).



При A=), предельный цикл $, исчезает в результате ©6дЛО—УЗЛОВОЙ 
бифуркации, система переходит на двухоборотный предельный цикл 3, который с 
уменьшением A испытывает последовательность бифуркаций удвоения периода, 
завершающуюся возникновением хаотического аттрактора О, (см. рис.8, диаг. 16). 
При A=);  arTpakTop О, разрушается и система переходит на однооборотный 
предельный — цикл Sg. С дальнейшим уменьшением JA в интервале значений 

A, < ̂  <)” следуют: бифуркации удвоения периода цикла Sg; возникновение 
хаотического аттрактора О, на базе цикла Sg разрушение аттрактора (Jo; 
бифуркации, обратные удвоениям, завершающиеся выходом системы Ha 
предельный цикл Sq (см. рис. 8, диаг. 17, 18, 19). При № = №,” цикл $, исчезает в 

результате седло-узловой бифуркации, следствием которой является жесткий 

переход системы на предельный цикл — Г , динамический диапазон которого 
значительно превосходит размах цикла Lj. 
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Рис. 8. — Фазовые портреты аттракторов модели 2 при A=7.5 (1); 3.2 (2); 2.79 (3); 2.7225 (4); 2.63 

5); 2.6 (6); 2.556 (7); 2.55 (8), 2.5 (9); 2.4 (10); 2.35 (11); 2.33 (12); 2.305 (13); 2.3 (14); 2.1976 

0% 1.7 (16); 1.63 (17); 1.0 (18); 0.8675 (19) 
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Если рассмотреть в качестве начального состояния системы, например, 
режим автоколебаний, определяемый предельным циклом Sy, и увеличивать 

параметр A ‚ тогда в соответствии с диаграммой на рис. 5 система проходит через 
o # * 

следующую последовательность состояний: при A, < A < Ay — цикл Sg, 

бифуркации удвоения периода цикла Sy, хаотический аттрактор (),, разрушение 

аттрактора О, переход на предельный цикл Sg; при A=As — исчезновение цикла Sg 

и переход на хаотический аттрактор Qg при As < A < A, — разрушение аттрактора 

О; и переход на предельный цикл $); при A = №, — исчезновение цикла 5) и 

переход Ha многооборотный предельный цикл (возникающий на базе удвоений 
цикла Se); при значениях A, < A < A, — бифуркации удвоения и обратные 
удвоениям периода цикла  $,, хаотический аттрактор (s, предельный цикл Ss, 
хаотический аттрактор О,, цикл. S,, хаотический аттрактор О,, цикл Sj, 

хаотический аттрактор О, цикл 5,, хаотический аттрактор (J), предельный цикл 

$; при A=A," — исчезновение цикла $, в результате бифуркации четырехобходной 

петли сепаратрисы седла А, и переход на предельный цикл LA при м < ̂ < Л - 
2 (9 

бифуркация, обратная удвоению периода цикла Г,” и переход на предельный цикл 

Гу при A=A; — исчезновение цикла L; и переход системы в синхронный режим. 
Сравнивая диаграммы смены динамических режимов, приведенные на рис. 4, 

5, устанавливаем увеличение с ростом параметра а числа зон по параметру A , в 
которых система демонстрирует хаотические режимы. Интересным в случае пяти 
состояний равновесия модели 2 является — сосуществование в — фазовом 
пространстве системы Двух HW более различных аттракторов. В качестве 
иллюстрации на рис. 9 приведены фазовые портреты аттракторов модели 2, 
отвечающие сосуществованию предельных циклов Lg, 1? и — хаотического 

аттрактора О, при A = 3.4 (диаг. 1), предельных циклов Lu $, при A = 2.6 
(диаг. 2), хаотических аттракторов Z и О, при A = 2.45 (диаг. 3), хаотического 
аттрактора Z и предельного цикла S, при A = 2.4 (диаг. 4). 
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Рис. 9. — Сосуществование аттракторов модели 2 при A=3.4 (1); 2.6 (2); 2.45 (3); 2.4 (4) 
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Заключение 

В данной работе представлены новые результаты исследования режимов 
динамического поведения  CHCTEM с частотным — и фазовым управлением, 
содержащих фильтр третьего — порядка в — цепи управления. Изучены 
автоколебательные режимы и их бифуркации, установлены возможные сценарии 
эволюции режимов при изменении параметра инерционности A для апериодичес- 
кой и синусоидальной характеристик дискриминаторов. 

Сопоставляя полученные результаты по динамике моделей 1 и 2 с 
результатами работ [3,6,7], устанавливаем, что поведение исследуемых систем с 
фильтром третьего порядка характеризуется режимами и бифуркационными 
явлениями, не наблюдаемыми в системах с фильтром второго порядка; в системах 
возникают хаотические режимы; динамика систем при варьировании параметра A 
характеризуется — наличием разнообразных периодических и — хаотических 
колебательных режимов, свойствами мультистабильности и гистерезиса. Приме- 
чательно, что существенное усложнение динамики систем наступает уже при 
сравнительно небольших величинах параметра инерционности |. 

Установленные эффекты и явления динамики моделей 1 и 2 вне областей 
локальной устойчивости состояний равновесия, обусловленные влиянием 
параметров A и Ц, имеют принципиальное значение для понимания особенностей 
поведения систем при нарушении устойчивости синхронного режима, а также для 
решения задач формирования сложных регулярных и шумоподобных колебаний 
на основе исследуемых систем с частотным и фазовым управлением. 

Работа выполнена при финансовой поддержке Российского фонда 
фундаментальных исследований (проект 93-02-15424). 
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COMPLEX DYNAMICS OF THE SYSTEMS WITH 
THE UNONLY EQUILIBRIUM STATE 

V.P. Ponomarenko, L.A. Zaulin 

The results of qualitative and numerical analysis of dynamics of frequency and 
phase control systems, containing the third order filter in control circuit, are presented. 
Regimes and special features of system’s behaviour out of the local stability region of 
equilibrium points are achieved. High system’s dynamics dependence on inertia pa-— 
rameters of control circuit is ascertained. 
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