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Предложена методика численного построения  бифуркационного множества, 
соответствующего существованию двоякоасимптотических траекторий в фазовом 
пространстве С конечномерных динамических систем. Он основан на анализе 
взаимного расположения в С одномерной неустойчивой сепаратрисы и семейства 
поверхностей без контакта. Описываемый метод существенно снижает затраты 
«машинного» времени и лостаточно эффективно работает даже в случае, если 
исследуемое бифуркационное множество и — двоякоасимптотические — траектории 
устроены — сложно. Приведены результаты использования данного метода для 
конкретных динамических систем. 

1. Построение бифуркационных множеств, отвечающих гомо- и гетеро- 
клиническим траекториям в фазовом пространстве динамических систем — задача 
актуальная и довольно сложная. Актуальность ее определяется тем фактом, что 
эти множества являются границей в пространстве параметров динамической 
системы, при пересечении которой происходят топологические изменения в ее 
фазовом пространстве. В зависимости от назначения физического объекта, для 
которого построена динамическая модель, знание структуры ее фазового 

пространства может быть полезно для определения устойчивости определенного 
типа решений, их ограниченности и области притяжения [1]. Актуальность этой 
задачи определяется еще и тем, что гомо- и гетероклинические траектории 
являются образом автоволновых структур типа «бегущий импульс», «бегущий 
фронт», распространяющихся в средах различной физической природы [2,3]. 

Известен пелый ряд способов получения бифуркационных множеств, 

отвечающих гомо- и гетероклиническим траекториям. Среди них — Tak 

называемый метод расщепления сепаратрис (см., например,[4]). Он применяется, в 

основном, для исследования динамических систем З-го порядка и основан на 

анализе взаимного расположения одномерной сепаратрисы HW — касательной 

плоскости к двумерному многообразию в окрестности состояния равновесия. 

Являясь достаточно универсальным и удобным для применения (в частности, он 

использован в пакете программ LOOPLP, разработанного в НЦБИ АН СССР, 
Пущино-на-Оке), этот метод не лишен недостатков. Основной среди них связан с 

точностью — аппроксимации двумерного многообразия касательной плоскостью, 

которая тем точнее, чем ближе к состоянию равновесия. Но, с другой стороны, с 

приближением к состоянию равновесия увеличивается — чувствительность 

интегрируемой одномерной сепаратрисы к  погрешностям счета. Кроме того, 

затруднен поиск бифуркационного множества при «старте» из произвольной 

точки пространства параметров, в силу того, что одномерную сепаратрису 
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необходимо «затащить» в некоторую окрестность состояния равновесия, чтобы 
метод эффективно заработал. 

Известен метод, основанный на использовании сжимающих отображений, 
построенных по конкретной динамической системе [5]. С его помощью можно с 
«любой» точностью (до погрешностей машинного счета, разумеется) найти точку 
пересечения сепаратрисы с произвольной поверхностью и, HE — производя 
построения этой сепаратрисы, т.е. He интегрируя динамическую систему, при 
помощи итерационных методов получать двоякоасимптотические траектории в 
фазовом пространстве. Обладая возможностью нахождения бифуркационной 
точки в пространстве параметров с высокой точностью, этот метод требует 
больших затрат машинного времени и эффективно работает в достаточно малой 
окрестности бифуркационного множества. 

Известен способ построения двоякоасимптотических траекторий при 
помощи сведения этой задачи к решению соответствующей краевой задачи на 
прямой (см., например, [6,7]). Однако, как локазано в [8], такой переход не всегда 
является корректным. 

Кроме того, вышеперечисленные методы плохо работают, когда двумерное 
многообразие недостаточно гладкое, а так же, если состояние равновесия, в 
которое — приходит — сепаратриса, является седло-фокусом. Но наибольшие 
трудности возникают B случае, если форма гомо- или гетероклинической 
траектории достаточно сложна (траектория несколько раз , например, проходит в 
своей расширенной окрестности), а так же если бифуркационное множество, 
отвечающее таким траекториям, достаточно сложно устроено [9-11]. 

2. Действие предлагаемого алгоритма поиска бифуркационных множеств, 
соответствующих двоякоасимптотическим траекториям, основано на анализе 
взаимного расположения одномерной неустойчивой сепаратрисы и семейства 
поверхностей без контакта в фазовом пространстве исследуемой динамической 
системы. 

Рассмотрим динамическую систему (1) в фазовом пространстве С 

du : 
— =F (u,a,0), (1) 
dt 

где u = (uy, tty, ..., и) — переменные, a = (a, a,,..., a; ), с — параметры, F(.)— 

нелинейная функция. Без нарушения общности, будем считать | = 3. ( Все 
дальнейшие результаты могут быть обобщены на случай / > 3 ). В пространстве 
параметров d: {a,c} будем искать бифуркационное множество, отвечающее 
гетероклиническим траекториям в G . Для этого в система (1) должна иметь, по 
крайней мере, 2 состояния равновесия седлового типа О, (м!) и д, (u?), где 

и! (a,c) и и? (a,c) таковы, что Р(ш,а,с) = 0, 7=1,2. 
Пусть О,(О,) имеет одномерное неустойчивое многообразие W." (W,") и 

двумерное устойчивое И/)* (И/,* )!. Если И//" лежит на W,*, то это означает, что в 

фазовом пространстве С при данных значениях параметров из 4 существует 
гетероклиническая траектория, при 7 — — co выходящая из O,, приходящая в О, 

при г — + co. Для поиска параметров из а, отвечающих случаю №," nn М, = 0 

поступим следующим образом. 

Другие возможные варианты здесь рассматриваться не будут в силу следующих причин. 
Поиск связки сепаратрис, образованных лежащей Ha двумерном неустойчивом многообразии одного 
состояния равновесия одномерной устойчивой сепаратрисой, сводится к рассматриваемому заменой 
времени / — — /. Бифуркация «слияния» одномерной неустойчивой сепаратрисы одного состояния 
равновесия и одномерной устойчивой сепаратрисы другого в общем случае имеет коразмерность 2 и 
встречается редко. Трансверсальное пересечение двумерного неустойчивого многообразия одного 
состояния равновесия и двумерного устойчивого другого в общем случае не исчезает при «шевелении» 
параметров, и. в снлу этого. поиск бифуркационного множества не вызывает особых "трудностей. 
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Введем в фазовом пространстве С семейство поверхностей 

V(wac)=C, =~ (2) 

где C= = const, обладающих следующими свойствами. 
1. У(.) определена во всем 4; 
2. Существует такое C= С* , что V = С* состоит из двух частей V! и №? 

таких, что: 
a)Vluv? =v, 
6) VInV2 =0,, 
в) И! и V2 топологически эквивалентны параболоидам с вершиной в O,. 

3. Производная от V, взятая в силу системы (1), удовлетворяет неравенству 

причем, V = 0 только в O,. - 

Неравенство (3), другими словами, означает, что BCE траектории 
динамической. системы (1) пересекают поверхность V вовнутрь трансвёрсально 
всюду, кроме O,. Будем. анализировать взаимное расположение W,* и \(.) = С*. 

Для получения W,* необходимо построить вектор D, касательный к 

многообразию W," в точке О,, и на расстоянии Е? OT О, взять на векторе D точку 

Е’. Точкой Е’ будем аппроксимировать точку Е е W," и использовать ее в качестве 

начальной для получения И," путем прямого: интегрирования на компьютере 

системы (1). : : 
Для построения гетероклинической траектории нужно _ так подобрать 

параметры системы. (1), чтобы №," легло: на устойчивое многообразие WJ), т.е. 

образовала связку сепаратрис O,— O,. 

Для этого рассмотрим взаимное расположение №/,'и поверхности V(u, a,c) = = 

= C* Возьмем в области 4 точку К. Пусть для этих параметров одномерная 
неустойчивая — «сепаратриса» — исследуемой — системы, — полученная — путем 
интегрирования на ЭВМ (1) от точки Е, пересекает один из параболоидов 

(например, У!) в точке ML A mma К’ е точки М! не существует — эта 

сепаратриса с поверхностью V не пересекается вообще и (или) появляется точка 

М? е V2 Тогда, учитывая свойства поверхности V, при движении вдоль линии, 

соединяющей К и К’ и принадлежащей 4, точка M' может исчезнуть только в 

случае, если сепаратриса пройдет через точку О, (где производная V в силу 

системы (1) равна 0), т.е. при образовании гетероклинической траектории. Таким 

образом, на этой линии, соединяющей точки К и К’, существует, по крайней мере, 
одна точка К, принадлежащая искомому бифуркационному множеству. Уменышая 

A й 

расстояние между К и К’, можно получить точку К (бифуркационное значение 
набора параметров системы (1), которому соответствует существование в её 
фазовом пространстве гетероклинической траектории) с «любой» степенью 

точности (учитывая, естественно, погрешности аппроксимации точки Е’ и интег- 
рирования сепаратрисы системы (1)). 

2 Уменьшая е, можно до определенной степени улучшать качество аппроксимации, однако, 

брать очень малое в не имеет смысла, т.к. возможна ситуация, когда накопление ошибки в 

результате погрешности счета в непосредственной близости u! не уменьшит, а наоборот увеличит 

отклонение от Wi". Чтобы этого избежать, можно, например, воспользоваться способом, 

описанным в [5]. Что касается приведенных ниже примеров, то с учетом того, что при изменении 

величины € в интервале от 10° до 107%, относительная погрешность в определении значения 

бифуркационного параметра не превышает 107 6, можно считать подобную аппроксимацию вполне 

достаточной. 

45



3. К сожалению, He всегда удается подобрать поверхность V(.) = С*, 
удовлетворяющую всем выше перечисленным условиям во всем фазовом 
пространстве С (имеется ввиду — топологическая эквивалентность конусу и 
выполнение неравенства 2: Однако, описанный метод может быть применен и 
в случае, если \(.) = С* удовлетворяет условиям в некоторой окрестности 
точки О,: в С с С. При этом, „правда, существует «опасность», что точка м 

сойдет с конуса У(.) = С* вне С или попадет в область притяжения какого-либо 
аттрактора (устойчивого состояния — равновесия или предельного цикла). 
Исключить ошибку, связанную C подобными ситуациями, можно путем 
дополнительного анализа системы (1) на предмет отсутствия этих структур в С, и 
следя за характером поведения координат М! в С вблизи параметров из области а, 
когда точка исчезает. 

4. При помощи предложенной методики можно искать бифуркационное 
множество, отвечающее и гомоклиническим траекториям. В этом случае роль 
состояния равновесия О, для \(.) = С* будет выполнять состояние равновесия 

О,. Однако, и это принципиально, конус V(.) = С* удовлетворяет условиям 1-3, 

п. 2 только в некоторой глобальной окрестности точки O,: в С с С (сепаратриса 

W,* должна иметь «Возможность» ВЫЙТИ из VY). В силу этого, всегда актуальна 

проверка «неприятных» ситуаций, описанных в предыдущем пункте. 
5. Основной недостаток данной методики построения гетероклинической 

траектории состоит в сложности конструирования поверхности V(.) = С*. 
Естественно, для каждой конкретной динамической системы типа (1) поверхность 
V(.) своя и ее построение есть своего рода «искусство». Но, хотя это и делается 
аналитически, облегчить поиск поверхности V(.) = С* может, например, 
‘применение пакетов алгебраических вычислений на компьютере типа REDUCE. 
Однако, вместе с этим, семейство V(.) = С дает дополнительную информацию о 
структуре фазового простраиства системы, что может быть полезно для ee 
исследования. ВЕ 

Основное достоинство методики состоит в существенном сокращении затрат 
машинного: времени на построение бифуркационных поверхностей, связанное с 
тем, что сепаратрисы W," нужно «доводить» не до малой окрестности состояния 
равновесия О,, а до пересечения с поверхностью \(.) = С* (с этим же связана и 
высокая точность получения — бифуркационного значения — параметров — не 
происходит накопления ошибок в окрестности 0,): ‘Ho самое главное — это 

достаточно эффективная работа в случае, когда бифуркационное множество или 
гетеро-- ; гомоклиническая траектория имеет сложную форму. 

Рассмотрим применение описанного алгоритма построения бифуркацион- 
ных множеств, отвечающих двоякоасимптотическим траекториям к состояниям 
равновесия седлового типа для автомодельных систем, соответвующих модели 
Фитц-Хью — Нагумо (ФХН) и возмущенному уравнению Sin—I'oppiona. 

6.1. Автомодельная система, соответствующая модели  ФХН, имеет вид: 

й = м, 

ие = си — Ди) + 0, (4) 

со= blu = 0), | 
где Ди) = - и (и - п)(и — 1), 0 < п < 1/2; vb - параметры, точкой обозначено 

дифференцирование по бегущей координате § = x + ct. 
“6.2. Будем исследовать (4) в трехмерном фазовом пространстве С и области 

параметров d*: {b> 0, с> 0, у > %}, ¥,=4(1-n) 2. Несложно видеть, что (4) имеет в d* 

три состояния равновесия: О, (0,0,0), O,(u;, 0, у! u;), О, (uy 0, У! и, ), где 
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Рис. 1. Иллюстрация к методике построения  двоякоасимптотических траекторий: 
а — гетероклинической; 6 — гомоклинической 

+n 4] (A-n)?* ° 
+ | 

2 4 Ц 
и; = A | 1=2,1. 

Для всех точек области 4* состояние равновесия О, имеет седловой тип с 

одномерным неустойчивым И, и двумерным устойчивым И’) многообразиями. 

Состояние равновесия О, в @* — либо седлового типа C одномерным 

неустойчивым W," и двумерным — устойчивым — И,” многообразиями, либо 

неустойчивый фокус или — неустойчивый узел (подробнее см. [12,13]).' В 
дальнейшем будем работать в области параметров d, в которой состояния 
равновесия О), О, имеют седловой тип. 

Получим связку  сепаратрис, являющуюся результатом — пересечения 
одномерного неустойчивого многообразия W,” состояния равновесия О, и 

двумерного устойчивого многообразия И/° состояния равновесия О) (рис. 1, а). 
Для этого в качестве V(u,w,0) = С* может быть выбрана функция 

1 с.) и? 
7 ут og тт 4p] fogs = =0, (5) 

rie _ 
0 < р< min {ус 2(N & + 1/у-с)}. (6) 

Несложно видеть, что V(uw,0), взятая в силу системы (4), будет иметь вид 

. 1 
У = -0? + (рс — Lye + pow + — и fu). (7) 

у у 
Поверхность V(u,w,v) =0 при и е ]-ее, и] удовлетворяет условиям 1-3, п. 2.Таким 
образом, если существует точка M!, являющаяся — результатом пересечения 
одномерного — неустойчивого многообразия О, и поверхности V!, то при 
изменении параметров системы (4) (не выходя при этом из области а), точка М! 
может исчезнуть только в следующих ситуациях. 

1. «Пройдя» через О), т.е. образовав искомую связку сепаратрис. 
2. Всли W,* попадает в область притяжения устойчивого состояния PaBHOBE— 

сия (легко видеть, что в С для а такого нет) ИЛИ устойчивого предельного цикла. 
3. Если W,* «соскочит» с V!, «уйдя» по неустойчивому многообразию 

седлового предельного цикла. 
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Ситуации 2 и 3 в процессе моделирования Ha ЭВМ могут быть легко 
исключены даже без предварительного аналитического исследования. В ситуации 
2 при переходе через якобы — «бифурканионное» значение параметров не 

появляется точка М? (М? = И, п {У о ue 10, n[ } ). Исключить ситуацию 3 можно 

следующим образом. Необходимо проверить, как ведет себя зависимость времени 
движения по сепаратрисе { от конечной е-окрестности О, до конечной 
е-окрестности О, при переходе через «бифуркационное» значение параметра при 

исчезновении М! и появлении М?. В этот момент в ситуации 3 7 — oo. 
Таким образом, в процессе моделирования на ЭВМ случай образования 

сепаратрисной связки легко может быть отделен от ситуаций 2 и 3. 
6.3. Аналогичным — образом — ищется — бифуркационное — множество, 

отвечающее связке  сепаратрис, являющееся результатом — пересечения 
одномерного неустойчивого многообразия И’ состояния равновесия О, H 

двумерного устойчивого многообразия №? состояния равновесия О,. В этом 

случае в качестве поверхности V выбирается следующая : 

1 с и 1 Г у а 
— —(0- — + pw? + р] Дан — и-и,) (— + pu,— — (и-и,)) = 0.(8) я я 2) 5 Я (и)аи — (u=u,) » 2 27 2) 

Производная у, взятая в силу системы (4), будет иметь вид 

и=-(@ =) mw pe) + (0 = 2 Jw не JL) = 2 ©) = -(о - — )° —w(—- -— —(и-и и) — — |. 
у у Р у у у 

Несложно видеть, что на интервале и € | и*,со? V(u,w,0) удовлетворяет условиям 

1-3, п.2. Поиск бифуркационных значений параметров, отвечающих связке 
сепаратрис О,->О,, полностью аналогичен описанному для О, —О,. Единственное 

отличие состоит B TOM, что нужно получить точку М? и следить за ee 
исчезновением и появлением точки М!. Это связано с тем, что У? не ограничено 
по и справа и уходит в бесконечность, в то время как И! расположено в сущест—- 
венно меньшей области пространства С: между О, и плоскостью {и =и*}. 

6.4. Будем рассматривать систему 
(4) при условии y < ,. Несложно видеть, 

b что в этом случае OHA — имеет одно 
0.024 состояние равновесия O,(u =0, w=0,0 =0) 

седлового типа с одномерным неустой- 

0.020 чивым WY и двумерным устойчивым W* 
многообразиями. Если сепаратриса W* 

0.016 принадлежит устойчивому многообразию 

0.008 И”, то она образует в С гомоклиничес- 
кую траекторию — петлю сепаратрисы. 

0.004 Для построения бифуркационного 

0.000 множества, отвечающего в С гомокли-— 
(а нической — траектории, в — качестве 

поверхности без контакта взята функция 
у, приведенная  B (5). Поиск 

Рис. 2. Элементы бифуркационного множества бифуркационного значения параметра 

&-обходных гомоклинических траекторий (4) осуществляется ~~ аналогично случаю 

(у =3, л = 0.01) поиска сепаратрисной связки 0,— О) . 

u 

Здесь и* ищется из условия Дн“) = —, n<ut< и). 
у - 
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Использованный алгоритм позволил найти бифуркационное множество, 
отвечающее гомоклинической траектории более сложной формы (рис. 2): 
двух, трех ,... -обходной петле сепаратрисы — гомоклинической траектории в G, 
проходящей в своей расширенной окрестности два, три и более раз. Для этого 
нужно «следить» за поведением точки М? являющейся результатом, 
соответственно, 2-го, 3-го, ... пересечения Wu V2 ( см. рис.1, 6). 

6.5. При помощи описанного алгоритма строилось бифуркационное 
множество, отвечающее двоякоасимптотическим — траекториям в  фазовом 
пространстве  автомодельной — системы, соответствующей — возмущенному 
уравнению $ш-Гордона 

. 

Фа — Ф, = 5 ф + оф, — Po, — 7, (10) 
Данный алгоритм продемонстрировал свою эффективность и в случае, когда 
это множество устроено  OYEHb — сложно. — Некоторые элементы этого 
бифуркационного множества приведены в [14,15]. 

Выводы 

Описана ' методика нахождения бифукационных множеств, отвечающих 

гомо- и гетероклиническим траекториям, для нелинейных динамических систем. 

Она основана на анализе взаимного расположения в фазовом пространстве 

исследуемой системы — сепаратрисы №" седлового состояния равновесия и 

семейства поверхностей без контакта V(.) = const. Основной недостаток данной 

методики связан со сложностью конструирования семейства V. Для каждой 

конкретной системы V(.) — своё и его построение своего рода «искусство». Но 

вместе с этим, знание семейства поверхностей V(.) = const дает дополнительно 

полезную информацию о структуре фазового пространства, что особенно важно, 

например, при проверке полученных в численном моделировании результатов. 

Основное же достоинство методики состоит в существенном сокращении затрат 

машинного времени на построение бифуркационных множеств, связанное с тем, 

что сепаратрису нужно «доводить» не до малой окрестности состояния равновесия, 
а до пересечения с поверхностью \(.) = С*. С этим же связана и высокая 
точность получения бифуркационных значений параметров — HE происходит 

накопление ошибок в окрестности состояния равновесия. Именно это определяет 

более эффективную работу данной методики в случае, когда бифуркационное 

множество или гомо--, гетероклиническая траектория имеют сложную форму. 

Использование описанной методики для — исследования  aBTOBOJIHOBBIX 

решений в системах ФХН и возмущенном уравнении 5Шш-Гордона подтвердило 

эти €e преимущества. Более того, удалось уточнить сложную структуру 

диаграммы зависимости скорости распространения и формы солитонов OT 

параметров возмущенного уравнения 510-Гордона, приведенную, например, в 

[16], построить элементы бифуркационного множества, отвечающие ABYX—, TPEX— 

обходным гомоклиническим траекториям в «автомодельном» варианте системы 

ФХН. 
Автор благодарен В.И. Некоркину 3a полезные дискуссии и постоянное 

внимание к работе. 
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ON CONSTRUCTION OF TWO ASYMPTOTIC ORBITS 
IN THE PHASE SPACE OF DYNAMIC SYSTEMS 

A.G. Maksimov 

.. The method of numerical construction of bifurcation multitude corresponding to 
the existence of two asymptotic orbits in the phase space G of finite dimensional dynamic 
systems has been suggested. It is based on the analysis of mutual arrangement of one di— 
mensional unstable separatrice and a family of contactless surface in G. The described 
method sufficiently decreases expenditure of «computer» time and it is rather effective 
even in the case of complex bifurcation multitudes and two asymptotic orbits. The results 
“of application of the method for particular dynamic systems are given. 
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