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Исследуются вопросы глобальной ограниченности решений специального 
класса уравнений математической физики, описывающих динамику реактора. 
Доказательство ограниченности основано на использовании теории положительных и 
монотонных операторов сдвига по траекториям дифференциальных уравнений. 
Получены оценки на норму решения сверху. 

Вопрос о глобальной ограниченности решений уравнений теоретической 
физики имеет важное, а в некоторых случаях принципиальное значение. 
Необходимость решения этого вопроса возникает, например, при анализе условий 
применимости той или иной математической модели для адекватного описания 
реального физического — явления. Исследование — проблемы — глобальной 
ограниченности решений играет важную роль при доказательстве наличия в 
фазовом пространстве рассматриваемой системы притягивающего 
стохастического множества — странного аттрактора. Наконец, решающее 
значение этот вопрос приобретает при исследовании условий нормального 
функционирования различных физических систем. 

Традиционным ~~ методом — решения — указанной — проблемы = является 
качественный — анализ — фазового пространства — исследуемой — системы с 
привлечением для этих целей метода функционалов Ляпунова. Однако 
практическое применение такого подхода вызывает значительные трудности, 
которые в случае распределенных систем часто становятся непреодолимыми. 
Ниже для доказательства глобальной ограниченности решений используются 
принципиально иные методы, основанные на построении систем сравнения с 
последующим привлечением для их анализа теории положительных И монотонных 
операторов сдвига по траекториям дифференциальных уравнений [1,2]. 
Рассматривается популярная в теории реакторов модель активной среды 

дФ on N 
l= = М°У°Ф + Фр(х, г) + 28(Ф,-Ф), 

дФ, = = №Ф-®), i=12..N (1) 
дх 
— = Ах+аФ 
ot 

с краевым условием 
Ф + a(VO,n) = 0, о > 0 (2) 
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на границе Г области ©. Здесь I, M?, №, В, положительные числа; р(х,) — 

непрерывно дифференцируемая функция: В”! — R; А — матрица т x т с 

компонентами, зависящими от — радиус-вектора г; a — вектор из ВК” с 
компонентами, зависящими OT г; Г — замкнутая выпуклая поверхность. Решение 
уравнения (1) будем рассматривать в пространстве непрерывных вектор-функций, 
заданных на © + Г = Q с нормой 

[[(D,®,,0..,® у их) || = sup (21+ 5 + ы к). 
ге © 

Наряду с диффузионной моделью (1), (2) рассмотрим сосредоточенную 
модель 

п = mp) + 2 Вт п), 

n, =A (n— п), i=1 A (3) 

х = Ах + ал, | 

определенную в конечномерном евклидовом пространстве В“+”*!, Здесь элементы 
матрицы А и вектора а — постоянные числа. Уравнения (3) могут быть получены 
из системы (1) © помощью теории возмущений. Заметим, что по физическому 
смыслу переменные 71,71, Ф, Ф, — неотрицательны. 

‚Будем предполагать, что функция p(X,!) удовлетворяет неравенству 

p(x.1) < ро — f(b), EC) 

где f(b’) — некоторая. монотонно возрастающая функция: В” — R, непрерывно 

дифференцируемая и удовлетворяющая условию Липшица; b — вектор из К” с 
постоянными компонентами для модели (3) и компонентами, зависящими от 
радиус-вектора г для модели (1), (2). 

Существование и единственность решений уравнений (1), (2) и (3) при 
этих предположениях легко могут быть установлены [3,4]. Кроме того, можно 
показать, что оператор сдвига по траекториям уравнений (1) и (3) положительный 
по конусу. векторов с неотрицательными компонентами 

= {xix = (к, 0X), х;2 0,7 = 1,..., N+1}, (5) 

т.е. Ф(г,) > 0, Ф, (r,t) > 0 (n(r) > 0, nft) > 0), если Ф(г,0) > 0, Ф, (r,0) > 0 (n(0) 20, 
п; (0) 2 0) [1]. 

Помимо конуса векторов с неотрицательными компонентами K,, в 
дальнейшем нам потребуется еще один конус 

K(A,b) = {x:bTe*x 2 0, г > 0}. (6) 

Если K(A,b) содержит хотя бы одну внутреннюю точку, то конус K(Ab) — 
телесный. Легко показать, что если х е K(A,b), то вектора ехр(Ат)х, т > 0 также 
принадлежат конусу. Действительно, 

betty = ЪГе^(+Ох > 0, 

поскольку х е K(A,b) и г + т > 0. Линейный функционал с = b’ х принимает на 

конусе K(A,b) неотрицательные значения. 

53



Рассмотрим уравнение 

х = Ах + ал. (7) 

Реакция уравнения (7) Ha дельта-функцию (n(r) = 5(1)) может быть представлена 

в виде х(7) = exp(At)a, г > 0. Очевидно, что если а € K(A,b), то x(t) е К(А,Ъ) для 
всех t= 0 и наоборот. 

Лемма 1. Пусть в уравнении (7) а € intK(4,b), п(г) > 0 (г 2 0) и матрица A — 
гурвицева. Тогда для каждого решения уравнения (7) x(f) существует число Т > 0 
такое, что решение х(7) е K(A,b) для всех 1 > Т. 

Доказательство. Представим x(t) в виде 

х() = е“ хо + | 46) ал(г)аг, (8) 
0 

где X, = х(0) и рассмотрим выражение 

Н 

Ъте“х(р) = БТе^(+дх, + | BTA) ал(г)а. (9) 
0 

Очевидно, что второе слагаемое в правой части (9) неотрицательно, поскольку 

a е int K(Ab) и n(t) 2 0. Если хоЕК(А,Ъ), то и первое слагаемое так же 

неотрицательно и, следовательно, х(7) е K(A,b) для всех г > 0). 

Пусть х# К(А,Ъ). Спектр матрицы А принадлежит левой полуплоскости, 

поэтому при г — ео имеем bexp(Af)x, — 0, и, начиная с некоторого момента 

времени Т > 0, решение (8) принадлежит конусу (6), x(r) е К(АЪ) м 
Лемма 2. Пусть выполнены условия Леммы 1. Тогда для любых достаточно 

больших моментов времени ги I’ таких, что / 2 7 имеет место неравенство 

п(г) 2 n(t)exp[-p, (1 - 1}, (10) 

где (г) — решение уравнения (3), p,— максимальный корень уравнения 

—= py (11) 

Доказательство. Согласно Лемме 1 при любых начальных возмущениях 
х(0) = хо, существует момент времени Т > 0 такой, что условие b'x(f) > 0 
выполняется для всех {> Т. Поскольку nr) 2 0 учитывая (4), для / 2 Т имеем 

. м 
п < про + Z В(лр- п), 

= 
(12) 

n, = An — п), I = 1, “any N. 

Все внедиагональные элементы матрицы в правой части линейной системы (12) 
неотрицательны. Следовательно, оператор сдвига по траекториям для системы 
сравнения (12) обладает свойством монотонности по конусу векторов с 
неотрицательными компонентами К, [1]. 

Выражение (11) дает характеристическое уравнение линейной системы 
сравнения (12). Тривиальный анализ показывает, что характеристическое 
уравнение (11) имеет только действительные корни и его максимальный корень 
ро — неотрицателен , если ро = 0. Если py< 0, то ро < 0, т.е. спектр собственных 
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значений линейной системы сравнения (12) лежит в левой полуплоскости и все 
решения уравнения (12) стремятся к нулю при ¢ — oo. Тогда, в силу MOHOTOHHOCTH 
оператора сдвига по траекториям системы (12) и гурвицевости матрицы A, все 
решения системы (3) при t — oo стремятся к тривиальному решению. 

Любое решение системы сравнения (12) (2) не может расти быстрее: чем с 
показателем py, и, следовательно, для любых ги # (¢ 2 г) имеет место неравенство 

nt) < Ж(Г)ехр[р, (t — 7). (13) 

Отсюда, учитывая монотонность оператора сдвига по траекториям системы 
сравнения (12), имеем неравенство (10) для всех / > / > Тя — 

Из Леммы 2, в частности, следует, что поскольку решения системы (3) 
растут не быстрее чем с показателем Ро, HE существует решений, уходящих Ha 

бесконечность за конечное время. 

Теорема 1. Пусть выполняются следующие условия: 
1. Матрица А в уравнении (7) гурвицева; 
2. р(х,) < ро — f(B'x), f(b" X) — монотонно возрастающая дифференцируемая 

функция, £(0) = 0, /(с) = ро, с 2 0. 
3. Реакция уравнения обратной связи (7) на единичный импульс 

положительна по конусу K(A,b) : Ь’ехр( Ада > 0 при всех г > 0. 
Тогда все решения конечномерной системы уравнений (3), ограничены на 

[0,°°), а при ¢ — oo существует оценка сверху Ha норму решения 

уравнения (3) вида max(nng,...ny) < п, где п — корень уравнения 

р = Дь’(р‚! -А) an), ро — неотрицательное число. 
Доказательство. Рассмотрим уравнение (7). Используя представление (8) 

решения х(г) имеем 

x(t) =ЪТе^ хо + | BTA) ан(г)аг. (14) 
0 

В силу условия 3 Теоремы a е int K(A,b). Действительно, множество точек из 

intK(A,b) опредёляется неравенством Б'ехр (Af)x > 0 при г > 0. Следовательно, 
можно воспользоваться Леммой 2 и переписать (14) в виде неравенства 

7х(г) = bexp(At) x, + I bexp[(A—Ipy)(--1)] adrn(t) = 

= bTexp(At) x, + bT(A-Ip,)! ехр[(А ~Ipy)tlan(r) — b"(A— Ip) an(r). (15) 

Далее будем предполагать p, 2 0. Случай ро < О тривиален и обсуждался в Лемме 2. 
Тогда ро 2 0 и, поскольку спектр матрицы А принадлежит левой полуплоскости, 
первые два слагаемых в правой части (15) при г — oo стремятся к нулю как 
exp(—¢t), Ве[о(А)] = —¢, в > 0. Таким образом, при г > T,(C) имеет место оценка 

Ьх(г) > bT (pd — А)! an(r) — С = y(py)n(t) - С, (16) 

где С > 0, T,(C) — © при С — 0. Заметим, что %(py) > 0, поскольку р 2 Ой 

ac intK(A,b). 
Воспользуемся условиями (4), (16) и при г > T(C) найдем 

. N 

In<nfpy— f(x(py)n—C) ] +3 Bn; — п), (17) 

n, = №(п - п), i=1,..,N. 

Система сравнения получается заменой знака < знаком = . 
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Недиагональные элементы линейного оператора в правой части (17) 
неотрицательны и, следовательно, его резольвента является антимонотонным по 
К, оператором. Слагаемое —nf(x(py)n), не вошедшее в линейный оператор, зависит 

только от переменной (2), стоящей в первом уравнении системы (17) на главной 
диагонали. Поэтому оператор сдвига по траекториям для системы сравнения 
обладает свойством монотонности по конусу векторов с неотрицательными 
компонентами К, [1]. Используя это утверждение, несложно так же показать, что 
состояние равновесия 

n=n=n, — Ро = (ро) - С) (18) 
системы сравнения (17) асимптотически устойчиво при любых начальных 
условиях из К. 

Таким образом, решения конечномерной системы (3) ограничены Ha [0,00), а 

при {— ее переменная п(г) ограничена числом 7 

max(n, п) „лу ) <1, 

удовлетворяющим уравнению (18); причем, если функция } линейная 

(P(x) < p= 7), } 
п = Ро /Х(Ро )m 

Заметим, что ограниченность решений уравнения (7) при условии ограниченности 
функции л(г) и гурвицевости матрицы А легко устанавливается методом функций 
Ляпунова. 

Предложенное выше доказательство ограниченности — решений 
конечномерной системы (3) легко обобщается на случай нелинейной 
диффузионной модели (1), (2) в пространстве Е = Ex Ex ... x E;, где Е, — 

банахово пространство, образованное совокупностью непрерывных скалярных 

функций, заданных на © + Г с нормой в cal. 

Теорема 2. Пусть выполнены условия Теоремы 1. Тогде все решения 

уравнений (1), (2) ограничены на [0,-°), a при t — ео существует оченка сверху 

на норму решения уравнения (1) вида тах(Ф,Ф, „..., Ф, ) < Ф, где ® — корень 
reQ 

уравнения р =f[ b’(p,/ — A) 'a®]; p, — неотрицательное число. 
Воспользуемся Леммой 1 и условием (4) и для всех t 2 Т > 0 (Т = 0, если 

хо € К) рассмотрим систему сравнения 
дФ N 

7 i=1 (19) 

дФ 
— == М(Ф-Ф,), i=1,.,N 
ot 

с краевым условием (2) на I. 
Система сравнения (19) является линейной, М = consi, ро = const , В; = const, 

A; = CONSt и поэтому, разделяя переменные Ф(г,) = Zd(r)r(r), ®(r,1) = УФ, nt), 
можно перейти к конечномерной системе сравнения для n(t), п; (7) 

_ м 
тп < + №) + Z В(п-п), . n п(Ро 0) = Bi(n, n) (20) 

я = An — ny), i=1,.,.N 
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и уравнению для Ф, (г) 

М°\?Ф, = МФ. 

(Ф, + (Ven) | = ©. (21) 

Здесь в качестве A, выбрано ведущее собственное значение оператора (21). 

Конечномерная система сравнения (20) совпадает с системой (12), 
рассмотренной в Лемме 2. Поэтому, согласно Лемме 2, для всех достаточно 

больших значений г и Г таких, что г = Г = (0 имеет место неравенство 

п(г) 2 n(t)exp[~p, (1 - 1], (22) 

где ро — максимальный корень уравнения 

N Р В, _ 
p+X— = р) + A, (23) 

i=l p+A, 

Заметим, что если р) + A, < 0, то в силу Леммы 2 тривиальное решение системы 

(1), (2) Ф = ®, = 0 асимптотически устойчиво в целом. Поэтому далее будем 

предполагать ро + Ay > 0 и, следовательно, py > 0. 
° Используя (22) я повторяя приведенные выше рассуждения, приходим при 

t 2 Т,(С) к неравенству 

Ьх 2 х(р,)Ф- С, C>0, T,(C) > при С — 0 

и, следовательно, к системе сравнения 

| = УФ + Фр, = JEG) - O +2 ВФ, -Ф) 
) (24) 39. 

ot 

с краевым условием (2). ‚ 
Оператор сдвига по траекториям для системы сравнения (24) — монотонный 

по конусу К, вектор-функций u = (®, Ф,...., Ф,) с неотрицательными 

компонентами. Кроме того, можно показать, что стадионарное решение Ф = ©, = Ф 

системы сравнения (24) 

MVS + Bp, — fia(py)® — ©) = 0, 
o = 25) 

асимптотически устойчиво в целом. В свою очередь функция © удовлетворяет 

неравенству Ф < ®, где ® — чис.о, которое находится из алгебраического 

уравнения 

po = F(x(Po)® = С. (26) 
Итак, доказано, что решения системы (1), (2) ограничены, а при г —> ео имеет 

место оценка на норму решения тах (Ф, Ф, „..., ©, ) < Фи 
ге О 
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В заключение отметим, что предложенный в работе подход к анализу 
глобального поведения нелинейных динамических систем (см. так же [5]) является 
достаточно универсальным и без каких либо принципиальных затруднений может 
быть перенесен на другие модели как конечномерные, так и в банаховом 
пространстве. 
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THE GLOBAL BOUNDEDNESS OF SOLUTIONS TO SOME 
EQUATIONS OF MATHEMATICAL PHYSICS 

M.V. Bazhenov, E.F. Sabaev 

The problems of global boundedness of solutions to a particular class of the equa— 
tions of mathematical physics describing reactor dynamics are investigated. The bound-— 
edness is proved proceeding from the theory of positive and monotonic operators of 
translation along trajectories of differential equations. The upper estimates for the solu— 
tions are obtained. 
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