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Проведено исследование пространственно-временного поведения цепочки 

диффузионно связанных автоколебательных элементов с жестким режимом 

возбуждения. Установлено существование пространственного беспорядка и показана 

ГО ЗВОЛЮЦИОННОСТЬ. : 

1. Одной из актуальных задач нелинейной физики, привлекающей 
постоянное внимание исследователей, является изучение детерминированного 
хаоса. Сейчас особый — интерес вызывает — феномен — конечномерного 
пространственного беспорядка (пространственного хаоса) [1,2]. Обычно при 
изучении этого явления используют модели в виде нелинейных уравнений в 
частных производных. В последнее время большую популярность также получили 
системы в виде небграниченного или очень большого числа идентичных, 
взаимосвязанных точечных отображений или обыкновенных дифференциальных 
уравнений (см., например, [3-7]). Эти системы можно трактовать как 
совокупность взаимодействующих активных элементов, расположенных в узлах 
дискретной решетки в пространстве. При этом номер элемента играет роль 
пространственной координаты. Такие системы принято называть решеточными 
динамическими моделями. В настоящей работе рассматривается одномерная 
решеточная (то есть цепочечная) модель следующего вида: 

= 0 
у; = — X= nfoyf(x;)y; — d(yj - 2y; + Vir] j= 12,..,N, 

Yo = 1, YNe1 = Ум (2) 

где 0 < у << 1, а > 0, f(x) — параметры и функция, характеризующие динамику 
отдельного элемента цепочки, а а — коэффициент связи между этими элементами. 
Для определенности будем считать, что функция f(x) = ax? — ax? + 1, где параметр 

а >10". Используя обычный асимптотический метод [8], нетрудно показать, что 

при а = 0 каждый элемент цепочки (1) представляет собой автоколебательную 
систему с жестким режимом возбуждения. Другими словами, на фазовой 

* Обратим внимание на то, что используемая ниже техника исследования амплитудных 

уравнений может быть перенесена на широкий класс полиномов и других видов f(x). 

3



плоскости отдельного элемента цепочки (1), (2) имеется два аттрактора — 
состояние равновесия в начале координат и предельный цикл, области притяжения 
которых отделены неустойчивым предельным циклом. 

Система (1), (2) принадлежит классу базовых моделей нелинейной динамики 
и описывает, в частности, такие канонические объекты, как цепочки 
взаимодействующих — генераторов  Ван-дер-Поля [6], автоколебательные 
химические реакции [9,10} и др. Временная динамика таких систем изучена 
достаточно хороню (см., например, [6,9,10] и др.). В последнее время появились 
работы и по исследованию пространственного поведения цепочек вида (1). Среди 
них отметим работу [6], в которой для цепочки типа (1) при больших значениях 

* коэффициента связи а с помощью компьютерного моделирования обнаружена 
нетривиальная зависимость скорости волновых фронтов от 4. Основной целью 
настоящей работы является исследование феномена — пространственного 
беспорядка в цепочке (1), (2). 

2. Применяя к (1),(2) метод усреднения [6], получим систему усредненных 
уравнений для амплитуд г, и фаз ф,колебаний 

2r; = —p{oF (ry) — ту1с05(фФл = Ф)) = т) па1с05(Фаа — Ф)]}, 

27), = на|?;-1510( Фр — 0) + Fir1SIn( Qj — onl, (3) 

Го = Го — Гмы = Гу, Фо =01, Фмыи=Фм, 

где / =1,2,..., М, а функция F(r) = дат5 — аг3 + г. Система (3) является градиентной и 
имеет 2л — периодическую функцию Ляпунова вида [6] 

М 

V(r.) => (G(r) + dlr; 12 = дтрагсо5(Фиа — Ф)) + 7?]}. 

Следовательно, при любых начальных условиях траектории системы (3) стремятся 
к одному из состояний равновесия. Найдем координаты этих состояний 
равновесия. Прежде всего заметим, что устойчивыми могут быть только 
состояния равновесия, у которых фу — Ф, = 0 (справедливость этого утверждения 
можно проверить, анализируя экстремумы функции V). Последнему условию, 
очевидно, удовлетворяют решения фу = ¢U, где ¢° — произвольная константа, то есть 
в фазовом пространстве системы (3) существует инвариантная прямая. 
Остальные координаты этих состояний равновесия являются решениями системы 
уравнений 

rg =1T11, TN = Гу. (5) 

Вводя обозначения и, = гл, получим систему 

Ин = Ш (6) 

пра = 21; — и, + oF (r))/d, 

которую будем трактовать как динамическую систему на плоскости, 
определяемую диффеоморфизмом 5 

(м) - (r, 2r — u+ oF (r)/d). 

Тогда кусок дискретной траектории L:{(iy, 72)s-...(tn, ry)} отображения $, соеди— 
няющий на фазовой плоскости (иг) кривые 

Ly: (г = и + oF (r)d}, Ly: {и = г + oF(r)/d}, 
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определяет решения системы (4),(5) и, следовательно, координаты состояний 
равновесия системы (3). Отображение 5 является отображением типа Хенона. В 
работах [7,11], для такого типа отображений развита техника, позволяющая 
выделять параметры, при которых отображение на фазовой плоскости действует 
подобно известному отображению «подкова Смейла» (см., например, [12]). 
Применим эту технику к отображению S. Рассмотрим это отображение в области 
параметров DD, выделяемой неравенствами 

v{a~10 
d< _a-10) а>10,  ®(uy,,) > 273, 

20 

d < OF (Fax) ‚ а < OF (гама) ‚ 

2730 - Гтах) 2730 + ом) 

где mn = ((За + (9а? - 40а)12)/(20а) 12, 10 =((а + (a2 ~ 8a)12)/(4a))12, 
max , 

тах =((Зат (9a2 — 40a(1+2d/0))12)/(20a)) 12, | Ф(и) = ди + oF (1)/d. 
min 

Заметим, что величинНЫ Ip, тах И 730 являются абсциссами экстремумов и 
наибольшего нуля функции F(r), a uy, — абсцисса максимума функции Ф(и). Если 

параметры системы (6) принадлежат области D, то на фазовой плоскости (и,/) 
существует прямоугольник II, на котором $ действует подобно отображению 
«подкова Смейла» ( рис. 1). При этом размеры II — величины В и у — 
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удовлетворяют неравенствам 

у > 730, В > Y 

В < Ф(/) - В <- + Dt) 

a образы его границ (см. рис.1) при действии S имеют вид 

(7) 

ST = {ug Nu= xy, 17 = Ф(+))! < В}, 

(8) 
SB = (ну)! г = Ф(и) т В, 1! <q} 

Рассмотрим теперь, как преобразуется начальная кривая L, при действии 
отображения 5. Поскольку все г} 2 0, то будем интересоваться частью Ly, которая 
расположена в первом квадранте плоскости (i,r). Из (8) следует, что при 0 < и < у 
кривая L, заключена между SBT и $В”(см.рис. 1). Поэтому пересечение Г. с 

прямоугольником ITF = Пл (м = 0, » 2 0} состоит из трех компонент. Эти 

компоненты расположены в QF =, п {и 2 0, r 2 0}, т = 1,2,3 и соединяют прямые 

#=0 и Г* (см. рис. 1). Обозначим через Г’ и L,! кривые, расположенные в ©," и ©4*, 
соответственно. Ниже будет установлено, что решения системы (4), (5), 
отвечающие траекториям отображения JS, проходящим через {2,°, Являются 
неустойчивыми. Поэтому, исключим из дальнейшего рассмотрения часть Lo, 

лежащую в ©,*, a так же все ee образы, попадающие в ©,*. Поскольку Г„° лежит в 

$7 и принадлежит прямоугольнику II, на котором $ действует подобно 

отображению «подкова Смейла», то итерирование L,” происходит по правилам 

«подковы». Именно, за одну итерацию L,° преобразуется в кривую Г, которая 

имеет по одной компоненте в QF и Oy. Обозначим эти компоненты 

соответственно через [4® и [4?!. Эти компоненты также являются монотонно 

возрастающими кривыми, соединяющими прямые © =0 и Г’. Заметим, что в 
принятой нами записи LOM ме, трое {0:1}, i =1,2...., №-2, верхние индексы, 
принимающие значения 0 или 1, характеризуют «путь», пройденный компонентой 
12° при итерировании, а индекс & связан с числом итераций, равным k—2. Рассуждая 

аналогично и действуя теперь отображением 5 на L;°, получим две компоненты 

LLnL, ана Ly — компоненты L,%° и L,°". Качественный вид этих компонент 
представлен на рис. 2, а. Итак, отображение $ «расщепляет» каждую кривую, 
расположенную в ©,” или ©)° на две. Этот процесс «расщепления» можно 
схематически изобразить с помощью диаграммы, представленной на рис. 3. Таким 
образом, после (№-2) итераций, получается множество, состоящее из 2%? 

монотонно возрастающих кривых вида Ly "> "v2, т; Е {0;1}, соединяющих прямые 

r=0 и Г’ и расположенных в областях ©,* и Q;". Аналогичный процесс происходит 

и при преобразовании компоненты  L,'. Результатом итерирования /„! будет 

НЫ A rk 

у 79007010 пон и=Ф()) faired on 
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Рис. 2



множество, состоящее. из 2V 2 кривых 0 
вида Ly" тре {0;1), coemmmsmo— Le 
щих прямые 7=0 и Г" (см. рис. 2, 6, где | НЕ 
№4). Таким образом, 3a (№-2) L3 Ls 
итерации 12° и L,! образуется 
множество, состоящее из 27! кривых 
вида Lom Те И Lm RITES другой | i 

стороны, мы интересуемся кусками | | | | | 
траекторий отображения $, которые 

° «стартовав» на 15° и Ly}, после (N-2) °° ®t rts РР 88 еек een 

итерации «попадают» на Ly. Нетрудно 

видеть, что в II" Ly имеет две MOHO— 
тонно возрастающие кривые, соеди- 
няющие прямые и=0 и В*. Поэтому, Ly пересекает каждую из компонент Ly mr "м2 

и [уе в двух местах. Результатом этого пересечения является 2” точек (см. 

рис. 3), расположенных на возрастающих участках линии Ly (точки, лежащие на 
убывающем участке Ly не рассматриваются, так как им соответствуют максимумы 
функции V и неустойчивые решения системы (1), (2)). Следовательно, существует 
2“ кусков траекторий отображения 5, соединяющих Ly и Ly и расположенных на 
фазовой плоскости (и, г) в первом квадранте. Координаты точек этих кусков 
траекторий и определяют 2V наборов решений 1; =r}, j =1,2,...,N системы (4), (5). 
Заметим, что среди этих наборов имеется два, независящих от j — {7} =0} и 

{7} = 730}. 
Итак, система (3% имеет 2V состояний равновесия, координаты которых 

следующие: 

Рис. 3. Схема «расщепления» линии 12° при 
действии отображения 5 

пет)» 9) = ®, 
где j =1, 2,..., N, a ф° — произвольная константа (произвольность фазы связана с 

тем, что правая часть системы (3) зависит только от разностей фаз). Исследуем 
устойчивость этих состояний равновесия. Выберем одно из них и рассмотрим 

ко — р nd — линеаризованную систему для возмущений &; =r; — г} ‚пу = ¢; — Ф°. 

Ei = - (а + oF (r"))E; + а), 

6 = аб — (2d + oF (тг ))б, + Ен, 

Е = & м. — (а + oF (ry))En, (9) 

т = —dry" Wl + ато, 

ть = dri My г — dre” пы”) ПРЕ + dre” ПИТ 

Ту =dry-1Ma-1/ry* — dryly 

где & = 2,3,...М-1. В уравнения для 6, не входят переменные 1); и наоборот. Поэтому 
| их можно анализировать отдельно. Матрицу линейной системы для &; обозначим 
через A, а для п) — через В. Исследуя с помощью элементарных преобразований 
detB, можно показать, что одно из собственных значений матрицы В равно нулю и 
соответствует направлению «вдоль»  инвариантной прямой. Расположение 
остальных собственных значений матриц А и В установим с помощью теоремы 
Гершгорина [13]. Согласно этой теореме все собственные значения матриц А и В 
на комплексной плоскости {2 € С} заключены в объединении N кругов



|2 + а +a (7) <d, 

|= + 2d + oF"(r;*)| < 2d, 

Lz + атома тм 1 < (тома), (10) 

z+ апт + rp re |< да(па” + пы), 

где | =1, №; k=2, 3,..., N-1. Из (9), (10) получаем, что все круги, отвечающие 
матрице В, проходят через начало координат и расположены в левой 
полуплоскости, а круги, соответствующие матрице А, будут целиком лежать в 
левой полуплоскости, если 

Е(#7) > 0, j=1,2,..,N. (11) 

Из (11) следует, что устойчивыми будут лишь TE состояния равновесия, которые 
удовлетворяют неравенствам 

Ш <Гтах » Ш >in › J = 1, 2, tees №. (12) 

Поскольку тах < Итах @ Tmin > Umins ГДЕ Ито Umax — абсциссы минимума и максимума 
функции Ф(и), то этим неравенствам удовлетворяют только те из состояний 
равновесия, координаты которых соответствуют кускам траекторий отображения 
5, целиком лежащим в (О, no) © (943 л\ @)), где ©; = 5'0, Таких состояний 
равновесия 2“, и они расположены на возрастающих участках функции u=®(r). На 
рис. 2 это темные точки. 

3. Проведенное исследование усредненной системы (3) позволяет сделать 
следующие выводы о динамике цепочечной модели (1), (2). При любых начальных 
условиях в цепочке (1),(2) происходит синхронизация колебаний, это означает, что 
парциальные переменные, характеризующие поведение отдельных элементов 
цепочки, периодически изменяются во времени с одной и той же частотой и фазой 
(конечно, с точностью до величин порядка |2). Распределение амплитуд колебаний 
«вдоль» пространственной координаты Jj определяется кусками траекторий 
отображения $ и может быть описано последовательностью из двух символов: 
(0 my my ... туз) , (1 my my ... ту-з), где т; e {0;1}. Причем, символ «0» 
соответствует амплитуде колебаний близкой к нулю, а «1» — амплитуде близкой к 
амплитуде устойчивого предельного цикла парциального элемента. Число таких 
движений равно 2“—1, следовательно, система (1), (2) является мультистабильной. 
Поскольку 5 демонстрирует хаотическую динамику, чередование символов (и 1 в 
этих последовательностях будет весьма разнообразным и при N — ее может быть 

описано с помощью схемы Бернулли из двух символов. Следовательно, колебания 
в цепочке (1), (2) являются регулярными во времени и беспорядочными в 
пространстве. Tak как усредненная система (3) является градиентной, то 
конечномерный пространственный беспорядок в цепочке (1), (2) является 
эволюционным, то есть может реализоваться из порядка. 
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SPATIAL-TIME DYNAMICS 
OF AUTO-OSCILLATION ELEMENTS CHAIN 

V.A. Makarov, V.I. Nekorkin 

The investigation of spatial-time behaviour of the chain of diffusionally bounded 
auto—oscillation elements with a rigid state of excitation is carried out. It is stated that 
there is spatial disorder and its evolutional character is demonstrated. 
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