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КОЛЛЕКТИВНАЯ ДИНАМИКА 
КАСКАДНОГО СОЕДИНЕНИЯ ФАЗОВЫХ СИСТЕМ 

В.В. Матросов, М.В. Корзинова 

Рассмотрена динамическая система на фазовом торе, описывающая поведение 
ансамбля двух каскадно-связанных фазовых систем. Изучены возможные фазовые 
портреты и построены соответствующие им области параметров. Установлено, что 
наряду с режимами синхронизации в системе возможно существование различных 
режимов биений, включая весьма сложные. 

Исключительный интерес в нелинейной динамике приобретают сейчас, 
наряду с анализом нелинейных полей, исследования сложных дискретных 
нелинейных сетей и решеток. Эти динамические модели интересны не только как 

приближения непрерывных полей, но имеют и самостоятельный интерес В связи с 
изучением энергосетей, фазированных антенных решеток и т.д. [1,2]. Сложность 
таких моделей пока не оставляет надежды, даже существенно опираясь на 
компьютерный эксперимент, получить исчерпывающие сведения о динамике. 
Вследствие этого особый интерес приобретают исследования коллективной 
динамики простейших ансамблей, состоящих из двух (или нескольких) активных 
элементов, связанных между собой. 

В настоящей работе рассматривается коллективная динамика двух 
последовательно соединенных ~~ автогенераторов, имеющих фазовые цепи 
управления, то есть динамика каскадного соединения двух систем фазовой 
синхронизации СФС1 и СФС2 (рис. 1). На вход СФС1 поступает опорный сигнал с 
фазой @,, а выходной сигнал СФС1 является опорным сигналом для СФС2. В силу 

каскадного типа соединения здесь реализуется связь между генераторами в прямом 
направлении ( от первого I'l ко второму Г2). Кроме этого имеется дополнительная 
связь в обратном направлении (от Г2 к Г1). Применение каскадного соединения 
дает возможность получения улучшенной фильтрации помех [3]. Что касается 
динамических свойств такой коллективной системы [4], то в силу наличия 
периодических нелинейностей в каждой парциальной системе можно ожидать, что 

каскадная система будет обладать весьма сложной, богатой различными 
возможностями динамикой. i 

Рассмотрим динамику каскадной системы [4,5] в простейшем случае 
идеализированных фильтров (К(р) =1) в цепях управления СФС1 и СФС2. 
Математической моделью такого каскада является система уравнений 
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Рис. 1. Каскадное соединение фазовых систем: ФД — фазовый детектор, YO — управляющий 
элемент, Г — генератор 

ыы =; - sing; — зи, 
dt Ш 
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у й . 

ai 3 (6-м) + sing; —(1 — г) siny, 

на тороидальной фазовой поверхности Up = {yy(mod2n), уз(той2ж)}. В уравне— 
ниях (1) г — безразмерное время, Wy =(Фг — Фо) — текущее фазовое рассогласование 
между сигналом первого генератора и опорным сигналом, Wp =(¢ry — Фр) — 
текущее рассогласование между сигналами первого и второго генераторов, Y) | Ya 
— начальные расстройки частот первого и второго генераторов от ONOPHOTO 
сигнала, ® — параметр дополнительной связи между генераторами через сигналы 
рассогласований. : 

Система (1) инвариантна относительно преобразования у; =—Yi, № =), 

Wy =—Vy, № =-\о, Поэтому достаточно исследовать её движения в области 

положительных значений y (у, >0, у, >0). 
Далее рассмотрим случай одинаковых начальных расстроек по частоте 

Yi =Y2 =. 
Torna в области Cyt, определяемой выражением 

1 -1 

система (1) имеет на поверхности тора Up четыре состояния равновесия 

O01(y1% 12"), О» (Wr, п-мо”), Оз (п-мл*, T="), О4(п-м*, №"), (3) 

где величины \у1* и ,* определяются равенствами 

wy," =arcsin((1-a)y), y,* =arcsin(y). (4) 

Состояния равновесия О, и О, являются седлами, а состояния равновесия О, 

и О; — узлами или фокусами, устойчивость которых определяется знаком 

величины с = cosy* + (1- &)cosy,”. Если с< 0 (с > 0), то О, устойчивый 
(неустойчивый) фокус или узел, a Or, соответственно, неустойчивый (устойчивый) 

фокус или узел. Устойчивые состояния равновесия О, или О, определяют 

синхронные режимы Г, или I; работы каскадной системы с ошибками слежения 

м” BW," или км)’ И n—y," соответственно. Область С)’ является областью 

существования синхронного режима. 
В силу существенной нелинейности модели (1) исследование структуры 

разбиения тора Uy на траектории выполнено с помощью качественно численного 
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Рис. 2 

моделирования на ЭВМ. В результате этого моделирования получен 
параметрический портрет {e,y}, приведенный на рис. 2. Здесь область С)? выделена 
штрихпунктирной линией. Линии внутри нее соответствуют бифуркациям системы 
(1), области Di, ..., Dy, Со Gy, Со соответствуют качественно различному 
динамическому поведению системы. Так как кривые Y,” и V+ близки, в области, 
ограниченной  штриховой линией, показано их качественное — взаимное 
расположение. Фазовые портреты для областей Dy, ..., Э10, Со, G1, Со изображены 

на рис. 3. 
Бифуркационные состояния системы (1) связаны с многочисленными 

бифуркациями совпадения сепаратрис седел и двойных предельных циклов, а 
также со сменой устойчивости состояний равновесия О, и О,. Отметим две 
особенности поведения сепаратрис и предельных циклов системы (1). Сепаратрисы 
при совпадении могут как охватывать тор Г), так и не охватывать его, a 
бифуркации, связанные с этими совпадениями, как приводить, так и не приводить к 
возникновению предельных циклов. Мы будем рассматривать только те 
бифуркации сепаратрис, которые приводят к возникновению предельных циклов, 
так как они определяют один из механизмов возникновения автоколебательных 
режимов каскадной системы. Вторая особенность касается циклов. Как и 
сепаратрисы, предельные циклы могут охватывать тор Uy в направлении yy ( 1 — 
циклы), в направлении , (W,— циклы), в направлении Vi, Uf) vr) циклы), а 
также не охватывать тор (О — циклы) |6]. Далее, аналогично [7], будем называть 
О — циклы котпебательными, Wy и WY, — циклы колебательно-вращательными, 
(W1,¥,) — циклы вращательными. 

Итак, обратимся к параметрическому портрету {2,)} на рис. 2. На нем 
кривые у=у,(#) соответствуют петлям П; сепаратрис В, и В, седла О, и П/ 
сепаратрис S; и $, седла O,, охватывающим тор Uy в направлении Vf, где { 
характеризует число 2л—-периодов, пробегаемых координатой \у, сепаратрисы А, 
(53) перед замыканием с сепаратрисой Ry(S,). Петли П; являются устойчивыми, а 
[1 — неустойчивыми, поэтому с ростом параметров при пересечении линий ‘у; из 
петель П; и IL” соответственно рождаются устойчивый L; и неустойчивый Г, 
предельные циклы с числом вращения ц =1/; [8]. При дальнейшем увеличении 
параметров циклы L; и Г; сближаются и при пересечении кривой у=у„(ге) исчезают 
в результате слияния с образованием двойного предельного цикла с числом 
вращения и =1/i. Кривые y=y,*(®), а также y=Y,, (®) отвечают бифуркациям 
петель сепаратрис, охватывающих тор в направлении Vi, седел О, (устойчивая 
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Рис. 3



петля I1;* сепаратрис R, и В) н О, (неустойчивая петля IL," сепаратрис S; и Sy) при 
значениях у=),„*(ге), а также седел О, (устойчивая петля П,- сепаратрис А, и 2) и 
О, (неустойчивая петля По” сепаратрис $, и $5, ) при значениях у =), (2). При 
пересечении этих кривых с ростом параметра у рождаются циклы с числом 
вращения и =0; из петель 11,” и II," — устойчивые Ди ДД’ ‚а из петель IT,” u I,” 
— неустойчивые Г и I}. Циклы 11° и Г, сближаются при подходе к кривой 
Y=Ya- (2), а циклы Li" и Г/* сближаются при подходе к кривой ' =Y,,+(&). Линии v,,* 
IY, определяют бифуркационные значения параметров, при которых в фазовом 
пространстве системы (1) возникают двойные циклы, охватывающие тор в 
направлении у, и располагающиеся в областях \ > 0 и y, < 0 соответственно. 
Кривая y=y,"(&) соответствует образованию петель сепаратрис седел О, (петля II; 
сепаратрис К, и Rs) и О,(петля II, сепаратрис 5, и S,), не охватывающих тор Ul. 
Прямая г=2 отвечает смене устойчивости состояний равновесия О, и Оз. Расчет 
первой ляпуновской величины показывает, что граница ге=2 является опасной [9]. 

При значениях параметров из области Dy = ЭР, или Ds система (1) не 
имеет предельных циклов, аттракторами системы являются состояния равновесия 
О, (рис. 3, а) или О, (рис. 3, д), в каскадной системе при любых начальных 
условиях устанавливается режим синхронизации Гл или Г. 

В областях Dg, Dg, 02(0,) в фазовом пространстве Uy устойчивое состояние 
равновесия О, (Оз) сосуществует совместно с циклами первого рода Ло и Го 
(рис. 3, е) или второго рода 14° и Г," (рис. 3, ж) и Ди Г, (рис. 3, 6, г). В этих 
областях каскадная система демонстрирует бистабильное поведение, в зависимости 
от начальных условий в системе реализуется либо синхронный режим /1(,э), либо 
автоколебательные режимы: Г, определяемый колебательным циклом Lg; 1,7, 
определяемый колебательно-вращательным циклом Дт’; или Г, определяемый 

колебательно-вращательным циклом Г. 
В областях Ds, Dy, Diy каскадная система демонстрирует мультистабильное 

поведение, обусловленное совместным сосуществованием синхронного режима Г, 
и автоколебательных режимов Го и I,” (в области Dj, рис.3, 6), 1," и 1’ (в 
области Dg, рис. 3, 3), ln" и ГД” (в области Dy, рис. 3, и). В зависимости OT 
начальных условий в этих областях устанавливается либо синхронный, либо один 
из автоколебательных режимов. 

Механизмы возникновения автоколебательного режима Г, связаны с 
бифуркациями смены устойчивости состояния равновесия Оз и петли сепаратрис 
I1;; режима /д*— с бифуркациями петли сепаратрис I," и двойного предельного 
цикла, возникающего при Y=Yy,*; режима Гл” — с бифуркациями петли [1,7, а также 
двойного предельного цикла, возникающего при у =Yy,~ 

Области G;, между кривыми Y,; и Yy;, являются областями с бистабильным 
поведением каскадной системы. При значениях параметров из этих областей в 
каскадной системе в зависимости от начальных условий реализуется либо 
синхронный режим [;, либо автоколебательный режим /,/, определяемый 
колебательным циклом //. Так как величины областей С; при больших г малы, TO 
на рис. 2 выделены только области Со, G1 и Сэ, а область, где проходят области Gi, 
G41 Gs, ..., выделена штриховкой. Отметим, что области G; разделены между собой 
областями синхронизации, и область между кривыми о И Y,,~ имеет CIOHCTYIO 
структуру, состоящую из областей синхронизации и областей с бистабильным 
поведением. Интересным фактом является то, что области G; по мере увеличения | 
накапливаются к кривой 7Y,,~, которая, по-видимому, является предельной кривой 
Ys~ при [— ео, а устойчивый цикл L; настолько усложняется, что из-за 
многооборотности его изображение становится похожим Ha изображение 
странного аттрактора (рис. 4, а). 

При проведении численного эксперимента с моделью (1) были также 
установлены отличные от описанных выше бифуркации сепаратрис седел и 
двойных предельных циклов, в результате которых на Tope Uy рождаются 
предельные циклы с числом вращения | = 0. Малость областей параметров, где 
существуют эти циклы, и большое их разнообразие не позволяет выделить эти 
области Ha параметрическом портрете {2,)}, изображенном на рис. 2. На рис. 4 в 
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качестве примера приведены некоторые циклы с числом вращения и # 0, 
построенные при значениях параметров & = 1.29, у =0.7 (см.рис. 4, a), 
ге =1.763559417, yv=0.5 (см. рис.4, 6), £=1.662147, y=0.3 (см. рис.4, в). Цикл на 
рис. 4, а рождается из петли сепаратрис А, и К, седла О, и имеет число вращения 
н=1/18. Цикл на рис. 4, 6 возникает при разрушении петли сепаратрис Ry и К, и 
имеет | =1/16. Цикл на рис.4, в имеет число вращения и =4/9 и возникает из петли 
сепаратрис Ry и А, седла О,, охватывающей тор как в направлении Wj, так и B 
направлении \;. При значениях параметров в окрестности областей со 
«сложными» циклами (вид которых напоминает странный аттрактор) в системе 
наблюдается существенное удлинение и усложнение переходных процессов к 
режиму синхронизации. Ha рис. 5 приведены фазовый портрет и зависимость Wy OT 
времени #, построенные при значениях у=0.24, ге=1.6306 и иллюстрирующие это 
явление. 
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Рис. 5 

Таким образом, коллективная динамика ансамбля двух  каскадно— 

соединенных фазовых систем (с дополнительной связью), обладающих очень 
простой парциальной динамикой (системы первого порядка), характеризуется 
широким спектром динамических режимов, как синхронных, так и асинхронных 
(автоколебательных). Наряду с обычным типом перехода от синхронного режима 
к автоколебательному через некоторую бифуркационную кривую, COOTBET— 
ствующую слиянию сепаратрис или двойному циклу, установлено существование 
такого перехода от синхронного режима к автоколебательному, при котором 
существует не одна бифуркационная кривая, а делая серия кривых, образующая на 
плоскости параметров некоторую переходную область со слоистой структурой. 
Установлено также, что автоколебательные режимы, наряду с достаточно 
простыми циклами, могут определяться сложными многооборотными циклами, 
которые, по-видимому, можно рассматривать в качестве — своеобразных 
предвестников хаотических режимов при переходе от каскада двух фазовых систем 
к цепочке с большим числом элементов. * 

Работа выполнена при финанс®вой поддержке Российского фонда 
фундаментальных исследований (проект 93—-02-15424). 
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COOPERATIVE DYNAMICS OF CASCADE COUPLING 
PHASE SYSTEMS 

V.V. Matrosov, M.V. Korzinova 

The nonlinear dynamics of the ensemble of two cascade coupling phase systems 
is considered. The onset of synchronization regime, possible ways of synchronization 
losses related, in particular, to complex asynchronous regimes are studied. 
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