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НЕЛИНЕЙНАЯ ДИНАМИКА И СЕРДЕЧНАЯ АРИТМИЯ 

АО. Лоскутов 

Сердечные аритмии — хорошо известные н достаточно распрострапенные 
явления. Некоторые из аритмнй, как предполагается, могут возникать как следствие 
взаимодействия синусного (или нормального) и смещенного (или эктопического) 
узлов, расположенных в правом предсердин и желудочках, соответственно, При 
определенных условпях такое взаимодействие может быть описано хоротно известным 
отображением окружности. В свою очередь. отображение окружности, в зависимости 
OT пачальных условий п значений  гараметров способно проявлять самые 
разпообразные свойства, в том числе и хаотическое поведение. Всли отображение 
окружности качественно верно отражает  дичмамику сердечной  тканы, где 
функционируют синусный и смещенный узлы, TQ хасзаческое поведение отображения 
является математическим образом нерегулярных сердечных сокращений — аритмии. 
Поэтому нодавление хаоса в отображении окрумиюсти в этой связи можно 
рассматривать как стабилизацию динамики сердечной мышцы. Предлагается простой 
способ, позволяющий слабым параметрическим возденствием вывести отображение 
окружности на регулярный режим. Прп этом опзеделяется мипимальный порог 
внешних шумов, ниже которого стабилизированное поведение сохрапяется. 

Введение 

В основе многих важнейших процессов в нелинейных системах лежат 
автоволновые механизмы. Распространение волн в таких системах осуществляется 
посредством источника энергии, распределенного в ней. При подаче импульса в 
такую систему OT места его приложения в возбудимой среде начинает 
распространяться возмущение — волна возбуждения: поступивший импульс не 
затухая последовательно передается от элемента к элементу среды. Обычно после 
возбуждения каждый элемент не способен сразу же возбудиться вновь. Как 
правило, существует определенное «время релаксации», называемое периодом 
рефрактерности, во время которого элемент как бы восстанавливается. Это 
приводит, с ОДНОЙ стороны, K упорядоченному пространственному 
распространению — волны возбуждения, a © другой стороны, при частой подаче 
импульсов (или при большом периоде рефрактерности) часть из них оказывается 
блокированной. 

При описании возбудимых сред часто прибегают к аппроксимации исходной 
системы совокупностью ~~ отдельных — возбудимых ~~ элементов, — локально 
взаимодействующих друг с другом [1-4]. Каждый такой элемент способен 
находиться в одном из трех состояний — покоя, возбуждения и рефрактерности. Из 
состояния покоя эпемент может перейти в возбужденное состояние, в котором 
будет находиться спределенное время. Затем OH переходит в состояние 
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рефрактерности и только потом вновь в состояние покоя. Таким образом, переход 
в возбужденное состояние оказывается ВОЗМОЖНЫМ лЛиШЪ из СОСТОЯНИЯ ПОКОЯ. 
Хотя такая модель является определенным приближением, она достаточно хорошо 
воспроизводит основные явления в возбудимых средах, в том числе и в тканях 
сердца (см. [4] и цитированную там литературу). 

Предположим, что мы рассматриваем однородную — возбудимую среду. 
Допустим, что в такой среде все элементы обладают идентичными свойствами. 
Тогда частота возбуждения всех таких элемевтов будет одинаковой. Если 
некоторую область такой средьт начать периодически возмущать, то в ней 
возникнет источник концентрически расходящихся волн возбуждения. Такой 
источник называют ведущим центром, или пейсмекером. Если в возбудимой среде 
есть два или несколько пейсмекеров, то пейсмекер менышей частоты генерации с 
течением времени подавляется пейсмекером большей частоты. Иными словами, 
имеет место конкуренция между пейсмекерами. В идеальном случае через 
определенное время во всей среде останется только один пейсмекер. 

Теоретически, появление таких дополнительных (паразитных) источников в 
сердечной мышце в настоящее время связывается с опасными нарушениями 
нормальной деятельности сердца — аритмией [5-7]. 

Попустим, что в некоторой среде имеются только основной и 
дополнительные ведущие центры. Тогда даже такая простая ситуация в 
зависимости от частоты поступления импульсов и времени рефрактерности 
может привести к очень сложному поведению среды. В частности, может 
наблюдаться квазипериодическая и хаотическая динамика. Таким образом, 
возникновение только одного паразитного пейсмекера для возбудимой системы 
способьо привести к спонтанному её поведению. 

Данная работа посвящена описанию анормальной работы сердца — аритмии 
— при помощи отображения окружности. При этом основное внимание уделяется 
возможности стабилизации такого поведения (то есть хаотической — динамики 
отображения) слабыми параметрическими возмущениями. Следовательно, если 
отображение окружности качественно верно отражает вознихновение некоторых 
аритмий, то, в принципе, от них можно пытаться избавиться при помощи 
определенных чисто параметрических возмущений. 

1. Отображение окружности и сердечная аритмия 

Рассмотрим, как может быть смодулирована аритмия при помощи 
отображения окружности. При этом мы будем, в основном, следовать работам [5— 
7]. Отметим, что хотя предлагаемое описание является модельным, но если 
рассматривать сердечную ткань как периодически возбуждаемый осциллятор, TO 
такой подход вполне оправдан [7]. 

Возможной причиной некоторых нарушений нормальной работы сердца 
может служить — взаимодействие и — конкуренция — между — нормальным 
(«естественным») ведущим центром и анормальным (то есть дополнительным) 
центром [8]. Появление большого числа анормальных ведущих центров чревато 
наступлением фибрилляций (ем. [7] и цитированную там литературу). 

Нормальный ведущий центр назывыется синусным центром (узлом), а 
анормальный — смещенным. Нормальный нентр находится в правом предсердии, a 
смешенный — в желудочке. Эти два центра участвуют в деятельности сердца, и их 
взаимодействие приводит K анормальному ритму, который называется 
желудочковая  парасистола [8-9]. Схематически такая аритмия описывается 
следующим образом. 

Периоды импульсов от синусного и смещенного ведущих центров являются 
приблизительно постоянными. После каждого сокращения, вызванного синусным 
узлом, в "течение времени рефрактерности не может произойти нового 
сокращения, в том числе вызванного и смещенным узлом. Однако, если импульс от 
него приходит вне этого промежутка времени, то следующее сокращение, 
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вызванное уже синусным узлом, может оказаться блокированным. Это приводит к 
возникновению так называемой компенсаторной паузы. Когда импульсы от 
синусного и смещенных центров поступают почти одновременно, происходит 
смешанный удар. Если два ведущих центра генерируют импульсы постоянной 
частоты и:не изменяют фазы друг друга, то возникает чистая парасистола [6-9]. 
Но в случае взаимного влияния фазы ведущих центров могут изменяться и тогда 
появляется модулированная, или наведенная парасистола [10-11]. 

Таким образом, описанную ситуацию можно промоделировать как внешнее 
возбуждение, действующее на некоторую систему, имеющую конечное время 
рефрактерности и, в свою очередь, периодически возбуждаемую «своим» 
(внутренним) источником. Допустим, что внешняя сила имеет период /,, а период 
колебания системы равен 19. Поскольку возмущаемая система имеет время 
рефрактерности (обозначим его как /,), то она может возбуждаться не в любые, а 

только в определенные промежутки времени. Воздействие каждого приходящего 
импульса состоит в сдвиге состояния ф системы к новому состоянию ф: Ф=#(ф). 
Если ф, — значение переменной ф после л-го воздействия, то (,,; определится как 

Eco, Е [0, (& — & )/0] (что соответствует случаю, когда синусный импульс 
предшествует смещенному), то собственные колебания системы могут быть 
блокированы. В этот интервал времени нет непосредственной связи между узлами 
(то есть нет смещения фаз), и колебания имеют характер чистой парасистолы. В 
этом случае уравнение (1) примет вид [5-7,11] 

Фин = Ф, +1, Йо, mod 2m. (2) 

В случае ф, € [(t, - Ло, 2л] фазы влияют друг на друга, и образуется 
модулированная парасистола. Тогда 

Фит = (9) + 1,/t0, 1104 д. (3) 

Таким образом, мы пришли K конечно-разностным — уравнениям, 
приближенно описывающим — пеонодически возбуждаемую нелинейвую 

колебательную систему. Несмотря на относительную простоту, эти одномерные 

уравнения удовлетворительно подтверждаются экспериментами и поэтому часто 

рассматриваются как удобные модели некоторых биологических осцилляторов, в 

том числе и сердечной ткани [7]. В качестве уравнения, демонстрирующего ту 

же бифуркационную структуру, что и разностные уравнения (2), (3), часто 
выбирают двухпараметрическое отображение окружности. В этом случае функция 
g в соотношении (1) есть г = ф + а + bSing 1 отображение записывается в виде 

Фин = Ф, + а + bsing,, mod 27. 4) 

Для значений b<1 это отображение является взаимнооднозначным (рис. 1, a) и ero 
поведение достаточно хорошо изучено [12-13]. В частности, для любого началь- 

1 2®(фо) — Фо 
ного значения — Фо существует число р = lim 

= т k 
числом вращения. Если р является рациональным, TO отображение (4) имеет 
одинаковое число устойчивых и неустойчивых периодических траекторий, и для 
почти всех начальных условий остальные траектории с увеличением л стремятся к 
одной из них. Динамика отображения окружности в этом случае будет 
периодической. Если число — вращения р является иррациональным, тогда 
траектории ~~ отображения — будут плотно покрывать окружность, так что 
поведение отображения будет квазипериодическим. 

При b>1 отображение (4) уже не является взаимнооднозначным (рис.1, 6). 
А именно, в зависимости от значения параметров и начальных условий оно может 

, называемое 
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2m Эл 

0 Pp дж 0 Ф дж 
а 6 

Рис. 1. График отображения окружности (4) mpm a=18, 5=0.5 (а) и a=1.8, b=15 (6) 

порождать апериодические (или ~~ хаотические) — последовательности, HE 
стремящиеся с увеличением л ни к каким траекториям конечного периода. Такое 
поведение отображения окружности (4) появляется через хорошо известные 
сценарии: удвоение периода, кризис, или перемежаемость. Более того, в 
параметрических областях b>1 — возможно сосуществование различных типов 
хаотического поведения, или хаотической и регулярной динамики, 

Остановимся на случае b>1. Пользуясь показателем — Ляпунова, 
определяемым для одномерных отображений как 

10. d 
Algo) =lim — Zn 1-25) (5) 

пе J i=l do ы 

численно найдем области параметрического пространства (а, b), в которых  A>0, 
то есть динамика отображения является хаотической. Тогда получим картину, 
представленную на рис. 2. Из этого рисунка легко понять, что хаотическое и 
регулярное поведение отображения окружности в параметрическом пространстве 

a 

Рис. 2. Области хаотичности отображения окружности (4) (схема):а —-общая картина, 
6 — увеличенный фрагмент 
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тесно переплетены, а область хаотич- 
ности является достаточно сложной. 

Таким образом, динамика 

сердечной ткани, где функциовируют 
синусный и смещенный ведущие центры, 
согласно соотношению (4), может 

ет проявлять самые разнообразные 
свойства. В связи с этим отметим, что 
эксперименты, вышолненные B 
последнее время по периодической 
стимуляции сердечной ткани (см., 

: например, [14] и цитированную — там 
08 ® литературу) позволяют — утверждать, 

что соотношение (4) неожиданно 
Рнс. 3. Отображение Пуанкаре, полученное из хорошо воспроизводит реальную 
обработки записей апернодического поведения, картину (ср. рис. 1 и рис. 3). Тем не 
обнаруженного в эксперименте на сердечнон менее, СВЯЗЬ аритмии, обнаруживаемой B 

мышще [5,7] (нормировано по modl) й й 
сердечной ткани и описанной выше, и 

представленных уравнений недостаточно ясна [15]. 

Фа 

0.8 

0.4 

0.0 

2. Стабилизация хаотического поведения 
отображения окружности 

Допустим, что — исследуемая — система, — описываемая — некоторыми 
отображениями или дифференциальными уравнениями, ведет себя хаотически. 
Как можно слабым влиянием на такую систему избавиться от этого нерегулярного 
поведения и стабилизировать ee динамику? К данной проблеме существует 
несколько — различных — подходов. Первый  H3 них — заключается  B 
мультипликативном (по отношению к динамическим переменным) воздействии. 
Если же мультипликативное включение в уравнения невозможно, TO часто 
прибегают к аддитивному воздействию. В этом состоит второй подход. Иногда 
допустим третий подход, при котором соответствующим образом подбираются 
начальные условия. При мультипликативном воздействии как правило изменяются 
параметры — системы и поэтому такое воздействие часто — называют 
параметрическим. Аддитивное влияние подразумевает введение в систему 

внешней силы. По этой причине аддитивное воздействие называется силовым. 
Третий путь контроля над поведением системы называется управлением по 
начальным условиям. 

Параметрическое — воздействие имеет — определенные — преимущества 
(естественно, за исключением тех случаев, когда оно невозможно) перед силовым 
по целому ряду причин. Во-первых, оно означает изменение внутренних ресурсов и 
поэтому является естественным для системы. Во-вторых, параметрическое 
воздействие, как правило, не нарушает фазовую структуру динамической системы, 
и следовательно, необязательно должно быть слабым. Наконец, отслеживать 
поведение системы в заданной области много лёгчёе как — вследствие 
энергетических затрат, так и по причине возможности контроля. 

Воздействие на динамическую систему в области, отвечающей ee 
хаотическому режиму и приводящее к регулярному поведению, исследовалось 
многими авторами (см., например, [16—22]). По-видимому, впервые чисто 
параметрическое влияние на систему со странным аттрактором было описано в 
работах [16-17]. Было показано, что при определенном изменении параметров в 
пределах области существования странного — аттрактора, происходит — его 
вырождение в устойчивый предельный цикл, то есть имеет место подавление 
хаотичности. Это явление было названо параметрической дестохастизацией. 
Поэтому можно ожидать, что при помощи определенного параметрического 
возмущения хаотического отображения возможно стабилизировать его динамику. 
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Чтобы проверить это, рассмотрим чисто параметрическое воздействие HA 
отображение окружности (4) с тем, чтобы перевести это отображение из режима 
хаотического поведения на регулярный режим. Отметим, что это отображение 
имеет как аддитивный, так и мультипликативный параметры, соответственно а и b. 
Пусть сначала a=const , а параметр b>1 может изменяться с ростом л. Обозначим 
множество значений параметра b, соответствующих — хаотической динамике 
отображения (4), как В,. Стабилизация хаотического поведения означает, что на 
множестве В, необходимо организовать такое переключение параметра b с 
увеличением номера л, чтобы при этом отображение окружности (4) порождало 
устойчивые циклы конечного периода: Иначе говоря, необходимо найти 
преобразование 

Е: b —f(b), (6a) 

b, f(b) е В, такое, чтобы отображение 

Ф: ф—› ф+а + bsin ф, той Эл, (66) 

при определенных начальных условиях проявляло регулярные свойства. 
Простейшее преобразование параметра b — это его циклическое переключение с 
периодом т =2. В этом случае отображения (ба,6) в явном виде запишутся как 

Фон = Ф/(фФ» а, by) =02, t+a+ bising,,, ( ) 

(7 

Фон = Dy (P41 a, by) =Фо tat b,sing,,,.1, 

где by, b, € B,. Поскольку как В, так и b, отвечают хаотическому поведению, TO 

можно было бы ожидать, что отображение (7) тоже будет хаотическим. Но это 
верно He для любых by, b, € В,. Оказывается, множество В, содержит 
подмножество В, такое, что если by = bid € Bye В., by, = by? € Bye В, (индекс а 
выбран от первой буквы слова «дестохастизация»), то отображение (7) будет 
порождать устойчивые циклы конечного периода. 

Для того, чтобы убедиться в справедливости этого утверждения, можно 
‘опираться на численные исследования, выбрав в качестве критерия хаотичности 
показатель Ляпунова (5). Однако мы используем другой подход, ПОЗВОЛЯЮЩИЙ 
также понять причину подавления хаоса в отображении окружности. 

Рассмотрим следующие функции: Gi=®(®,) и G,=®,(®;). Тогда, задав 
начальное условие фо и определив Фу = Ф1(фо), отображение (7) можно записать в 
виде 

Фон = G1(92u-1, a, by, b,), (8a) 

(171%) = G92 a, by, by). A (86) 

Таким образом, отображение (8a) порождает только нечетные номера после- 
довательности, генерируемой первоначальным отображением (7), а отображение 
(86) порождает только четные ee номера. Вследствие этого любой 2К-цикл 

отображения (7) будет одновременно неподвижной точкой фу отображения С+(® и 
неподвижной точкой ¢2, j = 1, 2, ... & отображения G,*). Обратное утверждение, 
вообще говоря, не является верным, поскольку HE только &-цикл, но также и 
всякий т-цикл (где m=k/i, i=2, ..., k и число т обязательно целое) отображений 

‚ Gy, С; являются неподвижными точками отображений GM) и G,(®). Для того, чтобы 
при данном k имеющиеся точки фу, ¢2 отображений G;*), G,¢*) формировали только 
2&-цикл отображения (7), необходимо исключить «лишние» неподвижные точки, 
соответствующие (2&/!)-циклам. Это можно сделать, рассмотрев отношения 
ПОЛИНОмОВ 
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[С109(ф!, a, by, by) = ©1/[С10(ф, а, by, by) = $), (9a) 

[Ga (2, а, by, by) — VGA, a, by, by) — 7, (96) 
для каждого 7 = 1, 2, ..., k—1. Но поскольку отображение, имеющее хаотическую 
динамику, обладает только неустойчивыми циклами и точками, то существование 
устойчивых неподвижных точек у функций GK), G,¥) при данных значениях 
параметров 2,4, бэ немедленно означает, что отображение (8) и, следовательно, 
отображение (7) имеют периодическое поведение _ 

Возможен случай, когда существующие неподвижные точки Фу ‚ QF 
формируют не один, а несколько устойчивых циклов. 'ТГогда периодическое 

поведение отображения (8) обеспечивается устойчивым циклом одного Из 
периодов 24/], j = 1, 2, ..., & Для того, чтобы определить, какие именно точки 

соответствуют выбранному циклу, можно аналогично предыдущему рассмотреть 
отношения полиномов (9а,6) для каждого i =1, ..., k—1.Torma общие для всех 

г =1, ..., К-1 точки Фи, Ф? (что соответствует минимальному числу нулей полиномов 

(9)), обращающие отношения (9) в нуль, будут формировать цикл периода 2K. 
Следовательно, необходимо найти значения by = bide By, by = byl е В, ‚ для 

которых отображения Gi) и С5(® будут иметь устойчивые неподвижные точки, и 

затем убедиться, что они являются общими для всех # =1, ..., k—1 в соотношениях 

(9а,6). 
Таким образом, можно предложить сценарий поиска параметров, при 

которых происходит подавление хаоса. А именно, зафиксировав определенное 
число k<K , необходимо последовательно перебирать параметры by, b, из 
множества В. Затем, построив функции С+(® и G,*), нужно найти их неподвижные 
точки и отобрать среди них устойчивые, следуя описанной выше процедуре. Если 
при данном & нет устойчивых неподвижных точек, то все вычисления повторяются 
при &, увеличенном на единицу. Поиск ведется до тех пор, пока значения В, = bd € 

е В. Бо = Бу! е Вне будут найдены. Предложенный метод в численном отношении 

представляется менее трудоемким, чем непосредственный расчет показателя Ля— 
пунова (5) и итерирование отображения (7). Кроме того, при численных 
исследованиях, как правило, трудно определить необходимое число итераций n в 

соотношении (5) для полной уверенности в правильности полученной величины A. 
БЕсли циклическое изменение параметра b происходит с периодом т >2, то 

отображения (6a,6) в явном виде запишутся как 

Фин = D1 (Qn a, by), 

Фин = Dy (Pret a, by), 

Orie = oN (CE a, bs), 

Фунт = D1 (Pops a, by), 

где Ф„ = ф +a + b,sing, b, © B,,m=1, 2, ..., <. В этом случае необходимо построить 
T функций 

С, = DD... Dy( Py)... )), 

рассмотреть их &-ые итерации Gm, т = 1, 2, ..., т и исследовать полиномиальные 
отношения 
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[G4 - g) [GL — gr, 

[6.-1® - фе1]/[б.10 — фе), 
(12) 

[с1® - ® [610 - 1). 
Теперь, если для определенных b,4, т = 1, 2, ..., т отображения (11) имеют 
устойчивые неподвижные точки, удовлетворяющие соотношениям (12) для всех 

=1, 2, ..., k~1, то это гарантирует, что данные точки будут формировать 
устойчивый 2k —Цикл. 

Описанный сденарий позволил прийти к заключению, что множество В, 
содержит определенное подмножество В, состоящее из наборов bi4.b4,..., Ба 

таких, что отображение (10) с bj=b4, ..., b=b (и, в частности, отображение (7)) 
обладает периодическим поведением. Некоторые из параметров b,d и элементы 
устойчивых циклов, соответствующих этим параметрам, приведены в табл. 1. 

Таким образом, циклическое изменение мультипликативного параметра 
может привести к подавлению хаоса. Однако, если в отображении (4) переключать 
аддитивный параметр a, b=const >1, то результат не изменится: при определенных 
величинах a14, ..., ad € Age A. (где А, множество значений параметра a, b=const>1, 

при которых отображение (4) имеет хаотическую динамику) отображение (10) с 
Ф,„ = ф + a, + bsing, т = 1, ..., т, будет порождать устойчивые циклы конечного 

периода (табл. 2 и рис. 4). Один из таких циклов показан на рис. 5. 
Отметим, что поскольку в отображении окружности в зависимости от 

начальных условий и значений параметров могут сосуществовать — различные 
типы хаотического поведения, то устойчивые циклы при данных a,f или bh, , 
т=1, ...,т возможно наблюдать не при всех Фо. 

Интересен вопрос о возрождении хаотической динамики в отображении (7) 
с подавленным хаосом. Будем изменять параметры a;, а, Tak, чтобы точки, 
формирующие дикл, теряли устойчивость. Тогда легко видеть, что исчезновение 
периодического поведения происходит путем _обратной — тангенциальной 
бифуркации (puc.6): устойчивая неподвижная точка фэ1 сливается с неустойчивой 
точкой ф и исчезает. Это легко объясняет явление перемежаемости, которое было . 
описано в работе [17], где численно исследовалось подавление хаоса в 
дифференциальных уравнениях специального вида при постепенном уменьшении 
амплитуды параметрического возмущения. 

2л yi 

“IN ANN 
„2 

2.00 2.04 af 
0 Ф дл 

Рис. 4. Элементы подмножества Ay отображе— Рис. 5. ‚Один из устойчивых — 8-Циклов 
. отображения окружности при b=2, а14=2.309, 

ния (10) при т=2, 5 =2, ®,, = Ф + 4,4 + bsin® 24-2313 
обе. 
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Таблица 1 

Некоторые из устойчивых циклов отображения (10), m=12,...,1,i=1,2, .., К 

т | &| а Ба 0; 0: 0° [5 

213128 2.444 1.4811294 0.4440775 — — 
2.456 4.2940809 4.8498433 

5.2288950 5.8932804 

213128 2.447 0.4429594 1.4818465 — — 
2.454 | 4.8516695 4.2917807 

5.8938495 5.2283660 

3 | 5 12.8 2.511 0.4371332 0.4257008 0.4344779 - 
2.512 5.0970256 5.0961823 5.0948576 
2.514 4.2918715 4.3014199 4.2626410 

5.5643592 5.5667114 5.5678553 
4.8004426 4.7968967 4.7995006 

413128 2.438 1.5013996 0.4513436 1.4712884 0.4438943 
2.439 5.2215370 5.8918994 5.2360619 5.8988027 
2.458 4.4909169 4.8653594 4.3234617 4.8397809 
2.468 

Таблица 2 

Некоторые из устойчивых циклов отображения (10) при 
Ф,„ = ф+а,„^+ Б5тф, т = 1,2, ..., 5, 7=1, 2, ..., & 

T k ай b фи! 0;2 OE 0; 0:5 0;6 

2 13 12.832 | 2.3 | 42610491} 0.4430487 — — — — 
2.833 5.5060536 1 0.8886927 

5.6673852 | 5.0244363 

2 14 12.837 | 2.3 | 0.6456350 | 0.3066119 - — - - 
2.849 3.8378215 | 2.0185224 

5.4472391 | 4.8785581 
6.0296381 | 5.2117653 

214 | 2.309 | 2.0 | 0.1881688 | 0.6568658 
2.313 4.1871416 | 2.8752882 — — — — 

5.0820300 | 4.7697418 
5.7106242 | 5.5301161 

2 15 12.175 | 1.8 | 0.7520389 | 0.7507670 - — — - 
2.176 4.1537265 | 4.1576714 

4.8025828 | 4.8033898 
5.1858377 | 5.1858993 
5.7589478 | 5.7598357 

6 |2 | 2.281 | 2.0 | 6.1074458 | 1.756587916.0051686 | 1.4570851 | 5.7371687 |0.7204091 
2.282 43207936 | 4.754190915.0389381 | 5.4286282 | 6.2130677]2.0947620 
2.283 
2.284 
2.293 
2.305 
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3.839 - 

3.837 | | : | 
| ( 
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| | ] 

ВЕ 
3.833 | INT : 

L 1 Г] L FL 1 1 1 п 

3.833 Ф 3.837 3.839 3.833 3.839 3.833 3.839 

а 6 в 

Рис. 6. Элемент графика функции С/(® при b=2.3 и a9=2.837, a,4=2.849 (a); a;9=2.83698, 
0,9=2.849 (6); a;4=2.83694, a,4=2.849 (в) 

сследование потери устойчивости дает возможность для каждого конкретного 
значения а„4 или bd , т = 1, 2, .., т, оценить также минимальный порог 

возмущения, не разрушающего периодическое поведение отображения (10). 
Например, для © =2, b=2.3, а1%=2.832 и a,#=2.833 этот порог равен ~ 5х10-6. 
Следовательно, малые внешние возмущения, если их амплитуда меньше 5х10-6, не 
разрушат наведенного из хаоса порядка. 

Таким — образом, хаотическая динамика отображения — окружности, 
приближенно описывающего определенное взаимодействие двух ведущих центров, 
может быть стабилизирована при помощи даже очень слабого (иногда a9 ay? < 
10-3 (!)) параметрического воздействия. 

Заключение 

Итак, некоторые из аритмий, возникающие как взаимодействие двух 
ведущих центров, расположенных в сердце, могут быть в ряде случаев 
качественно описаны отображением окружности. При определенных условиях 
такое взаимодействие может привести  K возникновению нежелательных 
эффектов ~ хаотическим сокращениям, то есть аритмии. Однако, описанное 
явление параметрического подавления хаотического поведения на примере 
отображения окружности позволяет надеяться на возможность избавления от 
таких сокращений и стабилизации динамики сердечной ткани слабым 
возмущением. 

Явление стабилизации (подавления) хаотического — поведения является 
частью раздела, известного сейчас как контролиривание хаоса (controlling chaos) 
[18-24]. Однако, в противоположность традиционному методу, использующему 
обратную связь, в данном случае реализуется контроль без обратной связи, что 
проще осуществить на практике. Кроме того, с точки зрения энергетических 
затрат предложенный способ значительно экономичнее, поскольку амплитуда 
возмущений может быть достаточно малой. Существен и тот факт, что малые 
возмущения HE могут разрушить установившегося периодического поведения. 
Это гарантирует, что небольшие шумы, всегда присутствующие в реальной 
ситуации, не приведут систему с подавленным хаосом в режим хаотических 
колебаний. 

Отметим, что для квадратичного отображения возможность подавления 
хаоса слабым параметрическим воздействием недавно была строго доказана в 
работе [25]. 

Предложенный метод стабилизации хаотического поведения, однако, имеет 
и ряд недостатков. Основной состоит в том, что строго периодические сокращения 
сердца (каковыми они могут оказаться после параметрического подавления хаоса) 
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тоже крайне нежелательны [26—27]. Другой недостаток — проблема поиска 
параметров, при которых наблюдается дестохастизация. Дело в том, что мера 
множеств А„и By, по-видимому, очень мала (см. рис.4). С прикладной точки зрения 
это означает, что вероятность быстрого обнаружения необходимых параметров 
невелика. 

Таким — образом, теоретически вполне возможно — стабилизировать 
хаотические сокращения сердца, обусловленные взаимодействием двух ведущих 
центров. С практической же точки зрения это далеко не всегда может оказаться 
применимым и допустимым. 
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NONLINEAR DYNAMICS AND CARDIAC ARRHYTHMIA 

A.Yu. Loskutov 

A phenomenon appearing sometimes in the cardiac tissue — arrhythmia — caused 
by two pacemakers is discussed. It is shown that such arrhythmia can be schematically 
described by a circle map with chaotic dynamics. A simple method allowing one to sta— 
bilize chaotic dynamics of this map is proposed. A perturbation threshold below of which 
the stabilizing behaviour is not destroyed by external noises is determined. 
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