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На примере простейшей кластерной модели  макромолекулы выявлена 
возможность переходов системы в режимы, характеризующиеся движением в узко 
очерченной области координатной плоскости, что позволяет предполагать наличие в 
системе выделенной степени свободы при определенных условиях и представляет 
интерес для теории ферментативного катализа. Обсуждается возможность 
постепенной стохастизации колебаний при введении в систему дополнительного 
потенциала, моделирующего Ван-дер-Ваальсовы взаимодействия, либо жесткой 
«стенки», моделирующей соседний неподвижный кластер. Обсуждается влияние на 

характер колебаний формы потенциала взаимодействия, моделирующего водородные 
связи. Показано, что процессы переноса энергии между степенями свободы в 
двумерной системе возможны и в случае малых амплитуд колебаний порядка 0.1 
ангстрем. 

Изучение физических механизмов ферментативного катализа, в том числе 
взаимодействия белков-ферментов с молекулами-субстратами, является одной 
из важных задач — молекулярной биофизики. Молекула белка, а также 
образующийся фермент-субстратный комплекс, представляют собой сложную 
нелинейную колебательную систему с сотнями и даже с тысячами степеней 
свободы [1], работающую по принципу молекулярных машин — преобразователей и 
распределителей энергии [2, 3]. Они являются объектами, достойными внимания 
нелинейной динамики и, в частности, как мы увидим, стохастической нелинейной 
динамики. 

В силу большой сложности объекта нелинейная молекулярная динамика 
имеет дело с моделями белков той или иной степени упрощения. Однако, при всех 
подходах к проблеме необходимо решать следующие задачи. 

1. Выбор базовой модели с учетом возможности изучения транспортировки 
порций энергии внутри белка на значительные расстояния. 

2. Определение источников энергии, вносимой в молекулу белка. 
3. Выяснение механизмов передачи энергии из места первоначальной 

локализации к активному центру. 
При этом важно определить «времена жизни» первоначально возбужденных 

или «горячих» степеней свободы и установить, успеет ли затухнуть возбуждение 
(или рассеяться по большому числу степеней свободы), прежде чем оно достигнет 
активного центра. Время жизни возбужденной «рабочей» степени свободы должно 
быть достаточным для совершения ферментативного акта. 
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Важно также определить, Kak обогащается спектр в процессе стохастизации 
колебаний в «горячих» степенях свободы. Именно =:о обстоятельство должно 
приводить к убыстрению рассеяния возбуждения по многим степеням свободы, 
имеющим самые разные парциальные частоты. 

В ряде предыдущих работ мы старались оценить степень диссипации и 
усложнения колебаний в моделях макромолекул при их взаимодействии с водой и 
старались понять, могут ли существовать степени свободы, защищенные от 
внешнего шума, вносимого молекулами растворителя [4-8]. В настоящей работе 
на примере простейшей модели мы уделим основное внимание процессам 
усложнения спектров и появлению в ряде случаев квазистохастических режимов 
при внесении конечного начального возмущения в какую-либо степень свободы. 

Прежде чем переходить к изучению предлагаемой модели, остановимся на 
некоторых бпофизических аспектах принципа действия белка-машины [3]. 

1. Процессы, происходящие в фермент — субстратном 
комплексе. Энергетические аспекты 

Фермент-субстратный ~~ комплекс образуется при взаимодействии 
фермента с молекулой, над которой фермент осуществляет целенаправленное 
химическое действие [9]. При этом отдельные группы субстрата и фермента 
располагаются друг относительно друга вполне определенным, энергетически 
выгодным, — образом. Говорят, что в таких комплексах реализуется 
комплементарность, являющаяся необходимым условием эффективной работы 
фермента. При сорбции субстрата его группы, которые должны подвергнуться 
действию каталитического аппарата фермента, должны проникнуть в полость 
(«карман») активного центра фермента. Например, фермент а — химотрипсин 
(@ =XT') состоит из двух доменов (субглобул), между которыми располагается 
активный центр. Пептидная связь субстрата-полипептида (цепочки связанных 
аминокислот) подвергается целенаправленной «атаке» вполне — определенных 
групп атомов активного центра, и в результате ряда превращений пептидная связь 
разрывается. В этом смысле :‹ — ХТ выполняет роль «ножниц». 

Обычно при описании такого рода процессов внимание прежде всего 
концентрируется на вопросах — комплементарного соответствия и меньше 
обсуждается роль стохастических движений «действующих» групп в активном 
центре. В ряде работ [4, 10-12] было показано, что по-видимому случайные 
движения этих групп должны обеспечить необходимые изменения профилей 
энергетических барьеров по вполие определенным  степеням свободы — 
координатам реакции. Если в неоднородном гомогенном растворе столкновение 
реагирующих молекул обеспечивается случайной диффузией, то аналогичную 
роль в фермент-субстратном комплексе играют случайные — колебания 
определенных групп атомов. 

Источниками энергии таких случайных колебаний могут быть: 
— тепловые колебания, имеющие место во всех степенях свободы молекулы 

и в том числе в выделенных; 
— порция энергии, вносимая в — определенные — группы фермент- 

субстратного комплекса при его образовании, то есть сорбции молекулы 
субстрата, и в дальнейшем перераспределяемая по степеням свободы молекулы 
(по-видимому, при участии стохастических и регулярных аттракторов [13,14]); 

— изменение физического состояния водяной оболочки фермента (то есть 
энергии гидратации поверхности фермента) [15]; 

— порции энергии, поступающие, например, при гидролизе молекулы ATO, 
или при помощи фотохимического возбуждения определенных групп фермента — 
хромофоров, как это осуществляется, например, при фотосинтезе [16]. 
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В двух последних случаях локализованные порции энергии, превышающие 
уровень kT, могут быть переданы в активный центр, например, в виде 
мигрирующего заряда [16,17\. либо в виде резонансного возбуждения, либо в виде 
солитона [18-20]. 

В результате всех этих процессов в области активного центра и в 
остальной части молекулы могут возникать конформационные — изменения [13, 
14], происходить «интенсификация» колебаний в избранной степени свободы. 

2. Выбор модели белка 

Методы молекулярной динамики [21,22] имеют дело с огромным числом 
внутренних степеней свободы молекулы, в связи с чем возникают вычислительные 
сложности, могущие привести к потере информации о выделенных степенях 
свободы, к неучету общих закономерностей в динамике молекул, связанных с 
выделенными степенями свободы. В процессе эволюции биологические молекулы 
получили вполне определенные структурные — особенности, позволяющие 
производить требуемые процессы переноса и перераспределения энергии по 
степеням свободы молекулы наиболее экономичным путем. Эти структурные 
особенности позволяют говорить о «выделенности» одних степеней свободы и 
«замороженности» других, что лежит в основе блочной (или кластерной) модели 
белка и концепции «белок—-машина» [2]. 

Заметим, что процессы, происходящие в активном центре, то есть 
непосредственно каталитический акт, в котором участвует относительно 
неболышое число атомов, целесообразно рассматривать на уровне квантовых 
эффектов [23], например, с помощью методов квантовой химии — или 
полуэмпирическим методом ~~ атом-атомных потенциалов [24, 25]. Но 
распространять эти методы на остальную часть молекулы нецелесообразно не 
только из-за вычислительных трудностей, но и из-за проблем, которые 
неизбежно возникнут при объяснении роли устойчивой конформации 
полипептидной цепи белка в процессе ферментативного акта. 

Модель белка-фермента по-существу представляет собой сложную 
нелинейную колебательную систему со многими (тысячами) степенями свободы 
[1], но рассматриваемую как систему нескольких блоков (кластеров), нелинейно 
связанных между собой. «Блочность» же модели не является только упрощающим 
приемом, но также естественным следствием самой структуры и динамики белка. 
Это подтверждается прежде всего многочисленными данными — рентгено- 
структурного анализа и спектроскопии комбинационного рассеяния [26—28]. 

Устойчивость пространственной структуры белка определяется системой 
вторичных (нековалентных) связей: водородных, ион-ионных, a также Ван- 
дер-Ваальсовых и гидрофобных взаимодействий. Таким образом, в результате 
существования системы валентных и вторичных связей молекула белка 
представляет собой скорее некую жесткую конструкцию, некоторые выделенные 
степени свободы которой должны — обеспечивать ее биологическую 
активность [3]. 

Использование блочной модели, в которой блоки моделируют отдельные 

области глобулы, позволяет сохранить индивидуальные особенности третичной 
структуры конкретного белка-фермента и дает надежду на выяснение той, до сих 
пор малопонятной, роли, которую выполняет в каталитическом акте вполне 
определенная конформация полипептидной цепи и ее изменения B процессе 
катализа. Кроме того, блочная механическая модель дает право рассматривать 
отдельно — колебательные — процессы B — более — простых — подсистемах, 
характеризуемых собственными парциальными частотами. 
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3. Стохастические процессы в ферментативном катализе 

За последнее время в физике ферментативного катализа наметился новый 
подход, основанный на применении методов стохастической динамики. Как 
показано в работах [13, 14], хаотические процессы, наряду с регулярными, могут 
играть важную роль в функционировании белков и, в частности, белков— 
ферментов. Автором этих работ делается предположение об управлении 
стохастическим аттрактором следующими процессами [14]: 

— конформационными изменениями в соответствующем домене (hepMEHT— 
субстратного комплекса; 

— оптимизацией местоположения функциональных групп в активном центре; 
— понижением энергетического активационного барьера при формировании 

комплекса переходного состояния. 
Эта гипотеза, обоснование которой приводится с помощью методов 

стохастической динамики, согласуется с предположениями [4, 11] о случайном 
характере этих процессов, реализующихся при поступлении энергии в область 
активного центра фермента от различных источников. Представляется также, что 
стохастичность колебаний отдельных групп атомов в активном центре является 
наряду с другими, [5, 29, 30] важным условием для преодоления энергетического 
барьера в процессе переноса мротона. Подобное предположение уже выдвигалось 
в [31], гдё рассматривалась возможность преобразования «белого» шума, 
вносимого молекулами растворителя, в «цветной» за счет нелинейных процессов и 

© оценивались характеристики такого шума, необходимые — для успешного 
преодоления энергетического барьера в активном центре. В контексте нашей 
модели также представляется необходимым исследовать, каковы должны быть 
свойства стохастических процессов, чтобы работа фермента была эффективна. 

В отличие от [13, 14], где использовалась модель белка на уровне вторичной 
структуры (учитывались температурные факторы каждого атома), и от [10], где 
принималась во внимание лишь простая двухдоменная модель, в данной работе 
учитывается устойчивая конформация полипептидной цепи. Представляется 

целесообразным исследовать возможные режимы — хаотических колебаний на 
примере системы, моделерующей элементарную ячейку белка Ha уровне 
третичной структуры. 

4. Строение белка-фермента с - химотрипсина. 
Механическая кластерная модель 

Чтобы сделать изложение. более конкретным, будем, как и ранее, 
рассматривать о — химотрипсин, который является одним из наиболее изученных 

ферментов. 
По данным рентгеноструктурного анализа [26], белковая глобула состоит из 

двух частей — субглобул (доменов) А и В, связанных между собой небольшим 
участком полипептидной цепи и слабыми нековалентными взаимодействиями. 
Предполагается, что движение субглобул носит колебательный характер. При 
этом аминокислотные остатки связующего звена (37-38 и 204-205) выполняют 
роль шарнира, а сами субглобулы напоминают ножницы, при определенных 
условиях «разрезающие» — пептидную — связь. Каталитический аппарат белка 
включает в себя аминокислотные остатки Ser—195, His—57, Азр-102, причем 
Ser—195 и His—57 размещены на поверхности различных субглобул (рис. 1, а). 
Всего же молекула химотрипсина образована примерно 250 аминокислотными 
остатками, а молекулярная Macca о-ХТ — 24800 кДа. В ходе каталитического акта 

(гидролиз пептидной связи) происходит последовательный перенос двух протонов 
от остатка Ser—195 и молекулы Н,О на продукты реакции. Перенос протонов 
осуществляется с участием остатка His—57 [4]. 

Каждая из  субглобул молекулы o—X1 представляет собой устойчивую 
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Рис. I. Упрощенная — блочная — модель 
двухдоменной молекулы © — химотрипсина: 

по — двухдоменная модель @ — ХТ (точкой 

обозначена ось шарнира»; активный центр 
представлен аминокислотными остатками His— 
87 uw бе,-195), 6, 6 — каждый — домен 
представлен как пространственная свертка из 
6-ти «стержней», которые соединяются друг с 
другом относительно высокоподвижныМи 
отрезками полипептидной цепи, 
изображенными ВоЛНистыМиИ СПЛОШНЫМ 

линиями, а также, как правило, несколькими 
водородными  CBSI3SIMH, изображенными 
пунктиром [26]. — Водородные связи указаны 
лишь между двумя «стержнями» домена A. 
Цифрами обозначены номера аминокислотных 
остатков 

представившего графики ПОДВИЖНОСТИ аминокислотных 

‘линиями), 

«конструкцию», остов которой состоит 
из шести вытянутых, уложенных в @ — 

спирали и В-структуры, параллельно 

расположенных  UrPe3KOB — полипе- 
птидной цепи, создиненных между 
собой короткими петлями этой же цепи, 
а также ВОдОродными СВЯЗЯМИ. 
Субглобулы образуют как бы два 
«бочонка», также соединенные между 
собой звеном полилептидной цепи и 
несколькими водородными связями. 

В блочной механической модели, 
учитывающей — третизную — структуру, 
каждый 113 параллельных  участтот 
полипептидной цепи рассматривается 
как отдельный «стержень»; водородные 
связи между «стержнями» моделиру- 
готся нелинейными пружинами. (рис. 1, 
6, в). В качестве потенциала водородной 
связи был выбран потенциал Морзе [24]: 

U(r) = Dy(1 — e-alr=r))2 — Dy, (1) 

где Dy — глубина потенциальной ямы, 
а — эмпирический параметр, г) — 
положение равновесия. Если колебания 
удовлетворяют условию малости 
| 7-го! << го, то потенциал Морзе для 
единичной водородной связи можно 

разложить в ряд Тейлора вблизи 
положения равновесия || затем 
соответствующим образом — подставить 
в приведенные — ниже — динамические 
уравнения. Коэффициенты разложения 
имеют вид 

& = 2 Роа?, а = -3 Рда3, В = 7/3 Рай. (2) 

В предложенной модели отрезки 
полипептидной — цепи (обозначены на 

рис. 1. 6, в  ВволнистымИ — сплОПНЫМИ 
соединяющие — отдельные 

«стержни», рассматриваются как 

свободно перемещающиеся независимо 
от колебаний кластеров («стержней») п, 
соответственно, HZ влияющие на 

динамику процесса. Можно сделать 

предположение ‚ об относительно 

большей подвижности этих петель по 
сравнению с кластерами — «стерж- 
нями», связанными друг с другом 
множеством водородных и иных связей. 
Это предположение хорошо согласуется 
с результатами автора [13], 

остатков вдоль всей 
полипептидной цепочки молекулы о-Х'Т, построенные на основании данных о 

температурных — факторах атомов a-XT [26]. Все аминокислотные остатки, 
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находящиеся в петлях, — соединяющих «стержни» (см. рис. 1), имеют в 

соответствии с [13] четко выраженные максимумы подвижности. 
В дальнейшем имест смысл продолжить начатое в [8] изучение динамики 

внутримолекулярных колебаний на основе пространственной блочной модели, 
изображенной на рис. 1, 6, в. В настоящей же статье ставится более скромная 

задача, а именно, на основе элементарной двумерной кластерной модели изучить 

возможность усложнения колебаний, обогащения их спектра, появления и 

усиления колебаний на различных парциальных частотах, чтобы в перспективе, 
при переходе от элементарной ячейки к развернутой кластерной модели, лучше 
представлять себе условия п механизмы передачи энергии внутри молекулы. 

5. Элементарная ячейка 

Поскольку принципы структурной организации субглобул (доменов) Аи В 
принципиально подобны, предложенная ниже модель может применяться для 
изучения динамики прокессов, 1‹ропсходящих В обеих субглобулах о-Х Г. 

Элементарной  ячейкой модели (в простейшем — случае лвумерной) © 
является Macca, модел my уюмузя отдельный — участок полипептидной — цепи 
(«стержень»), связанная с другими «стержнями» (в нашем приближении — 
неподвижными стенками) чегырьмя нелинейными пружинами , моделирующими 
водородные связи (рис. 2, а). Следует отметить, что и в реальной молекуле о-ХТ 
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некоторые вытянутые участки полипептидной цепи могут быть связаны с двумя, 

тремя, четырьмя другими такими же участками множеством водородных связей в 
зависимости от их положения в пространственной конформации мслекулы. 

Считается также, что движение массы может возмущаться близким присутствием 

другого неподвижного кластера, влияние которого может моделироваться 
введением в систему либо дополнительного потенциала, соответствующего Ван- 
дер-Ваальсовым — взаимодействиям, либо абсолютно жесткой «стевки». На 
рис. 2, 6, в представлены поверхности потенциальной энергии для системы, 
изображенной Ha рис. 2, a. 

Ван-дер-Ваальсовы взаимодействия моделируются с помощью потенциала 

Леннарда — Джонса [24] 

UG) = 4pl(olr) 2 = (о), 3) 
где р ис — параметрь:, характеризующие глубину и ширину потенциальной ямы 
соответственно. 
Динамические уравнения консервативной двумерной системы, изображенной на 

рис. 2, а, записываются следующим образом: 

mx) = — 2D 1ai(1-&1)8x rad, — 2D gray (1-8:)E,(1 — xy)/rad, — 

— 2Dg3a5(1-83)E5x rad; — 2Dpgas(1-€4)E4(1 + x1)/rad,, 

mx = = 2Dqar(1-61)&:(1 + x;)/rad; — 2D gay (1-€;)Eox,/rad, — © 

— 2Розаз(1-63)Е3(1 — хо)/тай, — 2Dgua,(1-84)Esx/rady, 

где & = ехр {—ai(-1 + гай))}, & = ехр (-аз(-1 + гай))}, 

Es = ехр {-аз(-1 + rads)}, & = ехр {-а4(-1 + rady)}, 

rad, = Vx2 + (1+ x72), rad, = о? + (1-х)?), 

rad; = Мк + (1- x2), тай, = Vag + (1+ 2), ‚ 

а» Dy; — параметры потенциала Морзе (1), i = 1, ..., 4 — номер потенциала, m — 

масса кластера ( см. рис. 2, а). 
В уравнения также могут быть введены случайная внешняя сила и затухание, 

обусловленное действием на молекулу фермента молекул растворителя (воды) 
[5,6]. Оценка параметров у и средней амплитуды случайной силы приводится в [4]. 

В данной работе рассматривается консервативная система. Обоснованием 
такого подхода может служить следующее соображение: в молекуле фермента 
только некоторые участки полипептидной цепи, находящиеся на поверхности 
субглобулы, непосредственно подвергаются действию молекул растворителя. 

Если пружины линейны (берется только первый член разложения 
потенциала Морзе в ряд Тейлора (2), что соответствует случаю параболических 
потенциалов U; = К1?/2, {= 1, ..., 4, то уравнения выглядят следующим образом: 

в 

х + ох, = elk —Ка)хуло/т + (К —kg)x2/ (2m) — e2(ky + ks)x,3/(2m) + 

J + £2(k, + ky + ks + ky) x x2 m +. 

хо + 02x, = e(ky —kg)xyxolm + elky —k3)xi2/(2m) — €2(ky + kg)x3/(2m) + ©) 

| + 2k + ky + ks + ky )xox 2m +... 

где К, i= 1, ..., 4 — коэффициенты жесткости, представляющие собой первые 
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члены разложения соответствующих потенциалов Морзе в ряд Тейлора (К = 
= 2a?Dy;); € =all — малый параметр, а — амплитуда колебаний, | — длина пружины 
(соответствует длине водородной связи); ©; =V(k, + &)/т, o, =N(ky + 6)/т — 
круговые частоты собственных колебаний системы по двум степеням свободы. 

Заметим, что нелинейность уравнений (5) обусловлена только геометрией 
системы (так называемые «геометрические» нелинейности). 

Как известно, в  детерминированной нелинейной динамической системе 
размерности N > 3/2 при определенных условиях даже в отсутствие внешнего 
случайного воздействия могут возникнуть хаотические колебания [32]. В данной 
статье рассматриваются следующие режимы колебаний, возникающие в системе 
(см. рис. 2), описываемой уравнениями (4) или (5). 

1. Режим эффективной перекачки энергий между двумя нормальными 
модами колебаний. в случае кратных собственных частот и близких к кратным 
частот: . 

а)в случае линейных пружин (Tak называемые «геометрические» 
нелинейности); : 

6) в случае потенциалов Морзе (нелинейные пружины). 
2. Режим расстройки (некратные собственные частоты) в случаях а) и 6). 
3. Постепенная стохастизация колебаний при: 
а) введении в систему точечного потенциала Леннарда — Джонса (см. рис. 2); 
6) введении абсолютно упругой «стенки», моделирующей соседний массив— 

ный участок полипептидной цепи, не связанный с рассматриваемым водородными 
СВЯЗЯМИ. 

6. Результаты 

В системе, изображенной на рис. 2 и описываемой динамическими 

уравнениями (4) в случае потенциалов Морзе (при условии консервативности) или 
уравнениями (5) в случае линейных пружин, наблюдаются следующие режимы 
колебаний: 

1. Режим эффективной перекачки энергии между двумя нормальными 
модами колебаний имеет место в случае кратных собственных частот (например, 
@; = 20») для системы, описываемой уравнениями (5) (см. [7]). Отметим также, 
что перекачка энергии возможна при ki#ks, k#ky, что следует из уравнений (5). 
Надо заметить, что величины амплитуд колебаний, а также вид амплитудного 
«спектра» (зависимости амплитуды огибающей колебаний в проекции на одну из 
осей от соотношения собственных частот ®; и @®,), существенно зависят OT 
начальных условий в силу нелинейности, обусловленной в данном случае 
геометрией системы [7]. При отстройке от резонансов @ = ®; и @ = 20) (то есть, 
если варьировать соотношение жесткостей пружин. ki, ky, К, ky) режим 
эффективной перекачки сохраняется в некотором интервале, причем из-за 
нелинейности интервалы  неодинаковы H  несимметричны — относительно 
резонансных частот, а также зависят от начальных условий (рис. 3). 

2. Рассмотрим теперь уравнения (4), описывающие систему, изображенную 
на рис. 2, в случае замены линейных пружин (квадратичных потенциалов) на 
потенциалы Морзе (1). Для того, чтобы сравнить соответствующие режимы 
колебаний в случае линейных пружин и в случае потенциалов Морзе, параметры 
потенциалов Dy, и а; (i=1, ..., 4) подбирались таким образом, чтобы величины 

частот 0, =N(ky + К)/т, a, =V(k; + ky)im, где k; = 2a2Dy;, совпадали с резонансными 
частотами о; и 0, = 20 в (5). 

Далее параметры k; = 2a2Dy, а также o; и В; (i = 1, ..., 4), представляющие 
собой коэффициенты соответственно квадратичного и кубичного членов 
разложения потенциала Морзе в ряд Тейлора (2), варьировались как и в 
предыдущем случае. 
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Рис. 3. Зависимость амплитуды А огибающей (отн.ед.) от коэффициента кратности собственных 
частот I =;/;, возведенного в квадрат. Максимумы соответствуют режимам наиболее 

эффективной перекачки энергии при ©) = ®)/2 и ©) = 202. График строился для случая 

уравнений (5) (квадратичные потенциалы). Начальные условия в каждой точке графика: 

(x1, дм1/д/, x2, дхэ/дг) = (-0.1,0,0,0) отн.ед. (a); (x1, dx1/91, хо, дхо/дГ) = (0,0,-0.1,0) отн.ед. (6) 
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Рис. 4. График зависимости амплитуды А огибающей (отн.ед.) от коэффициента кратности 
собственных частот Л =(01/()7, возведенного в квадрат при начальных условиях для каждой точки 
графика (xq, dxj/ot, x, дхо/д!) = (-0.1,0,0,0) отн.ед. (a) и траектории системы на координатной 
плоскости (х1, хо) для каждого из трех резонансных состояний (6,6,2). Координаты начальных 
условий на плоскости (xy, хо) помечены звездочкой. Графики строились для случая уравнений (4) 

(потенциалы Морзе) 
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Вместо двух резонансов (см. рис. 3), соответствующих случаю линейных 
пружин, мы получили три резонанса (рис. 4, а), причем их положения существенно 
не совпадают ни с одним из пиков двухрезонансного случая. Траектории на 
координатной плоскости для каждого из этих трех резонансных состояний 
системы представлены на рис. 4, 6, в, 2. 

Таким образом, в данной простейшей двумерной системе при соблюдении 
условия малости колебаний (а < 0.1/, где а — амплитуда колебаний, | — длина 
пружины) замена параболических потенциалов на потенциалы Морзе при 
соответствии их параметров (то есть при весьма незначительном отличии формы 

потенциалов в малой окрестности потенциального минимума) дает качественно 
иную картину колебаний. 

Как выяснилось, третий, «средний», резонанс появляется уже в случае 
присутствия в уравнениях членов, соответствующих квадратичным членам 
разложения потенциалов Морзе и отсутствии более высоких степеней (то есть, 
при & , 0,2 0, В;= 0, 7 = 1, ..., 4). 

Отметим, что рассмотренные режимы перекачки энергии из одной степени 
свободы в другую являются одним из проявлений резонанса Ферми. Как 

справедливо указывается в [33], при увеличении начальных отклонений выше 
некоторого критического уровня возможен переход к хаосу. Ниже мы рассмотрим 

другой возможный путь перехода к хаосу при нарушении условий резонанса Ферми 
за счет введения в систему возмущающего потенциала. Такая задача естественна 
для молекулярной динамики, где, в принципе, не следует ожидать больших 

амплитуд колебаний, превышающих уровень 0.1-0.2 А для отдельных атомов и 
аминокислотных остатков, но зато вполне возможны сложные взаимодействия с 
участием нескольких потенциалов. 

3. При введении в систему точечного потенциала Леннарда — Джонса (3), 
(см. рис. 2),  моделирующего — Ван-дер-Ваальсовы взаимодействия, — при 
определенных ~~ условиях — наблюдается существенное усложнение характера 
колебаний и, соответственно, их спектров. Постепенный переход от режима 
регулярных колебаний (см. рис. 5, а) к режиму квазистохастических колебаний 
(рис. 5, 6): наблюдался при увеличении — глубины — потенциальной — ямы р 
потенциала (3) и неизменности остальных параметров при условии, что область 
«потенциальной ямы» Леннарда — Джонса перекрывалась бы с областью 

колебаний (см. рис. 2). 
Спектры, соответствующие траекториям системы (рис. 5, a,6), представлены 

на рис. 6, а, 6. Эти и последующие спектры строились методом дискретного 
преобразования Фурье по 500 точкам и усреднялись по десяти реализациям. 
Симметрично расположенные относительно 250-й гармоники максимумы 
спектров соответствуют одинаковым частотам. 

4. Ha рис.7 представлены траектории на координатной плоскости и 
соответствующие им спектры при замене точечного потенциала Леннарда — 
Джонса (см. рис.7, 8, г) на абсолютно упругую выпуклую «стенку», радиус которой 
соответствовал положению — отталкивающего потенциального барьера у 
потенциала Леннарда — Джонса (см. рис. 7, а, 6). Рис. 7, 0, е соответствует случаю, 
когда координаты центра (X11, хо?) и глубина ямы р потенциала Леннарда — Джонса 
не изменились по сравнению со случаем рис. 7, а, 6, а ширина ямы с несколько 
меньше. 

Отметим, что траектория, изображенная на рис. 7, в, а также на рис.10, 6 

(см.ниже), сами по себе представляют интерес с точки зрения возможности 
появления выделенной степени свободы в некотором диапазоне параметров даже в 
такой простейшей колебательной системе. 

5. На рис. & представлены характерные траектории и соответствующие им 
спектры для случая присутствия в системе абсолютно упругой «стенки», центр 
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Рис. 5. Траектории системы на координатной плоскости (51, хо) для случая одинаковых линейных 
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начальных условий на плоскости (х1, Xp) помечены звездочкой 
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Рис. 6. Спектры (в отн.ед.)., построенные по временным реализациям процесса в проекции на одну 
из осей для случаев траекторий Ha рис.5, а, 6 соответственно. М — номер гармоники. Главный 
максимум соответствует несущей частоте процесса 
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Рис. 7. Траектории системы на координатной плоскости (1, хо) и соответствующие им спектры 

для случаев: a, 6 — в систему (рис. 2, а) вместо потенциала (3) введена абсолютно упругая 

выпуклая «стенка» с координатами центра и радиусом соответственно: (212, хо?) = (0, - 0.2), 

г = 0.05V15; в-е — в системе присутствует потенциал Леннарда — Джонса с параметрами: р =0.001, 

с = 0.05415, (xiL, x,t) = (0, —0.2) (в, г); р =10, с = 0.05V10, (xiL, xb) = (0,-0.2) (д, е). Во всех 

случаях а-е пружины линейны и одинаковы. Координаты начальных условий на плоскости 

(x1, хо) помечены звездочкой 
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Рис. 8. Траектории системы на координатной плоскости (1, A) и соответствующие им спектры 
при различных начальных условиях для системы с линейными пружинами и выполнении условия 
резонанса в случае присутствия «стенки» с координатами центра и радиусом соответственно: 
(iL, vb) = (0.2, 0), r = 0.05V10 (координаты начальных условий на плоскости (м1, хо) помечены 
звездочкой); а, 6 — (vy, дх|/дг, хо, dxy/or) = (0.1, 0, 0, 0) отн.ед; в, 2 — (ху, дх1/д!, хо, дхо/дР) = 
=(0, 0, 0.1, 0) отн.ед. 

которой расположен в данном случае на оси х|. Отмечается существенная 
зависимость характера траекторий от начальных условий (на рис. 8, а масштаб по 
оси хо приблизительно в десять раз меньше чем на рис. 8, в). 

6. На рис. 9 представлены характерные траектории и соответствующие им 
спектры для случая присутствия в системе потенциала Леннарда — Джонса (см. 
рис. 2). Наблюдается зависимость характера траекторий на координатной 
плоскости, а также появление новых частот (обогащение спектра) при малых 
изменениях параметров потенциала. 

7. На рис.10 построены траектории Ha координатной плоскости H 
соответствующие им спектры процессов при наличии в системе потенциала 
Леннарда — Джонса с постоянными параметрами для случая одинаковых линейных 
пружин (а, в) и для случая замены их квадратичных потенциалов на потенциалы 
Морзе (1) при соответствии параметров (6, г). Как и в предыдущих случаях, 
наблюдается ~~ сильная ~~ зависимость качественного поведения системы OT 
незначительного изменения формы потенциала. 
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Рис. 9. Траектории системы на координатной плоскости (х1, Xp) и соответствующие спектры при 
наличии потенциала Леннарда — Джонса (3) с параметрами(в отн.ед.): a, 6 — р=0.01, с = 0.0510, 

(212, хэё) = (0, —0.2); в, г — р =0.015, о = 0.0510, (x, xl) = (0, -0.2). Координаты начальных 

условий на плоскости (х1, хо) помечены звездочкой, пружины линейны и выполняется условие 

резонанса 

Заключение 

Основной вывод, который можно сделать из проведенного исследования, 

состоит в следующем: даже на уровне простейшей модели качественное поведение 
системы — (расположение — резонансов, переходные процессы — усложнения 
колебаний) существенным образом зависит от вида выбранных потенциалов 
взаимодействия, а также, во многих случаях, от начальных условий. Обычно же 
при моделировании сложных молекул с тысячами колебательных степеней 
свободы выбор потенциалов во многом произволен (например, вместо потенциала 
Леннарда — Джонса часто используется потенциал Букингема или иные). 
Возникает вопрос, не действует ли в сложных системах фактор «усреднения», 
независимости их поведения от незначительных, казалось бы, отличий, внесенных 
в систему при замене одного потенциала на другой. Но даже конечное состояние 
замкнутой системы — среднее распределение внутренней энергии по степеням 
свободы в состоянии термодинамического равновесия — зависит от выбора 
формы потенциалов взаимодействия. В системах, где потенциалы отличаются от 
квадратичных, потенциальная энергия вовсе не обязана распределяться по 1/2 kT 
на степень свободы (см., например, [34]). 
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Рис. 10. Траектории Ha координатной плоскости (xy, Xp) (а,6) и соответствующие им спектры в 
отн.ед. (в. 2) при наличии потенциала Леннарда — Джонса (3) с параметрами (в отн.ед.): р =1., 

с = 0.0510, (xi, хэё) = (0, -0.2); a, в — все пружины линейны (квадратичные потенциалы) и 
одинаковы; 6. г — квадратичные потенциалы были заменены на потенциалы Морзе при 

соответствии параметров 

С точки зрения ферментативного катализа возникновение в простейшей 
системе, моделирующей белок как систему блоков (кластеров), — режимов 
колебаний, B которых — реализуется выделенная степень свободы вдоль 
траектории в фазовом H координатном пространствах, представляет несомненный 
интерес. В дальнейшем — намечается — детально — исследовать условия 
возникновения и установить диапазоны соответствующих параметров для 
подобных режимов колебаний. 

Следующим этапом изучения динамики внутримолекулярных процессов на 
основе кластерной механической модели планируется рассмотрение усложненной 
модели: две многозвенные цепочки, соединенные крестообразно так, чтобы ячейка, 
изображенная на рис. 2, а, находилась бы в месте пересечения цепочек. 
Предполагается также перейти к исследованию простейшей трехмерной модели. 

Также представляется необходимым приблизиться в процессе моделирования 
к реальным параметрам белка-фермента с — химотрипсина, а также к изучению 
колебательных — свойств фермент-субстратного комплекса. Эти — свойства 
интенсивно изучаются экспериментально методами лазерной спектроскопии. 

Отметим, что под термином «стохастизация колебаний» в нашем случае 
прежде всего понимается усложнение — спектров колебаний в существенно 
нелинейных консервативных системах. Мы прибегаем к этому представлению, 
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хотя понимаем, что скорее всего имеем дело CO СЛОЖНЫМИ процессами © OORT 
временем возврата. ` 

С точки зрения изучения процессов в макромолекулах именно усложнение 
спектров, которое можно наблюдать экспериментально оптическими методами, 
играет важную роль. Это усложнение может приводить к стохастизации 
колебаний при действии молекул растворителя на макромолекулу. 

С другой стороны, введение в систему жесткой кривой, отражающей стенки, 
приближает процесс к такому режиму, который осуществляется в другой 
интересной консервативной системе — биллиарде Синая. 

Мы осознаем, что те данные, которые представлены в нашей работе, 
являются результатом машинного эксперимента и нуждаются в дополнительном 
теоретическом анализе, который предполагается сделать в дальнейшем. 

Авторы приносят глубокую благодарность профессору Гумбольдтского 
Университета (Берлин) В.Эбелингу за полезное обсуждение и ценные замечания. 
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COMPLICATED MODULATIONS REGIMES AND 
STOCHASTIC VIBRATIONS IN CLUSTER 

DYNAMIC MODELS OF MACROMOLECULES 

A. Netrebko, N. Netrebko, 
Yu. Romanovsky, Yu. Khurgin, Е. Shidlovskaya 

The possibility of realization of «marked» degrees of freedom when the system 
motion occurs in narrow area of coordinate plane was considered within the framework of 
a simplest cluster model of an enzyme molecule. Under certain conditions the motion of - 
the system becomes complex and perhaps stochastic and the spectrum of oscillations 
becomes more rich. The role of the interaction potential curve shapes of the system is 
discussed. 

It was shown that energy transfer associated with complicated modulations in a 
two-dimensional system takes place even for small oscillations with amplitudes 

approximately equal to 0.1 A. 
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