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Аннотация. Цель работы — исследование поведения стабильных однокомпонентных делокализованных нелинейных
колебательных мод в простых кубических подрешётках титана и никеля и их влияния на свойства бинарного сплава NiTi.
Методы. Все расчёты проводятся при помощи молекулярно-динамического метода с использованием многочастичных
потенциалов взаимодействия. Результаты. Представленные в работе семнадцать колебательных мод характеризуются
устойчивыми периодическими колебаниями. Для большинства мод характерен жёсткий тип нелинейности, при котором
частота атомных колебаний увеличивается с ростом амплитуды. Устойчивые моды способны аккумулировать энергию
в интервале 0.1–1.5 эВ на атом в титановой подрешётке и 0.1–1.0 эВ на атом в никелевой подрешётке. Возбуждение
колебательных мод в подрешётках Ni и Ti приводит к уменьшению удельной теплоёмкости для мод с жёстким типом
нелинейности и к возрастанию для мод с мягким типом нелинейности. Наличие мод приводит к возникновению
положительных сжимающих напряжений, величина которых пропорциональна амплитуде вектора смещения атомов.
Заключение. Полученные данные позволяют лучше понять сложное поведение колебательных мод и их влияние
на свойства бинарного сплава NiTi.
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Abstract. The purpose of this work is to investigate the behavior of stable one-component delocalized nonlinear vibrational
modes in simple cubic titanium and nickel sublattices, as well as their influence on the properties of the binary NiTi alloy.
Methods. All calculations were performed using the molecular dynamics method with many-body interatomic potentials.
Results. Seventeen vibrational modes are shown to exhibit stable periodic oscillations. Most of them demonstrate a hard
type of nonlinearity, where the frequency of atomic vibrations increases with amplitude. Stable modes are capable of
accumulating energy in the range of 0.1–1.5 eV per atom in the titanium sublattice and 0.1–1.0 eV per atom in the nickel
sublattice. Excitation of vibrational modes in the Ni and Ti sublattices leads to a decrease in specific heat for modes with
hard type of nonlinearity and to an increase for modes with soft type of nonlinearity. The presence of modes leads to
the emergence of positive compressive stresses, the magnitude of which is proportional to the atomic displacement vector.
Conclusion. The obtained results provide new insights into the complex behavior of vibrational modes and their impact on the
properties of the binary NiTi alloy.
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Введение

Нелинейные решетки представляют собой системы, в которых сила взаимодействия между
соседними частицами нелинейно связана с их смещением от положения равновесия. В отличие
от линейных решеток, где взаимодействие подчиняется закону Гука, нелинейные решетки ши-
роко распространены в физических системах, таких как кристаллы, полимеры и биологические
макромолекулы [1, 2]. Нелинейность может быть обусловлена ангармоническими потенциалами,
геометрическими ограничениями или взаимодействием с внешними полями [3–5]. Такие решетки
играют ключевую роль в изучении механических и термических свойств, переноса энергии,
фазовых переходов, а также в разработке оптических устройств и волноводов [6–8].

Важным следствием нелинейности является возникновение локализованных колебательных
мод, известных как дискретные бризеры или внутренние локализованные моды [9, 10]. Эти моды
могут существовать в бездефектных кристаллических решетках и влиять на их макроскопические
свойства [11]. Высокоамплитудные колебательные моды широко исследовались в нелинейных
решетках Шрёдингера [12, 13] и Ферми–Паста–Улама–Цингоу [14–16], а также в ГЦК [17–20],
ОЦК [21–23], ГПУ-металлах [24, 25], ковалентных кристаллах [26, 27] и интерметаллидах [28, 29].
Для существования дискретных бризеров их частота должна находиться вне фононного спектра
кристалла, чтобы избежать рассеяния колебательной энергии через взаимодействие с фоно-
нами решётки.
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Чечин и Сахненко разработали теорию бушей нелинейных нормальных мод, также называе-
мых делокализованными нелинейными колебательными модами (ДНКМ). Эти моды определя-
ются на основе точечной группы симметрии кристаллической решетки [30–32]. Между ДНКМ
и дискретными бризерами существует тесная связь: последние могут возникать вследствие модуля-
ционной неустойчивости ДНКМ с частотами, выходящими за пределы фононного спектра [33,34].
С развитием терагерцевой лазерной техники стало возможным возбуждать ДНКМ напрямую, что
делает их перспективными для фотонных технологий [35, 36].

ДНКМ удобно классифицировать по их пространственной размерности и числу компонент.
В одномерных ДНКМ возбужденные атомы образуют цепочки, которые делокализованы в одном
направлении и локализованы в двух других. Двумерные ДНКМ простираются по двум про-
странственным направлениям, но локализованы вдоль третьего. Аналогично трёхмерные ДНКМ
занимают весь объём кристалла. Для однокомпонентных ДНКМ характерна только одна величина
атомных смещений от положений равновесия, тогда как колебательные моды с 𝑛 независимыми
параметрами называются 𝑛-компонентными модами.

ДНКМ оказывают влияние на механические свойства материала, его теплопроводность
и фазовые переходы. До сих пор наибольшее внимание уделялось одномерным ДНКМ, для
которых подробно изучено их влияние на свойства атомных цепочек [15,16,37–39]. Двумерные
ДНКМ широко исследовались в различных типах кристаллических решёток [14, 18–20, 24, 40, 41],
в то время как систематическое изучение трёхмерных ДНКМ началось лишь сравнительно
недавно и проводилось в основном в однокомпонентных материалах [42–46].

В связи с этим целью настоящей работы является изучение методом молекулярной динами-
ки однокомпонентных ДНКМ, возбуждаемых во всём объёме бинарного сплава NiTi. Выбор NiTi
обусловлен его структурой, представляющей собой две вложенные друг в друга простые кубиче-
ские решётки, что позволяет возбуждать моды в каждой из них. Данный материал имеет весьма
перспективные применения в области медицины, материалов с эффектом памяти форм [47–49].

1. Методика

1.1. Трёхмерные колебательные моды в простой кубической решетке. Семнадцать
стабильных однокомпонентных ДНКМ, полученных на основе теории бушей нелинейных нор-
мальных мод [30–32], представлены на рис. 1 для простой кубической решетки. Эти ДНКМ
отличаются делокализованным характером, распространяясь по всей бесконечной кристалличе-
ской решетке и проявляясь в виде периодических смещений атомов. Для возбуждения указанных
ДНКМ задаются начальные смещения атомов. На рис. 1 показаны две соседние плоскости (001),
обозначенные как (001)′ и (002)′, параллельные плоскости (𝑥, 𝑦). Компоненты смещений ∆𝑥 и
∆𝑦 в этих плоскостях обозначены черными стрелками, а компонента ∆𝑧 — красными точками
(для смещения в сторону наблюдателя) и синими крестиками (для смещения от наблюдателя).
Все ненулевые компоненты смещений атомов от их равновесных положений в решетке имеют
одинаковую амплитуду 𝐴, вследствие чего все изучаемые в настоящей работе моды являются
однокомпонентными.

ДНКМ 1, 4, 8, 12 и 23 характеризуются единственной ненулевой компонентой вектора
смещения, где только |∆𝑦| = 𝐴 или |∆𝑧| = 𝐴, при этом остальные компоненты равны нулю.
Длина вектора смещения атомов равна 𝐷 = 𝐴. ДНКМ 2, 5, 7, 9, 11, 13 и 24 имеют две ненулевые
компоненты и длину вектора смещения, равную 𝐷 =

√
2𝐴. Для ДНКМ 3, 6, 10, 14 и 25 характерно

наличие трех ненулевых компонент вектора смещения, то есть |∆𝑥| = |∆𝑦| = |∆𝑧| = 𝐴, а длина
вектора смещения в этом случае составляет 𝐷 =

√
3𝐴. Все перечисленные ДНКМ обладают

короткими длинами волн, а их волновой вектор находится на границе первой зоны Бриллюэна.
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Рис. 1. Семнадцать стабильных однокомпонентных ДНКМ, используемых для возбуждения простых кубических
подрешеток атомов титана или никеля в бинарном сплаве NiTi. Смещения атомов представлены в двух соседних плос-
костях, обозначенных как (001)′ и (002)′, параллельных плоскости (𝑥, 𝑦). Красными кружками показаны только атомы
одной кубической подрешетки. Компоненты смещений атомов ∆𝑥 и ∆𝑦 вдоль соответствующих осей от равновесных
решеточных положений показаны черными стрелками. Компоненты смещений ∆𝑧, направленные к наблюдателю или
от него, отмечены синими точками или зелеными крестиками соответственно (цвет онлайн)

Fig. 1. Seventeen stable one-component DNVMs used to excite simple cubic sublattices of titanium or nickel atoms in the
binary NiTi alloy. Atomic displacements are represented in two adjacent planes, labeled (001)′ and (002)′, parallel to the (𝑥, 𝑦)
plane. Red circles show only atoms of one cubic sublattice. The ∆𝑥 and ∆𝑦 components of atomic displacements along the
corresponding axes from the equilibrium lattice positions are shown by black arrows. The ∆𝑧 components of displacements
directed toward or away from the observer are marked by blue dots and green crosses, respectively (color online)
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Семнадцать стабильных трехмерных ДНКМ классифицированы по числу ненулевых ком-
понент смещений атомов, а именно: группа I включает моды с одной ненулевой компонентой
(ДНКМ 1, 4, 8, 12, 23); группа II охватывает моды с двумя ненулевыми компонентами (ДНКМ 2, 5,
7, 9, 11, 13, 24); в группу III входят моды с тремя ненулевыми компонентами
(ДНКМ 3, 6, 10, 14, 25). Для ясности в настоящей работе сохранена ранее использовавшая-
ся нумерация ДНКМ [46,50].

1.2. Методика молекулярно-динамического моделирования. Бинарный сплав NiTi име-
ет упорядоченную структуру B2, и массы составляющих элементов в сплаве близки друг к
другу: масса атома титана составляет 82% массы атома никеля. В структуре B2 атомы никеля
занимают позиции простой кубической решетки, тогда как атомы титана располагаются в центрах
подрешетки никеля, образуя собственную кубическую подрешетку.

Молекулярно-динамическое моделирование выполнено с использованием программного
пакета LAMMPS [51, 52]. Все расчёты проводились с применением межатомного потенциа-
ла, разработанного в рамках модифицированного метода погруженного атома (MEAM) [53].
Равновесные параметры решётки, полученные с использованием выбранного потенциала, равны
𝑎 = 𝑏 = 𝑐 = 2.97 Å.

Расчетная ячейка состоит из 10× 10× 10 трансляционных ячеек решетки NiTi, что состав-
ляет 2000 атомов. При моделировании применялись периодические граничные условия во всех
трех ортогональных направлениях. Шаг интегрирования по времени составил 1 фс. Общая дли-
тельность моделирования составила 10000 шагов по времени. Такое относительно короткое время
моделирования обусловлено акцентом на изучение возможности возбуждения ДНКМ и их влияния
на свойства сплава NiTi, а не на анализ времени жизни, которое при определенных параметрах
может достигать порядка нескольких десятков пикосекунд. Стабильность ДНКМ оценивалась по
их периодическим колебаниям в течение нескольких периодов. Интегрирование уравнений движе-
ния осуществлялось с использованием алгоритма Верле, при этом тепловые флуктуации атомов
не учитывались для исключения влияния температуры. В ходе моделирования использовался
термодинамический ансамбль NVE, предполагающий постоянство числа атомов (𝑁 ), объема (𝑉 )
и энергии (𝐸).

Амплитуды начальных смещений атомов, применяемых для возбуждения семнадцати од-
нокомпонентных колебательных мод (см. рис. 1), варьировались от 0.001 до 0.376 Å с шагом
0.01 Å. Изначально смещались атомы одной подрешётки, в то время как атомы другой подрешётки
оставались неподвижными. Начальные скорости всех атомов устанавливались равными нулю.

2. Результаты

ДНКМ 1–14 и 23–25 являются стабильными, поскольку обеспечивают устойчивые пери-
одические колебания по всему объему моделируемого кристалла NiTi при возбуждении как
в подрешетке никеля, так и в подрешетке титана, при этом атомы соседней подрешетки остаются
неподвижными в своих равновесных положениях. Отметим, что в нестабильных ДНКМ 15–22,
которые в настоящей работе не рассматриваются, происходит перенос колебательной энергии от
одной изначально возбуждённой подрешётки к другой при всех начальных амплитудах.

На рис. 2, a представлена зависимость смещения атомов ∆𝑟 от времени моделирования для
стабильной ДНКМ 4, возбужденной в подрешетке никеля с начальными амплитудами 𝐴𝑧 = 0.051
и 𝐴𝑧 = 0.151 Å. В интервале от 0 до 3 пс наблюдаются периодические колебания атомов
никеля с сохранением начальной амплитуды. Атомы подрешетки титана остаются при этом
невозбужденными, что подтверждается горизонтальными линиями на рис. 2, которые для двух
начальных амплитуд накладываются одна на другую. На рис. 2, b показана та же зависимость,
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Рис. 2. Зависимость смещения колеблющегося атома от времени моделирования для стабильной ДНКМ 4 (группа I),
возбужденной в подрешётке никеля (a) и титана (b) в бинарном сплаве NiTi. Расчеты приведены для двух начальных
амплитуд 𝐴 = 0.051 и 𝐴 = 0.151 Å (цвет онлайн)

Fig. 2. The dependence of the displacement of an oscillating atom on simulation time for a stable DNVM 4 excited in
nickel (a) and titanium (b) sublattices of the binary NiTi alloy. Calculations are given for two initial amplitudes 𝐴 = 0.051
and 𝐴 = 0.151 Å (color online)

но в этом случае ДНКМ 4 возбуждается в подрешетке титана. Как хорошо видно, атомы тита-
на совершают периодические колебания, а у атомов никеля в соседней подрешетке смещения
отсутствуют. Это указывает на то, что стабильные ДНКМ, возбужденные в одной подрешетке,
даже при значительных начальных амплитудах, не передают колебательную энергию атомам сосед-
ней подрешетки. Аналогичные результаты были получены при возбуждении других стабильных
ДНКМ 1–14 и 23–25 в обеих подрешетках.

Зависимость частоты колебаний от начальной амплитуды для семнадцати стабильных
ДНКМ для групп I, II и III представлена на рис. 3. В целом различные группы ДНКМ демон-
стрируют качественно похожие частотные характеристики. ДНКМ 1 и 23 (группа I), 2 и 24
(группа II), а также 3, 6, 10, 14 и 25 (группа III) характеризуются жёстким типом нелинейности,
при которой частота атомных колебаний возрастает с увеличением амплитуды. ДНКМ 5, 7, 9, 11
и 13 (группа II) демонстрируют довольно слабую зависимость частоты от амплитуды в широком
интервале начальных амплитуд. ДНКМ 4, 8 и 12 (группа I) показывают мягкий тип нелинейности
при возбуждении обеих подрешёток. ДНКМ 10 для подрешётки никеля и ДНКМ 9, 13 и 25
для подрешётки титана начинают проявлять мягкую нелинейность при амплитудах 𝐴 > 0.3 Å,
что обусловлено значительным отклонением атомов от равновесных положений. Это связано
с наличием двух или трёх ненулевых компонент вектора смещения в модах групп II и III, что
вызывает большие смещения атомов по сравнению со смещениями в группе I, приводя к мягкой
нелинейности. Кроме того, такое поведение объясняется уменьшением длительности устойчивых
периодических колебаний при увеличении амплитуды, что приводит к передаче энергии соседним
атомам и разрушению характерной для ДНКМ структуры смещений.

Как показано на рис. 3, при малых амплитудах частотные отклики для подрешёток Ni и Ti
разделяются на четыре группы. Предыдущие исследования однокомпонентных колебательных мод
в ГЦК-решётке показали, что различные частоты фононов соответствуют различным точкам зоны
Бриллюэна [42]. Частоты всех исследованных ДНКМ находятся в интервалах 4.3–5.3 ТГц для
подрешётки никеля и 5.3–6.1 ТГц для подрешётки титана. При возбуждении подрешётки никеля
ДНКМ 23–25 имеют наименьшие частоты (4.3 ТГц), а ДНКМ 12–14 — наивысшие (5.3 ТГц).
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Рис. 3. Частотные характеристики семнадцати стабильных однокомпонентных ДНКМ, возбужденных в простых
кубических подрешётках никеля (слева) и титана (справа) в бинарном сплаве NiTi. Для удобства данные разделены на
три группы (I, II, III) по количеству ненулевых компонент вектора смещения (см. подробности в тексте). Символы «Ni»
и «Ti» указывают на подрешётку с возбуждёнными атомами (цвет онлайн)

Fig. 3. Frequency characteristics of seventeen stable one-component DNVMs excited in simple cubic sublattices of nickel (left)
and titanium (right) in the binary NiTi alloy. For convenience, the data are divided into three groups (I, II, III) by the number
of nonzero components of the displacement vector (see text for details). The symbols “Ni” and “Ti” indicate the sublattice
with excited atoms (color online)

При возбуждении подрешётки титана ДНКМ 4–11 характеризуются наименьшими частотами
(5.3 ТГц), а ДНКМ 12–14 имеют самые высокие частоты (6.1 ТГц).

На рис. 4 представлена зависимость полной энергии (суммы потенциальной и кинетической
компонент) на атом от начальной амплитуды для семнадцати стабильных однокомпонентных
ДНКМ. Во всём интервале начальных амплитуд полная энергия увеличивается пропорционально
квадрату смещения атомов от их равновесных положений в решётке. Абсолютные значения

104
Бачурин Д. В., Мурзаев Р. Т.

Известия вузов. ПНД, 2026, т. 34, № 1



векторов смещения для групп I, II и III соотносятся как 1 :
√
2 :

√
3, что определяет соответствую-

щую пропорцию полной энергии 1 : 2 : 3. Следовательно, моды группы III обладают наивысшей
энергией, за ними следуют моды группы II с меньшей энергией, а моды группы I характеризуются
минимальной энергией.

Рис. 4. Зависимость полной энергии на атом, отношение 𝐶 и гидростатическое давление как функции начальной
амплитуды, расчитанные для семнадцати стабильных однокомпонентных ДНКМ, возбужденных в подрешётках никеля
и титана в бинарном сплаве NiTi. Символы «Ni» и «Ti» указывают на подрешётку с возбуждёнными атомами (цвет
онлайн)

Fig. 4. Total energy per atom, the ratio 𝐶, and hydrostatic pressure as functions of the initial amplitude calculated for seventeen
stable one-component DNVMs excited in the nickel and titanium sublattices in the binary NiTi alloy. The symbols “Ni” and
“Ti” indicate the sublattice with excited atoms (color online)
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Анализ кривых для подрешётки никеля выявил, что минимальная и максимальная полные
энергии составляют 0.11 эВ для ДНКМ 8 и 0.98 эВ для ДНКМ 14 соответственно. Для подрешётки
титана максимальная энергия достигает 1.02 эВ для ДНКМ 3, а минимальная — 0.10 эВ для
ДНКМ 8. ДНКМ 14 демонстрирует максимальную энергию 0.98 эВ, за ней следуют ДНКМ 3
(0.95 эВ) и ДНКМ 6 и 10 (0.81 эВ). При возбуждении ДНКМ 3 в подрешётке титана её энергия
достигает значений 1.02 эВ, а ДНКМ 14 и 25 — 0.86 и 0.89 эВ соответственно. В отличие от
бинарного сплава Ni3Al, где ранее наблюдалось чёткое разделение энергетических зависимостей
по группам [46], для NiTi такое разделение отсутствует. Моды из соседних групп часто имеют
близкие значения энергии. Кроме того, в пределах одной группы могут наблюдаться значительные
различия в энергии на атом, например, между ДНКМ 14 и 25 (0.98 и 0.65 эВ для никеля) и ДНКМ
3 и 10 (1.02 и 0.70 эВ для титана). Эти результаты для NiTi отличаются от полученных ранее для
однокомпонентных ДНКМ, возбужденных в подрешётке алюминия для сплава Ni3Al, где моды
одной группы накапливают схожие значения энергии [46].

Оценка нелинейности ДНКМ проводилась путём определения отношения полной энер-
гии системы 𝐸total к средней кинетической энергии за период колебаний 𝐸𝑘, а именно 𝐶 =
= 𝐸total/𝐸𝑘 = 1 + 𝐸𝑝/𝐸𝑘, где 𝐸𝑝 — средняя потенциальная энергия за период. В гармонических
системах имеет место равенство 𝐸𝑘 = 𝐸𝑝, что приводит к 𝐶 = 2. Однако в нелинейных системах
средняя кинетическая энергия за период колебаний не равна средней потенциальной энергии за
тот же период, вследствие чего 𝐶 ̸= 2. Таким образом, отклонение значения 𝐶 от 2 служит харак-
теристикой нелинейности колебательных мод и связано с теплоёмкостью кристалла, поскольку
показывает долю кинетической энергии в полной энергии системы.

На рис. 4 представлена зависимость отношения 𝐶 от начальной амплитуды для семнадцати
стабильных однокомпонентных ДНКМ, возбуждённых в подрешётках никеля и титана. При малых
начальных амплитудах 𝐴 < 0.06 Å нелинейность ДНКМ слабо выражена для обеих подрешёток,
при этом значения 𝐶 изменяются менее чем на 1%. Однако с увеличением амплитуды ДНКМ
с жёстким типом нелинейности демонстрируют снижение отношения 𝐶, тогда как моды с мягким
типом нелинейности показывают его увеличение. Кроме того, как отмечалось ранее, некоторые
ДНКМ могут изменять тип нелинейности с ростом амплитуды, и отношение 𝐶 реагирует на эти
изменения соответствующим образом.

Такое поведение зависимости 𝐶(𝐴) объясняется простым механизмом. С увеличением
амплитуды колебаний ДНКМ с жёстким типом нелинейности возрастает частота колебаний, что
приводит к увеличению средней кинетической энергии 𝐸𝑘. Поскольку отношение 𝐶 обратно
пропорционально кинетической энергии, увеличение или уменьшение 𝐸𝑘 вызывает соответствен-
но уменьшение или увеличение 𝐶. Подобное поведение зависимости 𝐶(𝐴) наблюдается и для
других колебательных мод в различных кристаллических решётках, включая одномерные цепочки
частиц [15, 39, 54], а также двух- и трёхмерные кристаллы [41,44].

Применение периодических граничных условий и термодинамического ансамбля NVE
(постоянный объём) при возбуждении ДНКМ приводит к возникновению внутренних механи-
ческих напряжений в расчётной ячейке. Эти напряжения изменяются во времени с периодом,
равным половине периода колебаний ДНКМ, поэтому для анализа используются их средние
значения во времени. Зависимость гидростатического давления от начальной амплитуды для
семнадцати стабильных ДНКМ, возбужденных в подрешётках никеля и титана, представлена
на рис. 4. Интересно отметить, что гидростатическое давление очень незначительно при низ-
ких амплитудах и начинает заметно возрастать при начальных амплитудах выше 𝐴 > 0.05 Å.
При дальнейшем увеличении амплитуды гидростатическое давление на стенки расчётной ячейки
увеличивается, следуя приблизительно квадратичной зависимости. Максимальные и минималь-
ные значения гидростатического давления составляют 197 кПа для ДНКМ 3 и 17 кПа для
ДНКМ 8 в подрешётке никеля и соответственно 191 и 16 кПа в подрешётке титана. Как и в
случае полной колебательной энергии (см. рис. 4), чёткое разделение на группы мод отсутствует.
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В целом наблюдается корреляция между колебательной энергией мод и создаваемым гидростати-
ческим давлением. Значения давления для ДНКМ одной группы могут существенно различаться.
Например, для ДНКМ 3 и 6 (группа III) в подрешётке никеля они равны 197 и 105 кПа, а в под-
решётке титана соответственно 191 и 106 кПа. Некоторые моды из различных групп, такие как
ДНКМ 2 (группа II) и ДНКМ 25 (группа III) для никеля, а также ДНКМ 24 (группа II) и ДНКМ 14
(группа III) для титана, создают близкие значения гидростатического давления. В общем, одно-
компонентные ДНКМ, возбужденные в подрешётках никеля и титана, генерируют очень близкие
значения гидростатического давления в бинарном сплаве NiTi.

Прямое сопоставление полученных результатов с данными других авторов не представляет-
ся возможным, поскольку в настоящее время практически отсутствуют публикации, посвященные
изучению ДНКМ в подрешётках бинарных сплавов. Пожалуй, единственным исключением
является наша предыдущая работа [55], в которой подробно исследовались двадцать пять одноком-
понентных ДНКМ, возбужденных в простой кубической подрешетке алюминия во всем объеме
бинарного сплава Ni3Al. В связи с этим дальнейшие сравнения носят приблизительный характер.

В работе [55] было установлено, что устойчивые периодические колебания поддерживаются
только шестнадцатью ДНКМ 1–4, 6, 7, 9, 12–15, 18, 20, 23–25, тогда как девять ДНКМ 5, 8, 10,
11, 16, 17, 19, 21, 22 оказались нестабильными. Таким образом, в отличие от сплава NiTi, для
Ni3Al характерен другой набор стабильных и нестабильных колебательных мод, что обусловлено
различиями в симметрии кристаллической решетки, влияющей на динамику атомов для некоторых
ДНКМ. Отметим, что ДНКМ 1–4, 6, 7, 9, 12–14, 23–25 демонстрируют устойчивость, а ДНКМ 16,
17, 19, 21, 22 — нестабильность в обоих бинарных сплавах.

Значения полной колебательной энергии, аккумулируемой ДНКМ в Ni3Al, сравнимы с ана-
логичными значениями для NiTi. Однако, в отличие от Ni3Al, различия в полной энергии внутри
одной группы мод значительно выше в NiTi. ДНКМ, возбуждаемые в NiTi, вызывают существен-
ные отклонения в параметре 𝐶, что свидетельствует о более выраженной нелинейности и более
значительном вкладе в удельную теплоемкость кристалла. Важно отметить, что в настоящей
работе и в публикации [55] использовалась расчетная ячейка одинакового размера, что делает
такое сравнение корректным. Таким образом, одни и те же ДНКМ, возбуждаемые на струк-
турно эквивалентных подрешётках различных бинарных сплавов, могут обладать различными
амплитудно-частотными характеристиками и оказывать различное влияние на свойства кристалла.
На данном этапе исследования невозможно утверждать, что исследованные ДНКМ будут вести
себя сходным образом в любом бинарном сплаве с аналогичной кристаллической решеткой. Этот
вопрос требует дополнительного рассмотрения.

Изучение ДНКМ в бинарных сплавах методами молекулярной динамики с использованием
многочастичных межатомных потенциалов остается относительно узкоспециализированной обла-
стью, и детализированные данные для других сплавов крайне ограничены. Значительная часть
предыдущих исследований опиралась на упрощенные парные межатомные потенциалы, такие
как потенциалы Морзе или β-Ферми–Паста–Улам–Цингоу (β-FPUT), которые не в полной мере
учитывают сложность связей в реальных материалах, особенно в металлических сплавах, где
многочастичные эффекты и угловые зависимости играют ключевую роль [14, 16, 41, 43, 55–60].
Это существенно ограничивает возможности количественного сравнения результатов указанных
исследований с настоящей работой.

Заключение

С использованием метода молекулярной динамики в бинарном сплаве NiTi были воз-
буждены однокомпонентные трёхмерные ДНКМ в кубических подрешётках никеля и титана.
Эти семнадцать колебательных мод поддерживают стабильные периодические колебания. При воз-
буждении мод в одной подрешётке их энергия локализуется в этой подрешётке и не передаётся
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в другую. В исследованном интервале амплитуд стабильные ДНКМ могут накапливать колеба-
тельную энергию от 0.11 до 0.98 эВ в подрешётке никеля и от 0.10 до 1.02 эВ в подрешётке титана
на атом. Величина накопленной энергии определяется количеством ненулевых компонентов векто-
ра смещения атомов и пропорциональна квадрату их начального смещения. Возбуждение ДНКМ
приводит к снижению удельной теплоёмкости кристалла (отношение полной энергии к кинети-
ческой) для мод с жёстким типом нелинейности, тогда как для мод с мягкой нелинейностью теп-
лоёмкость возрастает. Возбуждение стабильных ДНКМ в подрешётках никеля и титана приводит
к возникновению гидростатического давления, пропорционального длине вектора смещения ато-
мов. При этом давление, вызванное ДНКМ из группы III, превосходит давление от мод групп I и II.
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