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Аннотация. Рассматриваются цепочки 𝑁 односторонне связанных нелинейных уравнений первого порядка, у которых
значение последнего элемента определяется через первый элемент цепочки. Цель работы состоит в исследовании
локальной — в окрестности нулевого состояния равновесия — динамики этой системы. Выделены критические случаи
в задаче об устойчивости состояния равновесия и построены нормальные формы, определяющие локальное поведение
решений. В простейших случаях, когда 𝑁 = 2 и 𝑁 = 3, проведен детальный анализ. Наиболее интересная часть
исследований относится к случаю, когда значение 𝑁 достаточно велико. Показано, что критические случаи тогда
имеют бесконечную размерность. Методы. Стандартная схема исследования, базирующаяся на использовании метода
локальных инвариантных многообразий и метода нормальных форм, оказывается неприменимой. Используется разрабо-
танный автором специальный метод бесконечномерной нормализации. Основные результаты состоят в построении так
называемых квазинормальных форм — аналогов нормальных форм для бесконечномерного случая. Важно подчеркнуть,
что даже при достаточно больших значениях количества элементов 𝑁 цепочки квазинормальные формы, определяющие
динамику исходной системы, существенно зависят от варьирования величины 𝑁 . Отметим, что при определенных
значениях коэффициентов системы динамика ее может быть достаточно сложной.
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Abstract. Chains of 𝑁 unidirectionally coupled nonlinear first-order equations are considered, where the value of the last
element is determined through the first element of the chain. The aim of this work is to investigate the local — in the
neighborhood of the zero equilibrium state — dynamics of this system. Critical cases in the problem of equilibrium state
stability are identified, and normal forms determining the local behavior of solutions are constructed. A detailed analysis is
performed in the simplest cases, where 𝑁 = 2 and 𝑁 = 3. The most interesting part of the research concerns the case where
the value of 𝑁 is sufficiently large. It is shown that the critical cases then have infinite dimension. Methods. The standard
research scheme, based on the use of the method of local invariant manifolds and the method of normal forms, turns out to
be inapplicable. A special method of infinite-dimensional normalization developed by the author is used. The main results
consist in the construction of so-called quasi-normal forms — analogs of normal forms for the infinite-dimensional case. It is
important to emphasize that even for sufficiently large values of the number of chain elements 𝑁 , the quasi-normal forms
determining the dynamics of the original system significantly depend on variations in the value of 𝑁 . Note that for certain
values of the system coefficients, its dynamics can be quite complex.
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Постановка задачи

Рассмотрим одно из простейших нелинейных уравнений первого порядка

𝑢̇+ 𝑎𝑢 = 𝑓(𝑢), (1)

где 𝑎 > 0, а достаточно гладкая функция 𝑓(𝑢) имеет в нуле порядок малости выше первого:

𝑓(𝑢) = 𝑓2𝑢
2 + 𝑓3𝑢

3 +𝑂(𝑢4).

Цепочкой из 𝑁 уравнений вида (1) с односторонними связями называется система
уравнений

𝑢̇𝑗 + 𝑎𝑢𝑗 = 𝑓(𝑢𝑗) + 𝑏𝑢𝑗+1 (𝑏 ̸= 0), (2)

в которой 𝑗 = 1, . . . , 𝑁 и на правом конце этой цепочки для 𝑢𝑁+1(𝑡) выполнено граничное
условие

𝑢𝑁+1 = γ𝑢1 (γ ̸= 0). (3)

Цепочки вида (2) являются важными объектами для исследований. Им уделяется особое
внимание. Такие цепочки возникают при моделировании многих прикладных задач в радио-
физике [1–8], лазерной физике [9–13], математической экологии [14, 15], теории нейронных
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сетей [16–21], оптике [3, 8, 22, 23], биофизике [24] и др. Релаксационные колебания в связанных
цепочках с финитной нелинейностью и запаздыванием для небольшого количества элементов
изучались в [25,26]. Отметим еще работу [27], в которой рассмотрена динамика периодической
цепочки с большим количеством элементов.

Поставим задачу исследования поведения при 𝑡 → ∞ всех решений цепочки (2), (3) с на-
чальными условиями из некоторой достаточно малой окрестности нулевого состояния равновесия.

Важную роль в этом вопросе играет линеаризованная в нуле система уравнений:

𝑢̇𝑗 + 𝑎𝑢𝑗 = 𝑏𝑢𝑗+1, 𝑢𝑁+1 = γ𝑢1 (𝑗 = 1, . . . , 𝑁). (4)

Характеристическое уравнение для системы (4) имеет вид

[(λ+ 𝑎)𝑏−1]𝑁 = γ, (5)

поэтому для корней λ1, . . . , λ𝑁 этого уравнения верны равенства

ln γ = ln |γ|+ 𝑖 arg(γ), (6)

где arg(γ) = 0 при γ > 0 и arg(γ) = π при γ < 0.
При условии, когда все 𝑁 корней (6) имеют отрицательные вещественные части, все

решения системы (4) и системы (2), (3) с начальными условиями из достаточно малой окрестности
нулевого состояния равновесия стремятся к нулю при 𝑡 → ∞. Если же в (6) есть корень
с положительной вещественной частью, то система (4) имеет экспоненциально растущее при
𝑡 → ∞ решение, а задача о динамике (2), (3) перестает быть локальной: ее нулевое решение
неустойчиво, и в его достаточно малой окрестности не может быть аттрактора.

Ниже будем рассматривать критический случай в задаче об устойчивости, когда у (6) нет
корней с положительной вещественной частью, но существует корень с нулевой вещественной
частью.

Поскольку параметр 𝑎 положителен, то при достаточно малых значениях параметра 𝑏 все
корни (6) имеют отрицательные вещественные части. Через 𝑏+ будем обозначать наименьшее
положительное значение параметра 𝑏, при котором в (6) есть корень с нулевой вещественной
частью. Если такого значения не существует, то полагаем 𝑏+ = ∞. Соответственно, через 𝑏−

обозначим наибольшее отрицательное значение 𝑏 (если оно существует, иначе положим 𝑏− = −∞).
Таким образом, при 𝑏 ∈ (𝑏−, 𝑏+) все корни (6) имеют отрицательные вещественные части.

Введем в рассмотрение еще две величины: γ+ и γ−, которые по смыслу «похожи» на 𝑏+ и 𝑏−

соответственно. При малых значениях γ все корни (6) имеют отрицательные вещественные части.
Через γ+ будем обозначать наименьшее положительное значение параметра γ, при котором в (6)
есть корень с нулевой вещественной частью. Если такого значения не существует, то полагаем
γ+ = ∞. Соответственно, через γ− обозначим наибольшее отрицательное значение γ (если оно
существует, иначе положим γ− = −∞). Таким образом, при γ ∈ (γ−, γ+) все корни (6) имеют
отрицательные вещественные части.

В разделах 1 и 2 изучим две ситуации, когда 𝑁 = 2 и 𝑁 = 3. В разделе 3 приведем
результаты для произвольного 𝑁 . В разделе 4, который является центральным в настоящей работе,
предполагается, что количество уравнений 𝑁 достаточно велико, то есть

𝑁 ≫ 1. (7)

В частности, для этих случаев будут определены значения 𝑏± и γ±. В методическом плане иссле-
дования локальной динамики в разделах 1–3 базируются на использовании методов локальных
инвариантных интегральных многоообразий и метода нормальных форм (см., например, [28, 29]).
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В условиях раздела 4 эти методы непосредственно не применимы, поскольку критические случаи
тогда имеют бесконечную размерность. Используется разработанный автором специальный метод
бесконечномерной нормализации [13, 14, 30]. Основные результаты состоят в построении так
называемых квазинормальных форм — аналогов нормальных форм для бесконечномерного случая.

В плане одного из важных обобщений модели цепочки (2), (3) укажем, что полученные
результаты распространяются и на цепочки уравнений (1) с другими односторонними связями

𝑢̇𝑗 + 𝑎𝑢𝑗 = 𝑓(𝑢𝑗) + 𝑏(𝑢𝑗+1 − 𝑢𝑗),

в которых, как и для цепочки (2),

𝑗 = 1, . . . , 𝑁 ; 𝑢𝑁+1 = γ𝑢1.

Отметим, что в наиболее интересном случае (7) цепочки, для которых выполнено условие
«периодичности»

𝑢𝑁+1 = 𝑢1,

изучались в [27]. Сразу подчеркнем, что граничное условие (3) при γ ̸= 1 принципиально
усложняет динамические свойства системы (2).

1. Случай 𝑁 = 2

Этот случай наиболее простой. Рассматривается система двух уравнений

𝑢̇1 + 𝑎𝑢1 =𝑓(𝑢1) + 𝑏𝑢2,

𝑢̇2 + 𝑎𝑢2 =𝑓(𝑢2) + 𝑏γ𝑢1.
(8)

При γ < 0 имеем 𝑏± = ±∞. Тем самым при всех 𝑏 корни (6) имеют отрицательные веществен-
ные части.

Пусть γ > 0.

Тогда 𝑏± = ±𝑎(
√
γ)−1 (

√
γ > 0 — арифметический корень из γ). При 𝑏 = 𝑏± линейная система (4)

(для 𝑁 = 2) имеет постоянные решения(︃
𝑢10
𝑢20

)︃
=

(︃
𝑏±

𝑎

)︃
· const.

Фиксируем произвольно значение 𝑏1 и введем малый параметр 𝜀 : 0 < 𝜀 ≪ 1. Положим в (8)

𝑏 = 𝑏± + 𝜀𝑏1. (9)

Тогда в (6) имеется один отрицательный (и отделенный от нуля при 𝜀 → 0) корень и один корень
λ0(𝜀), близкий к нулю:

λ0(𝜀) = 𝜀𝑏1
√
γ+𝑂(𝜀2).

При малых 𝜀 в фазовом пространстве системы (8) имеется локальное инвариантное одномерное ин-
тегральное устойчивое многообразие (см., например, [31]), на котором система (8) (при некотором
условии невырожденности) с точностью до слагаемых порядка 𝑂(𝜀) принимает вид скалярного
обыкновенного дифференциального уравнения

𝑑ξ
𝑑τ

= 𝑏1
√
γ ξ+ 𝑎

(︀
1 + (

√
γ)−1

)︀
ξ2, (10)
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где τ = 𝜀𝑡 — «медленное» время, а функция ξ(τ) связана с решениями (8) асимптотическим
равенством (︃

𝑢1(𝑡, 𝜀)
𝑢2(𝑡, 𝜀)

)︃
= 𝜀ξ(τ)

(︃
𝑏±

𝑎

)︃
+𝑂(𝜀2). (11)

При 𝑏1 ̸= 0 уравнение (10) имеет ненулевое состояние равновесия ξ0 = −𝑏1
√
γ
[︀
𝑎 +

+
(︀
1 + (

√
γ)−1

)︀]︀−1
. Оно устойчиво при 𝑏1 > 0 и неустойчиво при 𝑏1 < 0. Поэтому и систе-

ма (8) при γ > 0, при условии (9) и при достаточно малых 𝜀 имеет состояние равновесия(︃
𝑢10
𝑢20

)︃
= 𝜀 ξ0

(︃
𝑏±

𝑎

)︃
+𝑂(𝜀2),

которое устойчиво (неустойчиво) при 𝑏1 > 0 (𝑏1 < 0). В рассмотренном близком к критическому
случаю уравнение (10) называют нормальной формой. Упомянутое выше условие невырожденно-
сти состоит в том, что 𝑓2 ̸= 0. При 𝑓2 = 0 и 𝑓3 ̸= 0 изменения не существенны. В нормальной
форме квадратичное слагаемое заменится на кубическое, а асимптотическое разложение — ана-
лог (11) — идет по степеням 𝜀1/2.

Тем самым изучение локальной динамики системы (8) завершено.
Приведем для системы (8) значения γ+ и γ− :

γ+ =

(︂
𝑎

𝑏

)︂2

, γ− = −∞.

2. Случай 𝑁 = 3

Система (2), (3) при 𝑁 = 3 принимает вид

𝑢̇1 + 𝑎𝑢1 =𝑓(𝑢1) + 𝑏𝑢2,

𝑢̇2 + 𝑎𝑢2 =𝑓(𝑢2) + 𝑏𝑢3,

𝑢̇3 + 𝑎𝑢3 =𝑓(𝑢3) + 𝑏γ𝑢1.

(12)

Для линеаризованной системы

𝑣̇ = 𝐴γ𝑣, где 𝑣 = (𝑣1, 𝑣2, 𝑣3), 𝐴γ =

(︃ −𝑎 𝑏 0
0 −𝑎 𝑏
𝑏γ 0 −𝑎

)︃
, (13)

корни λ1, λ2 и λ3 характеристического уравнения определяются равенствами

λ1 + 𝑎 = 𝑏 3
√
γ, λ2 + 𝑎 = 𝑏 3

√
γ

(︂
− 1

2
+ 𝑖

√
3

2

)︂
, λ3 + 𝑎 = 𝑏 3

√
γ

(︂
− 1

2
− 𝑖

√
3

2

)︂
, (14)

где 3
√
γ — арифметический корень ( 3

√
γ > 0 при γ > 0 и 3

√
γ < 0 при γ < 0).

Для значений γ± верны равенства

γ+ =

⎧⎪⎪⎨⎪⎪⎩
(︂
𝑎

𝑏

)︂3

, если 𝑏 > 0,(︂
2𝑎

|𝑏|

)︂3

, если 𝑏 < 0,
γ− =

⎧⎪⎪⎨⎪⎪⎩
−
(︂
2𝑎

𝑏

)︂3

, если 𝑏 > 0,(︂
𝑎

𝑏

)︂3

, если 𝑏 < 0.
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Приведем значения величины 𝑏±:

𝑏+ =

⎧⎪⎨⎪⎩
𝑎
3
√
γ
, если γ > 0,

− 2𝑎
3
√
γ
, если γ < 0,

𝑏− =

⎧⎪⎨⎪⎩
− 2𝑎

3
√
γ
, если γ > 0,

𝑎
3
√
γ
, если γ < 0.

При условиях γ ∈ (γ−, γ+)
(︀
𝑏 ∈ (𝑏−, 𝑏+)

)︀
корни (14) имеют отрицательные вещественные части,

а при γ ∈ (−∞, γ−) и γ ∈ (γ+,∞)
(︀
𝑏 ∈ (−∞, 𝑏−) и 𝑏 ∈ (𝑏+,∞)

)︀
среди корней (14) есть корень

с положительной вещественной частью. При условиях γ = γ±
(︀
𝑏 = 𝑏±

)︀
в задаче об устойчивости

решений (12) возникают критические случаи нулевого корня или критические случаи пары чисто
мнимых корней. Рассмотрим их.

2.1. Критический случай нулевого корня. Данный случай возникает при условии, когда
𝑏 > 0 и γ = γ+, либо при 𝑏 < 0 и γ = γ−. Ограничимся рассмотрением только первого
из приведенных условий, то есть ниже считаем, что

𝑏 > 0 и γ = γ+ =
(︁𝑎
𝑏

)︁3
.

Линейная система (13) при γ = γ+ имеет постоянные решения 𝑣 = 𝑑0 = const, где 𝑑0 =
=
(︀
1, 𝑎𝑏−1, 𝑎2𝑏−2

)︀
.

Фиксируем произвольно значение γ1 и положим в (12)

γ = γ+ + 𝜀γ1, 0 < 𝜀 ≪ 1.

Тогда корни λ2 и λ3 имеют при малых 𝜀 отрицательные вещественные части: Re λ2,3 = −1
2𝑎+𝑂(𝜀),

а для корня λ1(𝜀) верно асимптотическое равенство

λ(𝜀) = 𝜀µ1γ1 +𝑂(𝜀2), где µ1 = 𝑏3(3𝑎2)−1.

Отсюда следует, что в достаточно малой и не зависящей от 𝜀 окрестности нулевого состояния
равновесия системы (12) существует устойчивое локальное инвариантное одномерное интеграль-
ное многообразие, на котором эта система с точностью до 𝑂(𝜀) представима в виде нормальной
формы (при выполнении некоторого условия невырожденности)

𝑑ξ
𝑑τ

= αξ+ βξ2, τ = 𝜀𝑡. (15)

Для определения коэффициентов α и β подставим в (12) решение 𝑢 = (𝑢1, 𝑢2, 𝑢3) в виде асимпто-
тического ряда

𝑢(𝑡, 𝜀) = 𝜀ξ(τ)𝑑0 + 𝜀2𝑈2(τ) + . . . .

Собирая коэффициенты при первой степени 𝜀 в получившемся формальном тождестве, получаем
верное равенство, а учитывая коэффициенты при 𝜀2, приходим к системе для определения
функции 𝑈2(τ):

𝐴γ+𝑈2 = −𝑑0
𝑑ξ
𝑑τ

+ 𝑓2ξ2𝑑0 · 𝑑0 + 𝑏γ1

(︃ 0
0
1

)︃
, (16)

здесь и ниже умножение векторов покоординатное.
Система (16) разрешима тогда и только тогда, когда ее правая часть ортогональна вектору

ℎ0 = (1, 𝑏𝑎−1, 𝑏2𝑎−2) — ненулевому решению однородного сопряженного уравнения 𝐴*ℎ0 = 0.
Учитывая это, получаем, что в (15)

α = µ1γ1 = 𝑏3(3𝑎2)−1γ1, β =
1

3
𝑓2(𝑑0 · 𝑑0, ℎ0). (17)
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Упомянутое выше условие невырожденности состоит в выполнении неравенства 𝑓2 ̸= 0.
Используя (17) в (15), получаем полную картину поведения решений (15), а значит, и реше-
ний (12) в малой окрестности нулевого состояния равновесия.

2.2. Критический случай пары чисто мнимых корней. Данный случай возникает
при условиях

𝑏 < 0 и γ+ =

(︂
2𝑎

|𝑏|

)︂3

, либо 𝑏 > 0 и γ− = −
(︂
2𝑎

𝑏

)︂3

.

Пусть выполнены первые из этих условий

𝑏 < 0, γ+ =

(︂
2𝑎

|𝑏|

)︂3

.

Тогда λ1 = −𝑎+𝑏
3
√
γ+ < 0 и λ2,3 = ±𝑖

√
3𝑎. Линейная система (13) при этом имеет периодические

решения

𝑣0(𝑡) = 𝑔0 exp(𝑖𝑎
√
3𝑡), 𝑔0 =

(︃ −γ+1/3
(1 + 𝑖

√
3)

γ+2/3

−1
2 + 𝑖

√
3
2

)︃
.

Фиксируем произвольно значение γ1 и положим в (12) и (13):

γ = γ+ + 𝜀γ1, 0 < 𝜀 ≪ 1.

При всех достаточно малых 𝜀 в не зависящей от 𝜀 достаточно малой окрестности нулевого
состояния равновесия (12) существует (см., например, [31]) двумерное устойчивое локально
инвариантное интегральное многообразие, на котором система (12) может быть с точностью
до слагаемых порядка 𝜀 представлена в виде нормальной формы — комплексного скалярного
обыкновенного дифференциального уравнения первого порядка вида

𝑑ξ
𝑑τ

= δξ+ σξ|ξ|2, τ = 𝜀𝑡. (18)

Для определения коэффициентов δ и σ подставим в (12) решение в виде формального ряда

𝑈(𝑡, 𝜀) =𝜀1/2
(︀
ξ(τ)𝑔0 exp(𝑖𝑎

√
3𝑡) + ξ̄(τ)𝑔0 exp(−𝑖𝑎

√
3𝑡)
)︀
+ 𝜀𝑈2(𝑡, τ)+

+ 𝜀3/2𝑈3(𝑡, τ) + . . . ,

где зависимость от 𝑡 — 2π(𝑎
√
3)−1-периодическая. В получившемся формальном тождестве будем

собирать коэффициенты при одинаковых степенях 𝜀. На первом шаге, собирая коэффициенты
при 𝜀1/2, приходим к верному равенству. На следующем шаге получаем систему уравнений для
определения функции 𝑈2(𝑡, τ) = 𝑈20|ξ|2 + 𝑈21ξ2 exp(2𝑖𝑎

√
3𝑡) + 𝑈̄21ξ̄ exp(−2𝑖𝑎

√
3𝑡) :

𝐴𝑈20 = 𝑓2

(︃ 4(γ+)2/3

(γ+)4/3

1

)︃
, (𝐴− 2𝑖𝑎

√
3𝐼)𝑈21 = 𝑓2

(︃ (γ+)2/3(4 + 2𝑖
√
3)

(γ+)4/3

1− 1
2 𝑖
√
3

)︃
.

Отсюда находим, что

𝑈20 = 𝑓2𝐴
−1

(︃ 4(γ+)2/3

(γ+)4/3

1

)︃
, 𝑈21 = 𝑓2(𝐴− 2𝑖𝑎

√
3𝐼)−1

(︃ (γ+)2/3(4 + 2𝑖
√
3)

(γ+)4/3

1− 1
2 𝑖
√
3

)︃
.
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На третьем шаге собираем коэффициенты при 𝜀3/2. В результате приходим к системе уравнений
относительно вектор-функции 𝑈3(𝑡, τ), которую будем искать в виде

𝑈3(𝑡, τ) = 𝑈31(τ) exp
(︀
𝑖𝑎
√
3𝑡
)︀
+ 𝑐𝑐+ 𝑈33(τ) exp

(︀
3𝑖𝑎

√
3𝑡
)︀
+ 𝑐𝑐.

Здесь и ниже через 𝑐𝑐 обозначается слагаемое, комплексно сопряженное к предыдущему.
Выражение для 𝑈33(τ) просто находится. Ниже оно не понадобится, поэтому приводить его

не будем. Для 𝑈31(τ) получаем систему уравнений

(︀
𝐴γ+ − 𝑖𝑎

√
3𝐼
)︀
𝑈31(τ) = −𝑏γ1(γ+)1/3(1 + 𝑖

√
3)

(︃ 0
0
1

)︃
ξ− 𝑔0

𝑑ξ
𝑑τ

+ ξ|ξ|2𝐵, (19)

где 𝐵 = 2𝑓2(𝑔0𝑈20 + 𝑔0𝑈21) + 3𝑓3𝑔0 · 𝑔0 · 𝑔0.
Необходимым и достаточным условием разрешимости этой системы является условие

ортогональности правой части (19) вектору ℎ — ненулевому решению однородного сопряженного
уравнения 𝐴γ+ℎ = −𝑖𝑎

√
3ℎ. Находим, что ℎ =

(︀
(1 + 𝑖

√
3)2𝑎2, (1 + 𝑖

√
3)𝑎𝑏, 𝑏2

)︀
.

В итоге для определения ξ(τ) получаем уравнение (18), в котором

δ = 𝑏2(6𝑎)−1(1 + 𝑖
√
3)γ1, σ = (𝐵, ℎ)

(︀
(𝑔0, ℎ)

)︀−1
.

Для примера сформулируем один результат.

Теорема 1. Пусть параметры γ1, 𝑓2 и 𝑓3 таковы, что Re δ > 0 и Re σ < 0. Тогда уравнение (18)

имеет устойчивый цикл ρ0 exp(𝑖30τ), где ρ0 =
(︀
Re δ · (Re σ)−1

)︀1/2
, ψ =

√
3γ1Re δ + ρ20 Im σ,

а система (12) при достаточно малых 𝜀 имеет устойчивый цикл

𝑢0(𝑡, 𝜀) = 𝜀1/2
(︀
𝑔0ρ0 exp

(︀
(𝑖𝑎

√
3 + 𝜀𝑖ψ+𝑂(𝜀2))𝑡

)︀
+ 𝑐𝑐

)︀
+𝑂(𝜀).

3. Случай произвольного номера 𝑁

Прежде всего определим значения γ±:

γ+ =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

(︀
𝑎𝑏−1

)︀𝑁
, если 𝑏 > 0,(︀

𝑎|𝑏|−1
)︀𝑁

, если 𝑏 < 0 и 𝑁 — нечетно,(︀
𝑎|𝑏|−1

)︀𝑁(︂
cos
π
𝑁

)︂−𝑁

, если 𝑏 < 0 и 𝑁 — четно;

γ− =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−
(︀
𝑎𝑏−1

)︀𝑁(︂
cos
π
𝑁

)︂𝑁

, если 𝑏 > 0 и 𝑁 — четно,

−
(︀
𝑎𝑏−1

)︀𝑁
, если 𝑏 > 0 и 𝑁 — нечетно,

−
(︀
𝑎|𝑏|−1

)︀𝑁
, если 𝑏 < 0 и 𝑁 — нечетно,

−
(︀
𝑎|𝑏|−1

)︀𝑁(︂
cos
π
𝑁

)︂𝑁

, если 𝑏 < 0 и 𝑁 — четно.

Напомним, что при γ ∈ (γ−, γ+) нулевое решение системы (20) асимптотически устойчиво,
а при γ < γ− или γ > γ+ — неустойчиво. Критические случаи в задаче об устойчивости нулевого
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состояния равновесия возникают при γ = γ+ или при γ = γ−. В этом разделе рассмотрим
локальную динамику системы (20) в случаях, близких к критическим.

Приведем несколько формул, которые понадобятся в дальнейшем. Пусть γ𝑁 — арифметиче-
ский корень 𝑁 -й степени из |γ|. Положим

γ0 =

⎧⎨⎩γ𝑁 , если γ > 0,

γ𝑁 exp

(︂
𝑖
π
𝑁

)︂
, если γ < 0,

и пусть

α𝑘 = γ0 exp
(︂
2π𝑖𝑘
𝑁

)︂
, 𝑘 = 1, . . . , 𝑁.

Отметим, что α𝑁𝑘 = γ. Систему (2), (3) запишем в виде

𝑢̇ = 𝐴𝑢+ 𝐹 (𝑢), (20)

где

𝐴 =

⎛⎜⎜⎜⎜⎜⎜⎝
−𝑎 𝑏 0 . . . 0

0 −𝑎 𝑏 . . . 0
...

...
. . . . . .

...

0 0 0
. . . 𝑏

𝑏γ 0 0 . . . −𝑎

⎞⎟⎟⎟⎟⎟⎟⎠ , 𝐹 (𝑢) = 𝑓2𝑢 · 𝑢+ 𝑓3𝑢 · 𝑢 · 𝑢+ . . . .

Здесь и ниже умножение векторов покоординатное, 𝑢 = (𝑢1, . . . , 𝑢𝑁 ).
Матрица 𝐴 имеет собственные значения

λ𝑘 = −𝑎+ 𝑏α𝑘 (𝑘 = 1, . . . , 𝑁)

и отвечающие им собственные векторы

𝑔𝑘 = (1,α𝑘,α
2
𝑘, . . . ,α

𝑁−1
𝑘 ).

Отметим, что у сопряженной к 𝐴 матрицы 𝐴* соответствующие собственные векторы ℎ𝑘 =

= (1,α−1
𝑘 ,α−2

𝑘 , . . . ,α−(𝑁−1)
𝑘 ).

3.1. Случай произвольного номера 𝑁 . Здесь предполагаем, что 𝑁 > 2 и матрица 𝐴

имеет нулевое собственное значение, то есть

𝑏 > 0 и γ = γ+ = (𝑎𝑏−1)𝑁 , (21)

либо
𝑏 < 0, γ = γ− = (𝑎|𝑏|−1)𝑁 и 𝑁 — нечетно.

Коротко остановимся только на случае (21). Собственные значения λ2, . . . , λ𝑁 имеют отрица-
тельные вещественные части. Собственному значению λ1 = 0 отвечает собственный вектор
𝑔0 = (1, 𝑎/𝑏, 𝑎2/𝑏2, . . . , 𝑎𝑁−1/𝑏𝑁−1). Фиксируем произвольно γ1 и положим в (1)

𝑔 = 𝑔+ + 𝜀γ1, где 0 < 𝜀 ≪ 1. (22)
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Для нахождения в рассматриваемом случае коэффициентов α и β нормальной формы —
скалярного уравнения

𝑑ξ
𝑑τ

= αξ+ β|ξ|2, τ = 𝜀𝑡, (23)

будем решения 𝑢(𝑡, 𝜀) системы (1) искать в виде формального ряда

𝑢(𝑡, 𝜀) = 𝜀ξ(τ)𝑔0 + 𝜀2𝑈2(τ) + . . . .

Тогда для нахождения 𝑈2(τ) получим систему уравнений

𝐴𝑈2 = −𝑔0
𝑑ξ
𝑑τ

+ 𝑏γ1

⎛⎜⎜⎜⎝
0
...
0

1

⎞⎟⎟⎟⎠ ξ+ 𝑓2ξ2𝑔0 · 𝑔0.

Для разрешимости этой системы необходимо и достаточно, чтобы ее правая часть была ортогональ-
на вектору ℎ0 = (1, 𝑏/𝑎, 𝑏2/𝑎2, . . . , 𝑏𝑁−1/𝑎𝑁−1). Отсюда приходим к выводу, что в уравнении (23)

α =
𝑎γ1
𝑁γ+

, β =
1− γ+

𝑁(1− 𝑎𝑏−1)
. (24)

Итак, показано, что при достаточно малых 𝜀 динамические свойства решений (20) с начальными
условиями из некоторой достаточно малой и не зависящей от 𝜀 окрестности нулевого состояния
равновесия описываются уравнением (23) с коэффициентами (24).

3.2. Критический случай пары чисто мнимых корней. Здесь предполагаем, что матрица
𝐴 имеет пару чисто мнимых собственных значений ±𝑖ω (ω > 0), а все остальные ее собственные
значения имеют отрицательные вещественные части, то есть выполнены условия

𝑏 < 0, γ+ = (𝑎|𝑏|−1)𝑁
(︂
cos
π
𝑁

)︂𝑁

и 𝑁 − четно, (25)

либо

𝑏 > 0, γ− = −(𝑎𝑏−1)𝑁
(︂
cos
π
𝑁

)︂𝑁

и 𝑁 − четно,

либо

𝑏 < 0, γ− = −(𝑎|𝑏|−1)𝑁
(︂
cos
π
𝑁

)︂𝑁

и 𝑁 − четно.

Остановимся только на случае (25). Матрица 𝐴 тогда имеет собственные значения λ± =

= ±𝑖ω, где ω = 𝑎 tg π𝑁 . Им отвечают собственные векторы 𝑔0 и 𝑔0 соответственно, и 𝑔0 =

= (1,α𝑁/2,α
2
𝑁/2, . . . ,α

𝑁−1
𝑁/2 ).

Пусть для γ выполнено равенство (22). Нормальной формой, описывающей динамические
свойства системы (20) при условии (22) и (25), является скалярное комплексное уравнение (18).
Для нахождения коэффициентов этого уравнения рассмотрим формальный ряд

𝑈(𝑡, 𝜀) =𝜀1/2
(︀
ξ(τ)𝑔0 exp(𝑖ω𝑡) + 𝑐𝑐

)︀
+ 𝜀
(︀
|ξ|2𝑈20 + ξ2𝑈21 exp(2𝑖ω𝑡) + 𝑐𝑐

)︀
+

+ 𝜀3/2
(︀(︀
𝑈31 exp(𝑖ω𝑡) + 𝑐𝑐

)︀
+ 𝑐𝑐+ ξ3𝑈32 exp(3𝑖ω𝑡) + 𝑐𝑐

)︀
+ . . . . (26)

Подставим (26) в (20) и будем собирать коэффициенты при одинаковых степенях 𝜀. При 𝜀1/2

получаем верное равенство. На следующем шаге находим, что

𝑈20 = 2𝑓2𝐴
−1𝑔0 · 𝑔0, 𝑈21 = 𝑓2(𝐴− 2𝑖ω𝐼)−1𝑔0 · 𝑔0.
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Собирая коэффициенты при 𝜀1/2, получаем уравнения для 𝑈31 и 𝑈32. Выражение для 𝑈32 опреде-
ляется просто. Ниже оно не понадобится, поэтому его приводить не будем. Для определения 𝑈31

приходим к системе
(𝐴− 𝑖ω𝐼)𝑈31 = 𝐵, (27)

где

𝐵 = −𝑔0
𝑑ξ
𝑑τ

+ γ1𝑏

⎛⎜⎜⎜⎝
0
...
0

1

⎞⎟⎟⎟⎠ ξ+ 2𝑓2𝑔0𝑈20 + 2𝑓2𝑔0𝑈21 + 3𝑓3𝑔0 · 𝑔0 · 𝑔0.

Для разрешимости системы (27) необходимо и достаточно, чтобы вектор 𝐵 стал ортогонален
вектору ℎ0 — решению однородного сопряженного уравнения 𝐴*ℎ = −𝑖ωℎ. В итоге для коэффи-
циентов уравнения (18) получаем равенства

δ = −𝑏γ1(γ+)(1/𝑁−1)𝑁−1, (28)

σ =
1

𝑁

[︁
2𝑓2
(︀
(𝑔0𝑈20, ℎ0) + (𝑔0𝑈21, ℎ0)

)︀
+ 3𝑓3(𝑔0 · 𝑔0 · 𝑔0, ℎ0)

]︁
. (29)

При условиях невырожденности Re δ ̸= 0 и Re σ ̸= 0 уравнение (18) с коэффициентами (28),
(29) полностью определяет локальную динамику уравнения (20). С помощью (26) получаем
асимптотическое представление решений (20) через решения (18).

4. Случай достаточно больших значений 𝑁

Построения для этого случая существенно сложнее предыдущих. Здесь предполагаем, что
значение 𝑁 достаточно велико, то есть достаточно малой является величина

𝜀 = 𝑁−1 ≪ 1.

Исследуем локальную динамику системы (20) в этом случае.
Сначала сформулируем одно простое утверждение, вытекающее из формулы (6) для корней

характеристического уравнения (5).

Лемма 1. Пусть выполнено неравенство

𝑎|𝑏|−1 < 1. (30)

Тогда при всех достаточно малых 𝜀 все корни (6) имеют отрицательные вещественные части,
которые отделены от нуля при 𝜀 → 0. Если

𝑎|𝑏|−1 > 1, (31)

то при достаточно малых значениях 𝜀 найдется корень уравнения (5), вещественная часть
которого положительна и отделена от нуля при 𝜀 → 0.

В случае (30) при малых 𝜀 решения (20) с начальными условиями из малой и не зависящей
от 𝜀 при 𝜀 → 0 окрестности нулевого состояния равновесия стремятся к нулю при 𝑡 → ∞. В случае
(31) нулевое решение (20) неустойчиво и задача о динамике (20) становится нелокальной. Поэтому
ниже предполагаем, что

|𝑏| = 𝑎. (32)
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В частности, 𝑏+ = 𝑎+𝑂(𝜀), 𝑏− = −𝑎+𝑂(𝜀). При условии (32) у (5) нет корней с положительной
и отделенной от нуля при 𝜀 → 0 вещественной частью, но есть бесконечно много корней,
вещественные части которых стремятся к нулю при 𝜀 → 0. Тем самым в задаче об устойчивости
нулевого состояния равновесия (20) реализуется критический случай бесконечной размерности.
Отдельно рассмотрим случай, когда 𝑏 = 𝑎 и когда 𝑏 = −𝑎.

Отметим работы автора [13, 14, 17, 32], в которых в других ситуациях изучались динамиче-
ские свойства систем в бесконечномерных критических случаях.

Элементы 𝑢𝑗(𝑡) удобно переобозначить с помощью функции двух переменных 𝑢𝑗(𝑡) =

= 𝑢(𝑡, 𝑥𝑗), где 𝑥𝑗 ∈ [0, 1) — равномерно распределенные на отрезке [0, 1] точки 𝑥𝑗 = 2π𝑗/𝑁 =

= 2π𝑖𝜀𝑗 (𝑗 = 0, 1, . . . , 𝑁).
Cистему (2), (3) для 𝑥 = 𝑥𝑗 тогда можно записать в виде уравнения

𝜕𝑢

𝜕𝑡
+ 𝑎𝑢 = 𝑏𝑢(𝑡, 𝑥+ 𝜀)− 𝑓(𝑢) (33)

с краевыми условиями
𝑢(𝑡, 1) = γ𝑢(𝑡, 0), (34)

а для линеаризованного в нуле уравнения (33) получим выражение

𝜕𝑣

𝜕𝑡
+ 𝑎𝑣 = 𝑏𝑣(𝑡, 𝑥+ 𝜀), (35)

𝑣(𝑡, 1) = γ𝑣(𝑡, 0). (36)

Уравнения (33) и (35) нельзя рассматривать для непрерывного аргумента 𝑥 ∈ [0, 1], поскольку
неопределены выражения 𝑢(𝑡, 𝑥+ 𝜀) и 𝑣(𝑡, 𝑥+ 𝜀) при 𝑥+ 𝜀 > 1. Исключение составляет случай,
когда γ = 1. Он был рассмотрен в [27]. Тогда считаем, что 𝑥 ∈ (−∞,∞), а функции 𝑢, 𝑣

рассматривались как периодические по 𝑥 с периодом 1. Для корней λ𝑘(𝜀) (𝑘 = 0,±1,±2, . . .)

характеристического уравнения для (35) при γ = 1 имеет место формула

λ𝑘(𝜀) = −𝑎+ 𝑏 exp(2π𝑘𝑖𝜀),

а для соответствующих собственных функций 3𝑘(𝑡, 𝑥, 𝜀) получаем выражение

3𝑘(𝑡, 𝑥, 𝜀) = exp(λ𝑘(𝜀)𝑡) exp(2π𝑘𝑖𝜀).

Отметим, что при условии (32) бесконечно много корней λ𝑘(𝜀) стремятся к нулю при 𝜀 → 0.
Важно подчеркнуть, что при 𝑏 = 𝑎 + 𝑜(𝜀) функции 3𝑘(𝑡, 𝑥, 𝜀) гладко зависят от 𝜀 и, что то же
самое, выполнено условие регулярности

3𝑘(𝑡, 𝑥, 𝜀) = 3𝑘(𝑡, 𝑥, 0) + 𝜀
𝜕3𝑘(𝑡, 𝑥, 0)

𝜕𝑥
+

1

2
𝜀2

𝜕23𝑘(𝑡, 𝑥, 0)
𝜕𝑥2

+ 𝑜(𝜀2).

Если же 𝑏 = −𝑎 + 𝑜(𝜀), то для тех целых 𝑘, для которых λ𝑘(𝜀) стремятся к нулю при 𝜀 → 0,
получаем, что

3𝑘(𝑡, 𝑥, 𝜀) = exp(𝑖π𝜀−1𝑥)ψ𝑘(𝑡, 𝑥, 𝜀),

где ψ𝑘(𝑡, 𝑥, 𝜀) регулярно зависит от 𝜀.
Вернемся к случаю произвольного γ. Для корней λ𝑘(𝜀) уравнения (35) имеет место формула

λ𝑘(𝜀) = −𝑎+ 𝑏 exp
(︀
𝜀(ln γ+ 2π𝑘𝑖)

)︀
, (37)

в которой номер 𝑘 принимает значения 𝑘 = 0,±1,±2, . . ..
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Фиксируем произвольно значение 𝑏1, и пусть либо

𝑏 = 𝑎+ 𝜀𝑏1, (38)

либо
𝑏 = −𝑎(1 + 𝜀𝑏1). (39)

В случае (38) применим в (35) условие регулярности

𝑣(𝑡, 𝑥+ 𝜀) = 𝑣(𝑡, 𝑥) + 𝜀
𝜕𝑣(𝑡, 𝑥)

𝜕𝑥
+𝑂(𝜀2).

Тогда с точностью до 𝑂(𝜀2) приходим к уравнению

𝜕𝑣

𝜕𝑡
= 𝜀𝑏1𝑣 + 𝜀𝑎

𝜕𝑣

𝜕𝑥
, 𝑣(𝑡, 1) = γ𝑣(𝑡, 0).

В нерегулярном случае, когда выполнено условие (39), получаем, что

𝑣(𝑡, 𝑥) = exp(𝑖π𝜀−1𝑥)𝑣 + 𝑐𝑐

и
𝜕𝑣

𝜕𝑡
= 𝜀𝑏1𝑣 + 𝜀𝑎

𝜕𝑣

𝜕𝑥
, (𝑣(𝑡, 1) + 𝑐𝑐) exp(𝑖π𝑁) = γ𝑣(𝑡, 0) + 𝑐𝑐.

Положим в (37) λ𝑘(𝜀) = 𝜀λ𝑘1(𝜀). Вещественные части всех λ𝑘1(𝜀) имеют асимптотику

𝑏1 + ln |γ|+𝑂(𝜀).

Отсюда получаем критерий устойчивости нулевого состояния равновесия: при 𝑏1 + ln |γ| > 0

состояние равновесия неустойчиво, а при 𝑏1 + ln |γ| < 0 — устойчиво.
Отметим, что в случае (6) все решения (33) (при условии (9)) из некоторой достаточно

малой и не зависящей от 𝜀 окрестности нулевого состояния равновесия стремятся к нулю при
𝑡 → ∞, а в случае (7) задача о локальной динамике (33), (34) не является локальной. Ниже
рассмотрим критический случай, когда параметр γ = γ0 выбран так, что

|γ0| exp
(︀
𝑎−1𝑏1

)︀
= 1.

Рассмотрим отдельно случаи, когда параметр 𝑏 близок к параметру 𝑎 и когда близок
к параметру −𝑎. В первом случае в разделах 4.1 и 4.2 речь пойдет о регулярных решениях,
а во-втором случае в разделе 4.3 — о нерегулярных.

4.1. Случай, когда параметр 𝑏 близок к значению 𝑎 и параметр γ положителен. В этом
разделе полагаем, что выполнено равенство (38) и

γ > 0 и 𝑓2 ̸= 0.

Тогда для каждого целого 𝑘 выполняется асимптотическое равенство

λ𝑘(𝜀) = 𝜀[𝑏1 + 𝑎(ln γ+ 2π𝑘𝑖)] +𝑂(𝜀2), (40)

а собственные функции 𝑣𝑘(𝑡, 𝑥), отвечающие корню λ𝑘(𝜀), представимы в виде

𝑣𝑘(𝑡, 𝑥) = exp(2π𝑖𝑘𝑥+ λ𝑘(𝜀)𝑡). (41)
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Рассмотрим регулярные решения краевой задачи (33), (34), то есть положим

𝑢(𝑡, 𝑥+ 𝜀) = 𝑢(𝑡, 𝑥) + 𝜀
𝜕𝑢(𝑡, 𝑥)

𝜕𝑥
+𝑂(𝜀2).

Через 𝑡1 обозначим «медленное» время 𝑡1 = 𝜀𝑡 и произведем замену 𝑢(𝑡, 𝑥) = 𝜀𝑢1(𝑡1, 𝑥). Тогда,
отбрасывая слагаемые порядка 𝜀2, приходим к краевой задаче

𝜕𝑢1
𝜕𝑡1

= 𝑎
𝜕𝑢1
𝜕𝑥

+ 𝑏1𝑢1 − 𝑓2𝑢
2
1, 𝑢1(𝑡1, 1) = γ𝑢1(𝑡1, 0). (42)

В (42) существует нулевое состояние равновесия 𝑢1 ≡ 0 и, возможно, ненулевое

𝑢1 = 𝑢0(𝑥) = [−𝑓2𝑏
−1
1 + 𝑐0 exp(𝑏1𝑎

−1𝑥)]−1, 𝑐0 = 𝑓2𝑏
−1
1 (γ− 1)(γ exp(𝑏1𝑎−1)− 1),

если выполнены условия γ > 0, γ ̸= 1,−𝑓2 + 𝑐0𝑏1 exp(𝑏1𝑎
−1𝑥) ̸= 0 для 𝑥 ∈ [0, 1].

Краевая задача (42) является квазинормальной формой для краевой задачи (33), (34). Это
означает, что по ограниченному при 𝑡1 → ∞, 𝑥 ∈ [0, 1] решению 𝑢1(𝑡1, 𝑥) определяется функция
𝑢(𝑡, 𝑥, 𝜀) = 𝜀𝑢1(𝜀𝑡, 𝑥), которая удовлетворяет (33), (34) с точностью до 𝑂(𝜀2).

Исследуем поведение всех решений (42) (а значит, и (33), (34)) из некоторой достаточно
малой окрестности нулевого состояния равновесия.

Сформулируем простое утверждение.

Лемма 2. При условии exp(−𝑏1𝑎
−1) > γ (< γ) нулевое состояние равновесия в (42) и в (33), (34)

асимптотически устойчиво (неустойчиво).

Рассмотрим критический случай, когда γ = γ0, где

γ0 = exp(−𝑏1𝑎
−1), (43)

и повторим схему нормализации. Фиксируем произвольно значение 𝑏2 и положим

𝑏 = 𝑎+ 𝜀𝑏1 + 𝜀2𝑏2. (44)

Для регулярных решений 𝑢(𝑡, 𝑥+ 𝜀) учтем в (33) слагаемые порядка 𝜀2. В результате получаем,
что

𝜕𝑢1
𝜕𝑡1

= 𝑎
𝜕𝑢1
𝜕𝑥

+ (𝑏1 + 𝜀𝑏2)𝑢1 +
1

2
𝑎𝜀

𝜕2𝑢1
𝜕𝑥2

+ 𝑓2𝑢
2
1 + 𝜀𝑓3𝑢

3
1, 𝑢1(𝑡1, 1) = γ𝑢1(𝑡1, 0). (45)

Линеаризованная в нуле при 𝜀 = 0 краевая задача имеет вид

𝜕𝑢1
𝜕𝑡1

= 𝑎
𝜕𝑢1
𝜕𝑥

+ 𝑏1𝑢1, 𝑢1(𝑡1, 1) = γ𝑢1(𝑡1, 0). (46)

Её характеристическое уравнение

(λ− 𝑏1)𝑣 = 𝑎
𝑑𝑣

𝑑𝑥
, 𝑣(1) = γ𝑣(0), (47)

в силу (43), имеет бесконечно много корней λ𝑘 = 2π𝑘𝑖𝑎 (𝑘 = 0,±1,±2, . . .).
Корню λ𝑘 отвечает собственная функция 𝑣𝑘(𝑥) = exp(−𝑏1𝑎

−1𝑥) exp(λ𝑘𝑎−1𝑥). Положим 𝑦 =

= 𝑡1−𝑎−1𝑥 и 𝑤𝑘(𝑦) = exp(λ𝑘𝑦). Тогда 𝑣𝑘(𝑡1, 𝑥) = exp(−𝑏1𝑎
−1𝑥) exp(λ𝑘𝑦) = exp(−𝑏1𝑎

−1𝑥)𝑤𝑘(𝑦).
Поэтому произвольная линейная комбинация функций

𝑤(𝑥, 𝑦) = exp(−𝑏1𝑎
−1𝑥) ·

+∞∑︁
𝑘→−∞

𝑐𝑘𝑤𝑘(𝑦)

тоже является решением (46).
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Опираясь на алгоритм метода построения квазинормальных форм [13,14, 17, 32], решения
нелинейной краевой задачи (45) ищем в виде формального ряда

𝑢1(τ, 𝑥, 𝜀) = 𝜀𝑤(τ, 𝑦) exp(−𝑏1𝑎
−1𝑥) + 𝜀2𝑈2(τ, 𝑥, 𝑦) + . . . , (48)

где τ = 𝜀𝑡1, а по переменной 𝑦 выполнено условие 1-периодичности.
Подставим (48) в (45) и будем собирать коэффициенты при одинаковых степенях 𝜀. На пер-

вом шаге, собирая коэффициенты при нулевой степени 𝜀, получим верное равенство. На следую-
щем шаге соберем коэффициенты при 𝜀2. В результате получаем соотношение

𝑎
𝜕𝑈2

𝜕𝑥
+ 𝑏1𝑈2 = 3(τ, 𝑥, 𝑦), 𝑈2(1) = γ𝑈2(0).

Здесь

3(τ, 𝑥, 𝑦) =
[︁
− 𝜕𝑤

𝜕τ
+

1

2
𝑎
𝜕2𝑤

𝜕𝑦2
− 𝑏1

𝜕𝑤

𝜕𝑦
+ (𝑏21(2𝑎)

−1 + 𝑏2)𝑤
]︁
exp(−𝑏1𝑎

−1𝑥)+

+ 𝑓2𝑤 exp(−2𝑏1𝑎
−1𝑥). (49)

Воспользуемся следующим простым утверждением.

Лемма 3. Пусть функция 3(𝑥) непрерывна. Тогда для разрешимости краевой задачи

𝑎
𝜕ψ
𝜕𝑥

+ 𝑏1ψ = 3(𝑥), ψ(1) = γ0ψ(0) + α

в классе непрерывных функций необходимо и достаточно, чтобы выполнялось равенство

1∫︁
0

3(𝑠) exp(𝑏1𝑎−1𝑠)𝑑𝑠 = 𝑎 · αγ0. (50)

Учитывая в (50) равенство (49), приходим к краевой задаче для определения функции 𝑤(τ, 𝑦)

𝜕𝑤

𝜕τ
=

1

2
𝑎
𝜕2𝑤

𝜕𝑦2
− 𝑏1

𝜕𝑤

𝜕𝑦
+ (𝑏21(2𝑎)

−1 + 𝑏2)𝑤 + 𝑓2(1− γ)𝑏−1
1 𝑎1𝑤

2, (51)

𝑤(τ, 𝑦 + 1) ≡ 𝑤(τ, 𝑦). (52)

Сформулируем основной результат этого раздела.

Теорема 2. Пусть краевая задача (51), (52) имеет ограниченное при τ→ ∞, 𝑦 ∈ [0, 1] решение
𝑤0(τ, 𝑦). Тогда функция 𝑢(𝑡1, 𝑥) = 𝜀2𝑤0(𝜀

2𝑡, 𝑦) exp(−𝑏1𝑎
−1𝑥) удовлетворяет краевой задаче (33),

(34) с точностью до 𝑜(𝜀3).

Отметим, что в случае, когда 𝑓2 = 0 (или γ = 1), в (51) вместо квадратичной нелинейности
появляется кубическая нелинейность. Важно подчеркнуть, что устойчивым решением краевой
задачи (51), (52) может быть только однородное состояние равновесия.
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4.2. Случай, когда параметр 𝑏 близок к 𝑎 и параметр γ отрицателен. Здесь полагаем, что

γ < 0. (53)

Повторяя построения предыдущего раздела, то есть учитывая формулы (40)–(41), приходим
также к краевой задаче (42). При условии (53) у (42) есть только нулевое состояние равновесия.
Исследуем его устойчивость.

Лемма 4. При условии exp(−𝑏1𝑎
−1) > |γ| (< |γ|) нулевое состояние равновесия в (42) и в (33),

(34) асимптотически устойчиво (неустойчиво).

Рассмотрим критический случай, когда

|γ| = γ0 = exp(−𝑏1𝑎
−1). (54)

Пусть выполнено равенство (44). Для регулярных решений 𝑢(𝑡, 𝑥 + 𝜀) учтем в (33) слагаемые
порядка 𝜀2. Тогда снова приходим к краевой задаче (45). Для линеаризованной краевой задачи
(46) исследуем характеристическое уравнение (47). Оно, в отличие от предыдущего случая, имеет
бесконечно много корней λ𝑘 = π𝑖(2𝑘 + 1) (𝑘 = 0,±1,±2, . . .).

Как и выше, положим 𝑦 = 𝑡1−𝑎−1𝑥, 𝑤𝑘(𝑦) = exp(λ𝑘𝑦). Тогда 𝑣𝑘(𝑡, 𝑥) = exp(−𝑏1𝑎
−1)𝑤𝑘(𝑦).

Решения нелинейной краевой задачи (45) в случае (53) ищем в виде

𝑢1(τ, 𝑥, 𝑦) = 𝜀1/2𝑤(τ, 𝑦) exp(−𝑏1𝑎
−1) + 𝜀𝑈2(τ, 𝑥, 𝑦) + 𝜀3/2𝑈3(τ, 𝑥, 𝑦) + . . . , (55)

где τ = 𝜀𝑡1, а функция 𝑤(τ, 𝑦) имеет структуру

𝑤(τ, 𝑦) =
∞∑︁

𝑘=−∞
𝑐𝑘(τ)𝑤𝑘(𝑦).

Подставим формальное выражение (55) в (45) и будем собирать коэффициенты при одинаковых
степенях 𝜀. На первом шаге, собирая коэффициенты при 𝜀1/2, получим верное равенство. На сле-
дующем шаге соберем коэффициенты при первой степени 𝜀. В результате приходим к краевой
задаче для нахождения 𝑈2(τ, 𝑥, 𝑦):

𝑎
𝜕𝑈2

𝜕𝑥
+ 𝑏𝑈2 = 𝑓2 exp(−2𝑏1𝑎

−1𝑥)𝑤2(τ, 𝑦), 𝑈2(τ, 1, 𝑦) = γ𝑈2(τ, 0, 𝑦).

Отсюда находим, что

𝑈2 = exp(−𝑏1𝑎
−1𝑥)

[︁
𝑐(τ, 𝑦) + 𝑓2𝑤

2(τ, 𝑦) · 𝑎𝑏−1
1 (1− exp(−𝑏1𝑎

−1𝑥))
]︁
,

где
𝑐(τ, 𝑦) = 𝑎𝑓2(𝑏1(γ− 1))−1𝑤2(τ, 𝑦)|γ|(1− |γ|).

На третьем шаге получаем уравнение для определения 𝑈3(τ, 𝑥, 𝑦). Из условия его разрешимости
(согласно лемме 3) получаем краевую задачу для нахождения функции 𝑤(τ, 𝑦):

𝜕𝑤

𝜕τ
=

1

2
𝑎
𝜕2𝑤

𝜕𝑦2
− 𝑏1

𝜕𝑤

𝜕𝑦
+ (𝑏21(2𝑎)

−1 + 𝑏2)𝑤 + δ𝑤3, (56)

𝑤(τ, 𝑦 + 1) ≡ −𝑤(τ, 𝑦), (57)

в которой
δ = 2𝑓2

2 (𝑏
−2
1 )
[︀
2𝑎γ(1 + γ)2 + 3𝑎(|γ|3 − 1)

]︀
.

Приведем основной результат.
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Теорема 3. Пусть краевая задача (56), (57) имеет ограниченное при τ → ∞, 𝑦 ∈ (−∞,∞)

решение 𝑤0(τ, 𝑦). Тогда функция 𝑢(𝑡1, 𝑥, 𝜀) = 𝜀3/2𝑤0(𝜀
2𝑡1, 𝑡1 + 𝑎−1𝑥) удовлетворяет краевой

задаче (33), (34) с точностью до 𝑜(𝜀2).

Отметим, что краевая задача (56), (57) может иметь неоднородное устойчивое состояние рав-
новесия.

4.3. Случай, когда параметр 𝑏 близок к параметру −𝑎. Пусть для произвольно фик-
сированного значения 𝑏1 выполнено условие (39). Рассмотрим линеаризованную краевую зада-
чу (35), (36). Ее характеристическое уравнение (37) при условии (39) имеет бесконечно много
корней λ𝑘(𝜀) (𝑘 = 0,±1,±2, . . .), которые стремятся к мнимой оси при 𝜀 → 0. Тем самым реали-
зуется критический случай бесконечной размерности. Корню λ𝑘(𝜀) отвечает собственная функция
3𝑘(𝑡, 𝑥, 𝜀), которая асимптотически быстро осциллирует по пространственной переменной 𝑥.
Это означает, что соответствующие решения имеют нерегулярную структуру.

В (35), (36) полагаем

𝑢(𝑡, 𝑥) = 𝑣(𝑡, 𝑥) exp(𝑖π𝜀−1𝑥) + 𝑐𝑐. (58)

Учитывая, что 𝑢(𝑡, 1) = 𝑣(𝑡, 1) exp(𝑖π𝑁) + 𝑐𝑐 и что 𝜀 = 𝑁−1, получаем равенство

𝑣(𝑡, 1) + 𝑣(𝑡, 1) = γ(−1)𝑁 (𝑣(𝑡, 0) + 𝑣(𝑡, 0)). (59)

Тогда для 𝑣(𝑡, 𝑥) приходим к уравнению

𝜕𝑣

𝜕𝑡
+ 𝑎𝑣 = −𝑏𝑣(𝑡, 𝑥+ 𝜀). (60)

Используя равенство (39), заключаем, что функция 𝑣(𝑡, 𝑥) является регулярной, то есть

𝑣(𝑡, 𝑥+ 𝜀) = 𝑣(𝑡, 𝑥) + 𝜀
𝜕𝑣(𝑡, 𝑥)

𝜕𝑡
+

1

2
𝜀2

𝜕2𝑣

𝜕𝑥2
+ . . . .

Подставим это выражение в (33), (34). Тогда на основании (58) приходим к уравнению

𝜕𝑣1
𝜕𝑡1

+ 𝑎
𝜕𝑣1
𝜕𝑥

+ 𝑏1𝑣1 = exp(−𝑏1𝑎
−1𝑥)𝑓2

(︀
𝑣1 exp(𝑖π𝜀−1𝑥) + 𝑐𝑐

)︀2
(61)

с краевым условием (59). Здесь 𝑡1 = 𝜀𝑡, 𝑣 = 𝜀𝑣1. Для этой краевой задачи имеет место утвержде-
ние, аналогичное лемме 2.

Лемма 5. При условии exp(−𝑏1𝑎
−1) > |γ| (< |γ|) нулевое состояние равновесия в (61), (59)

и в (33), (34) асимптотически устойчиво (неустойчиво).

Остановимся на рассмотрении критического случая, когда выполнены равенства (54). В этом
случае линеаризованная краевая задача (60), (59) имеет бесконечно много периодических по 𝑦

решений 𝑣1𝑘 = exp(−𝑏1𝑎
−1𝑥)𝑤𝑘(𝑦), где 𝑦 = 𝑡1 − 𝑎−1𝑥, 𝑤𝑘(𝑦) = exp(λ𝑘𝑦), где λ𝑘 = 2π𝑖𝑘𝑎, если

γ(−1)𝑁 > 0 и λ𝑘 = π𝑖𝑎(2𝑘 + 1), если γ(−1)𝑁 < 0.
Положим

𝑏 = −(𝑎+ 𝜀𝑏1 + 𝜀2𝑏2) и γ = γ0 + 𝜀γ1. (62)

Рассмотрим вопрос о поведении при условиях (54) и (62) всех решений (33), (34) из некоторой
достаточно малой окрестности нулевого состояния равновесия.
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Введем в рассмотрение формальное выражение

𝑣(𝑡1, 𝑥) =𝜀
(︀
𝑤(τ, 𝑦) exp(−𝑏1𝑎

−1𝑥) exp(𝑖π𝜀−1𝑥) + 𝑐𝑐
)︀
+

+ 𝜀2
[︁
𝑢20(𝑡, 𝑥, 𝑦) + 𝑐𝑐+ exp(𝑖π𝑧)𝑢21(𝑡, 𝑥, 𝑦) + 𝑐𝑐+

+ exp(2𝑖π𝑧)𝑢22(𝑡, 𝑥, 𝑦) + 𝑐𝑐+

+ exp(3𝑖π𝑧)𝑢23(𝑡, 𝑥, 𝑦) + 𝑐𝑐
]︁
+ . . . , (63)

где 𝑧 = 𝑥𝜀−1, 𝑢1(𝑡1, 𝑥, 𝑦) = 𝑤(τ, 𝑦) exp(−𝑏1𝑎
−1𝑥), τ = 𝜀𝑡1, 𝑤(τ, 𝑦) =

∞∑︀
𝑘=−∞

𝑐𝑘(τ)𝑤𝑘(𝑦), а по пере-

менной 𝑦 все функции из (63) периодичны.
Рассмотрим отдельно два случая. В первом из них предполагаем, что

(−1)𝑁γ0 > 0, (64)

а во втором случае выполнено неравенство

(−1)𝑁γ0 < 0. (65)

4.3.1. Построение асимптотики решений при условии (64). Пусть выполнено условие
(64). Подставим (63) в (33), (34) и будем собирать коэффициенты при одинаковых степенях 𝜀.
В результате получим равенства

𝑎
𝜕𝑢1
𝜕𝑥

+ 𝑏1𝑢1 = 0, (66)

2𝑎𝑢20 = 𝑓2|𝑢1|2, 2𝑎𝑢22 = 𝑓2𝑢
2
1, (67)

𝑎
𝜕𝑢21
𝜕𝑥

+ 𝑏1𝑢21 =
[︁
− (𝑏2 + 𝑏21(2𝑎)

−1)𝑤 − 𝜕𝑤

𝜕τ
+

𝑎

2

𝜕2𝑤

𝜕𝑦2
− 𝑏1

𝜕𝑤

𝜕𝑦

]︁
×

× exp(−𝑏1𝑎
−1𝑥) +

[︀
𝑓2𝑢20 + 2𝑓2𝑢22 + 3𝑓3

]︀
· 𝑤|𝑤|2 exp(−3𝑏1𝑎

−1𝑥), (68)

𝑎
𝜕𝑢23
𝜕𝑥

+ 𝑏1𝑢23 = [𝑎−1𝑓2
2 + 𝑓3]𝑢

3
1. (69)

Из граничных условий получаем соотношения

(−1)𝑁 (𝑢1 + 𝑐𝑐)
⃒⃒⃒
𝑥=1

= γ0(𝑢1 + 𝑐𝑐)
⃒⃒⃒
𝑥=0

, (70)(︁
𝑢20 + 𝑐𝑐+ (−1)𝑁𝑢21 + 𝑐𝑐+ 𝑢22 + 𝑐𝑐+ (−1)𝑁𝑢23 + 𝑐𝑐

)︁⃒⃒⃒
𝑥=1

=

= γ0
(︁
𝑢20 + 𝑐𝑐+ 𝑢21 + 𝑐𝑐+ 𝑢22 + 𝑐𝑐+ 𝑢23 + 𝑐𝑐

)︁⃒⃒⃒
𝑥=0

+ γ1(𝑢1 + 𝑐𝑐)
⃒⃒⃒
𝑥=0

. (71)

Равенства (66) и (70) выполнены в силу определения 𝑢1. Из (67) и (68) находим, что

𝑢20 = (2𝑎)−1𝑓2|𝑢1|2, 𝑢22 = (2𝑎)−1𝑓2𝑢
2
1, (72)

а из (69) получаем, что

𝑢23 = −(2𝑏1)
−1(𝑓2

2 + 𝑎𝑓3)
[︁
exp

(︁
− 3𝑏1

𝑎
𝑥
)︁
− exp

(︁
− 𝑏1

𝑎
𝑥
)︁]︁

𝑤3. (73)
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Рассмотрим вопрос о разрешимости относительно 𝑢21(τ, 𝑥, 𝑦) уравнения (68) с краевым услови-
ем (71). Согласно лемме 3, необходимыми и достаточными условиями разрешимости этой краевой
задачи является выполнение равенств

𝜕𝑤

𝜕τ
=

𝑎

2

𝜕2𝑤

𝜕𝑦2
− 𝑏1

𝜕𝑤

𝜕𝑦
+ 𝑐1𝑤 + 𝑐2|𝑤|2 + 𝑐2𝑤

2 + 𝑐3𝑤
3 + 𝑐4𝑤|𝑤|2, (74)

𝑤(τ, 𝑦 + 1) ≡ 𝑤(τ, 𝑦), (75)

где

𝑐1 = −(𝑏2 + (2𝑎)−1𝑏21) + 𝑎γ20γ1,

𝑐2 =
1

2
γ20𝑓2(1− γ0), 𝑐3 = 𝑐2,

𝑐4 = −𝑎(2𝑏1)
−1(𝑓2

2 + 𝑎𝑓3)γ20(γ
2
0 − 1), 𝑐5 = 3(2𝑏1)

−1𝑎(γ20 − 1) · [𝑓3 + 𝑎−1𝑓2
2 ].

Сформулируем основное утверждение, которое вытекает из приведенного выше алгоритма по-
строения асимптотики решений.

Теорема 4. Пусть выполнены условия (62) и (64). Пусть функция 𝑤(τ, 𝑦) является ограниченным
при τ→ ∞, 𝑦 ∈ [0, 1] решением краевой задачи (74), (75). Тогда функция

𝑢(𝑡, 𝑥, 𝑦) =𝜀
(︀
𝑤(τ, 𝑦) exp(−𝑏1𝑎

−1𝑥) exp(𝑖π𝜀−1𝑥) + 𝑐𝑐
)︀
+

+ 𝜀2
[︁
𝑢20(𝑡, 𝑥, 𝑦) + 𝑐𝑐+ exp(𝑖π𝑧)𝑢21(𝑡, 𝑥, 𝑦) + 𝑐𝑐+

+ exp(2𝑖π𝑧)𝑢22(𝑡, 𝑥, 𝑦) + 𝑐𝑐+

+ exp(3𝑖π𝑧)𝑢23(𝑡, 𝑥, 𝑦) + 𝑐𝑐
]︁
+ . . . ,

удовлетворяет краевой задаче (33), (34) с точностью до 𝑂(𝜀4).

4.3.2. Построение асимптотики решений при условии (65). Пусть выполнено нера-
венство (65). В этом случае соответствующие построения усложняются. Снова рассмотрим
асимптотическое выражение (63), но фигурирующую в нем функцию 𝑢21(τ, 𝑥, 𝑦) представим в
виде суммы двух функций

𝑢21(τ, 𝑥, 𝑦) = 𝑣1(τ, 𝑥, 𝑦) + 𝑣2(τ, 𝑥, 𝑦). (76)

Первая из них — 1-антипериодическая по 𝑦, как и функция 𝑤(τ, 𝑦), то есть содержит толь-
ко гармоники с нечетными номерами exp(𝑖π(2𝑘 + 1)) (𝑘 = 0,±1,±2, . . .). Вторая функция —
𝑣2(τ, 𝑥, 𝑦) — 1-периодична по 𝑦, то есть ее разложение в ряд Фурье содержит только гармоники
exp(2𝑖π𝑘) (𝑘 = 0,±1,±2, . . .). Подставим (63) с учетом (76) в (33), (34) и произведем стандартные
действия. В результате получим равенства (66), (67), (69), (70). Равенства (66), (70) определяют
функцию 𝑢1(τ, 𝑥, 𝑦) = 𝑤(τ, 𝑦) exp(−𝑏1𝑎

−1𝑥), а из (67) и (69) находим 𝑢20, 𝑢22 и 𝑢23 согласно
формулам (72), (73). Уравнение для 𝑣1 получаем, заменив в левой части уравнения (68) функцию
𝑢21 и 𝑣1, а уравнение 𝑣2 имеет вид

𝑎
𝜕𝑣2
𝜕𝑥

+ 𝑏1𝑣2 = 0. (77)

Основываясь на формуле для краевых условий (71), определим краевые условия для функций 𝑣1
и 𝑣2 :

(−1)𝑁𝑣1

⃒⃒⃒
𝑥=1

= −(−1)𝑁𝑢23

⃒⃒⃒
𝑥=1

+
[︁
γ0𝑣1 + γ0𝑢23 + γ0γ1𝑢1

]︁⃒⃒⃒
𝑥=0

, (78)

(−1)𝑁𝑣2

⃒⃒⃒
𝑥=1

= −𝑢20

⃒⃒⃒
𝑥=1

− 𝑢22

⃒⃒⃒
𝑥=1

+ γ0
[︁
𝑣2 + 𝑢20 + 𝑢22

]︁⃒⃒⃒
𝑥=0

. (79)
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Из краевой задачи (77), (79) находим, что

𝑣2 = 𝑣2(τ, 𝑥, 𝑦) = (2𝑎|γ0|)−1𝑓2γ0(1− γ0)𝑤
[︁
𝑤̄ − 1

2
𝑤
]︁
exp(−𝑏1𝑎

−1𝑥).

Для разрешимости краевой задачи (68) (с заменой 𝑢21 на 𝑣1), (78), как следует из леммы 3,
необходимо и достаточно, чтобы выполнялось равенство

𝜕𝑤

𝜕τ
=

𝑎

2

𝜕2𝑤

𝜕𝑦2
− 𝑏1

𝜕𝑤

𝜕𝑦
+ 𝑐1𝑤 + 𝑐3𝑤

3 + 𝑐4𝑤|𝑤|2

и 1-антипериодические краевые условия

𝑤(τ, 𝑦 + 1) ≡ −𝑤(τ, 𝑦). (80)

Сформулируем основной результат

Теорема 5. Пусть выполнены условия (62) и (65). Пусть функция 𝑤(τ, 𝑦) является ограниченным
при τ→ ∞, 𝑦 ∈ [0, 1] решением краевой задачи (74), (75). Тогда функция

𝑢(𝑡, 𝑥, 𝑦) =𝜀
(︀
𝑤(τ, 𝑦) exp(−𝑏1𝑎

−1𝑥) exp(𝑖π𝜀−1𝑥) + 𝑐𝑐
)︀
+

+ 𝜀2
[︁
𝑢20(𝑡, 𝑥, 𝑦) + 𝑐𝑐+ exp(𝑖π𝑧)𝑢21(𝑡, 𝑥, 𝑦) + 𝑐𝑐+

+ exp(2𝑖π𝑧)𝑢22(𝑡, 𝑥, 𝑦) + 𝑐𝑐+

+ exp(3𝑖π𝑧)𝑢23(𝑡, 𝑥, 𝑦) + 𝑐𝑐
]︁
+ . . . ,

удовлетворяет краевой задаче (33), (34) с точностью до 𝑂(𝜀4).

Замечание 1. Можно рассмотреть задачу, в которой варьируются граничные условия: вместо
граничных условий (3) выполнено равенство

𝑢𝑁 (𝑡) = γ𝑢𝑀 (𝑡),

где 𝑀 (𝑀 < 𝑁) — некоторое целое. Наибольший интерес представляет изучение влияния этих
граничных условий при достаточно больших значениях 𝑁 .

Отметим сначала, что при условии 𝑀 ∼ const (при 𝜀 → 0) задача о динамике рассматри-
ваемой системы сводится к случаю малого возмущения параметра γ в задаче (33), (34).

Существенные изменения могут происходить в случаях, когда номер 𝑀 тоже является
достаточно большим. Пусть, например, 𝑀 = 𝑚

𝑛 𝑁 , где 𝑚 и 𝑛 — натуральные числа и 𝑚 < 𝑛.
Тогда в граничных условиях (70), (71) появляются множители exp(𝑖π𝑁) и exp

(︀
𝑖π𝑚𝑛 𝑁

)︀
. Отсюда

следует, что при 𝜀 → 0 (𝑁 → ∞) возникают порядка 𝑛 различных и чередующихся при 𝑁 → ∞
граничных условий. Тем самым динамические свойства решений описываются при увеличении 𝑁

чередующимися 𝑛 сценариями.

Выводы

Рассмотрена задача о локальной — в окрестности состояния равновесия — динамике систе-
мы 𝑁 односторонне связанных простейших нелинейных уравнений первого порядка. Выделены
критические случаи в задаче об устойчивости состояния равновесия. Показано, что уже при
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𝑁 = 2 может возникнуть критический случай нулевого корня, а при 𝑁 = 3 могут реализоваться
критические случаи одного нулевого корня или пары чисто мнимых корней. В этих случаях
построены соответствующие нормальные формы и рассмотрены бифуркационные задачи. При-
ведены построения для произвольного значения 𝑁 . В разделе 4, который является основным,
рассмотрены случаи, когда значение 𝑁 является достаточно большим, то есть параметр 𝜀 = 𝑁−1

является достаточно малым. В этом случае от дискретной системы 𝑁 уравнений осуществлен
переход к пространственно-непрерывной задаче.

Определены значения параметров, при которых могут реализоваться критические случаи.
Главная особенность состоит в том, что критические случаи имеют бесконечную размерность,
то есть бесконечно много корней характеристического уравнения линеаризованной задачи стре-
мятся к мнимой оси при 𝜀 → 0.

Применяя развитый в работах автора [13,14,17,32] метод бесконечномерной нормализации —
метод квазинормальных форм — удалось построить специальные нелинейные уравнения в частных
производных параболического типа с граничными условиями. Эти краевые задачи не содержат
малого параметра, и их нелокальная динамика определяет поведение всех решений исходной
системы из достаточно малой окрестности состояния равновесия.

При определенных условиях соответствующие уравнения могут иметь нестандартный вид
и содержать как квадратичные, так и кубические нелинейности. Динамика таких краевых задач
может быть достаточно сложной (см., например, [33]).

Построена асимптотика главных членов асимптотического представления решений.
Важно отметить, что решения исходной системы могут иметь особую «чувствительность»

динамических свойств к изменению малого параметра 𝜀. Это следует из того, что изменение
количества (большого) 𝑁 всего на 1 может существенно менять даже внешний вид соответ-
ствующих уравнений с частными производными и менять периодические граничные условия
на антипериодические.
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19. Rosin DP, Rontani D, Gauthier DJ, Schöll E. Control of synchronization patterns in neural-like
Boolean networks. Phys. Rev. Lett. 2013;110(10):104102. DOI: 10.1103/PhysRevLett.110.104102.

20. Yanchuk S, Perlikowski P, Popovych OV, Tass PA. Variability of spatiotemporal patterns in
non-homogeneous rings of spiking neurons. Chaos. 2011;21(4):047511. DOI: 10.1063/1.3665200.

21. Klinshov V, Nekorkin V. Synchronization in networks of pulse oscillators with time-delay coupling.
Cybern. Phys. 2012;1(2):106–112.

22. Stankovski T, Pereira T, McClintock PVE, Stefanovska A. Coupling functions: Universal insights
into dynamical interaction mechanisms. Rev. Mod. Phys. 2017;89(4):045001. DOI: 10.1103/
RevModPhys.89.045001.

23. Klinshov V, Shchapin D, Yanchuk S, Wolfrum M, D’Huys O, Nekorkin V. Embedding the
dynamics of a single delay system into a feed-forward ring. Phys. Rev. E. 2017;96(4):042217.
DOI: 10.1103/PhysRevE.96.042217.

24. Karavaev AS, Ishbulatov YuM, Kiselev AR, Ponomarenko VI, Prokhorov MD, Mironov SA,
Schwartz VA, Gridnev VI, Bezruchko BP. Model of the human cardiovascular system with an
autonomous regulation circuit of mean arterial pressure. Human Physiology. 2017;43(1):70–80.
DOI: 10.1134/S0362119716060098.

25. Kashchenko AA. Dependence of the dynamics of a model of coupled oscillators on the number of
oscillators. Dokl. Math. 2021;104(3):355–359. DOI: 10.1134/S1064562421060090.

26. Kashchenko AA. Relaxation modes of a system of diffusion coupled oscillators with delay. Com-
munications in Nonlinear Science and Numerical Simulation. 2021;93(6):105488. DOI: 10.1016/
j.cnsns.2020.105488.

27. Kashchenko SA. Dynamics of chains of many oscillators with unidirectional and bidirectional delay
coupling. Comput. Math. and Math. Phys. 2023;63(10):1817–1836. DOI: 10.1134/S0965542523
090105.

28. Hartman P. Ordinary Differential Equations. New York: Wiley; 1964. 612 p.
29. Henry D. Geometric Theory of Semilinear Parabolic Equations. Berlin: Springer; 1981. 352 p.

DOI: 10.1007/BFb0089647.

32
Кащенко С. А.

Известия вузов. ПНД, 2026, т. 34, № 1

https://doi.org/10.1103/PhysRevLett.109.233906
https://doi.org/10.1103/PhysRevLett.109.233906
https://doi.org/10.1103/PhysRevLett.111.234101
https://doi.org/10.20347/WIAS.PREPRINT.962
https://doi.org/10.3390/math10152648
https://doi.org/10.1134/S1064562422010069
https://doi.org/10.1063/5.0040689
https://doi.org/10.1209/0295-5075/93/60003
https://doi.org/10.1103/PhysRevLett.110.104102
https://doi.org/10.1063/1.3665200
https://doi.org/10.1103/RevModPhys.89.045001
https://doi.org/10.1103/RevModPhys.89.045001
https://doi.org/10.1103/PhysRevE.96.042217
https://doi.org/10.1134/S0362119716060098
https://doi.org/10.1134/S1064562421060090
https://doi.org/10.1016/j.cnsns.2020.105488
https://doi.org/10.1016/j.cnsns.2020.105488
https://doi.org/10.1134/S0965542523090105
https://doi.org/10.1134/S0965542523090105
https://doi.org/10.1007/BFb0089647


30. Kaschenko SA. Normalization in the systems with small diffusion. Int. J. Bifurc. Chaos. 1996;6(6):
1093–1109. DOI: 10.1142/S021812749600059X.

31. Grigorieva EV, Kashchenko SA. Local dynamics of a model of a chain of lasers with optoelectronic
delayed unidirectional coupling. Izvestiya VUZ. Applied Nonlinear Dynamics. 2022;30(2):
189–207 (in Russian). DOI: 10.18500/0869-6632-2022-30-2-189-207.

32. Klinshov VV. Collective dynamics of networks of active elements with impulsive connections:
Review. Izvestiya VUZ. Applied Nonlinear Dynamics. 2020;28(5):465–490 (in Russian).

33. Akhromeeva TS, Kurdyumov SP, Malinetskii GG, Samarskii AA. Nonstationary Structures and
Diffusion Chaos. M.: Nauka; 1992. 544 p.

Кащенко Сергей Александрович — родился в Ярославле (1953), окончил Ярославский го-
сударственный университет (1975). Защитил диссертацию на соискание ученой степени
кандидата физико-математических наук в ННГУ (1976) и доктора физико-математических
наук в МГУ (1989) в области теории нелинейных колебаний. Профессор, директор объ-
единенного Института математики и компьютерных наук им. А. Н. Колмогорова. Автор
монографий «Модели волновой памяти» (совместно с В. В. Майоровым) и «Релаксационные
колебания в лазерах» (совместно с Е. В. Григорьевой). Опубликовал более 500 научных
работ и 10 монографий. За заслуги в разработке приоритетных направлений науки, со-
здании научной школы, воспитании и подготовке научных кадров в 2020 году награжден
почетным званием «Заслуженный деятель науки Российской Федерации». В 2023 году
награжден медалью «За вклад в реализацию государственной политики в области образо-
вания и научно-технологического развития» Министерства науки и высшего образования
Российской Федерации.

Россия, 150003 Ярославль, ул. Советская, 14
Ярославский государственный университет имени П. Г. Демидова
E-mail: kasch@uniyar.ac.ru
ORCID: 0000-0002-8777-4302
AuthorID (eLibrary.Ru): 8238

Кащенко С. А.
Известия вузов. ПНД, 2026, т. 34, № 1 33

https://doi.org/10.1142/S021812749600059X
https://doi.org/10.18500/0869-6632-2022-30-2-189-207
https://orcid.org/0000-0002-8777-4302
https://elibrary.ru/author_profile.asp?id=8238

	Подлазов А.В.  70 лет Георгию Геннадьевичу Малинецкому
	Кащенко С.А. Локальная динамика непериодических цепочек с односторонними связями
	Боровкова Е.И., Дубинкина Е.С., Караваев А.С., Пономаренко В.И., Мягков И.А., Прохоров М.Д., Безручко Б.П. Изменение статистических характеристик сигналов сердечно-сосудистой системы и нелинейных мер кардиореспираторного взаимодействия у здоровых добровольцев в ходе тестов с биологической обратной связью
	Храменков В.А., Дмитричев А.С., Некоркин В.И. Устойчивость многомашинной энергосети с общей нагрузкой к подключению и отключению генераторов
	Варварин Е.М., Осипов Г.В. Синхронизация и десинхронизация в ансамблях мобильных агентов
	Усмонов Б.Ш., Мухитдинов Р.Т., Элибоев Н.Р., Ахмедов Н.Б. Нестационарное рассеяние упругих волн на сферическом включении
	Бачурин Д.В., Мурзаев Р.Т. Делокализованные нелинейные колебательные моды и их влияние на свойства бинарного сплава NiTi
	Шендерюк-Жидков А.В., Максименко В.А., Храмов А.Е. Коэволюция нейротехнологий и ИИ: этические вызовы и подходы к регуляции
	Alcover-Garau P.-M., Nepomuceno E. When integers embrace the beauty of complex numbers [Когда целые числа обретают красоту комплексных чисел]
	Гришин С.В. Памяти Юрия Павловича Шараевского

