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Subject of the study. Recently, the problems of synchronization of systems demonstrating
quasi-periodic oscillations arouse interest. In particular, it can be generators of quasi-periodic
oscillations that allow a radiophysical realization. In this paper we consider the dynam-
ics of two coupled oscillators of quasi-periodic oscillations with a single equilibrium state.
Novelty. The difference from the already studied case of coupled modified Anishchenko–
Astakhov generators consists in engaging of two-parameter analysis and analysis in a much
wider range of parameter changes, as well as a more dimensionless equation for an individual
generator. Methods. The method of charts of Lyapunov exponents is used, which reveals areas
of various types of dynamics, up to four-frequency oscillations. The bifurcation mechanisms
of complete synchronization are investigated. Results. The possibility of synchronous quasi-
periodicity is demonstrated, when the phases of the generators are locked, but the dynamics of
the system is generally quasi-periodic. The possibility of the effect of «death of oscillations»
arising due to the dissipative character of coupling is revealed. The possibility of the effect
of broadband quasi-periodicity is demonstrated. Its peculiarity consists in the fact that two-
frequency oscillations arise in a certain range of variation of the coupling parameter and a wide
range of frequency mismatch. The bifurcation mechanisms of this effect are presented. It is
shown that a certain degeneracy is characteristic for it, which is removed when nonidentity
is introduced along the control parameters of individual generators. A bifurcation analysis is
presented for this case. Two-parameter analysis allowed us to identify points of quasi-periodic
bifurcations of codimension two QSNF (Quasi-periodic saddle-node fan) on the parameter
plane, associated with the synchronization of multi-frequency tori. These points are the tips
of the tongues of the two-frequency regimes, which have a threshold for the coupling coef-
ficient. In their vicinity, three- and four-frequency quasi-periodic regimes are also observed.
Discussion. Synchronization of quasi-periodic generators has a number of new moments that
are established in two-parameter analysis in a wide range of parametric changes.
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Introduction

Quasi-periodic oscillations are one of the well-known oscillation classes [1–4].
They occupy a kind of intermediate position between periodic and chaotic oscillations.
Quasiperiodic oscillations can be characterized by a different number of incommensurable
frequencies, so that there occur notions about two-, three-, four-frequency, etc. quasi-
periodicity; in the phase space it corresponds to invariant tori of different dimensions.
Recently, quasi-periodic oscillations have attracted a great research interest, as they sig-
nificantly enrich fundamental understanding of the dynamics of self-oscillating systems
[3–29]. The basic objectives of research were both nonautonomous systems in the form
of various coupled oscillators with limit cycles and new examples of autonomous mod-
els with quasi-periodic behavior. Among the most notable phenomena are quasi-periodic
bifurcations (bifurcations of invariant tori) [13, 14], Arnold resonance web [15], self-
organized quasi-periodicity [17–19], the Landau-Hopf scenario [21], the effect of broad-
band synchronization [4, 20], etc. It is interesting that quasi-periodicity with different
numbers of incommensurable frequencies and quasi-periodic bifurcations is possible not
only for coupled limit cycle oscillators, but also for subsystems with chaotic dynamics
[22]. Studies of small size ensembles of mappings, where multi-frequency quasi-periodic
oscillations and quasi-periodic bifurcations also occur, are presented in [23–26].

If quasi-periodicity occurs in autonomous systems, we may speak of generators of
quasi-periodic oscillations. The problem of their interaction is a natural problem within
the framework of the approaches to the oscillation theory. Relevant studies were carried
out in [11, 12, 27]. One of the first questions in the context of such a problem is the
choice of a basic model. In [11, 12] a four-dimensional modified Anishchenko-Astakhov
generator [10–12] was used; important and significant results were obtained, yet only the
region of small frequency mismatch and small value of the coupling force was studied, and
there was no two-parameter analysis. The lower-dimensional (three-dimensional) quasi-
periodic oscillator proposed in [28] was used as the basic model in [27]. The disadvantages
of this basic model include the fact that it does not have a state of equilibrium, which
indicates its simplified nature and limits the application. These limitations have influenced
the features of synchronization in coupled systems, in particular, researchers failed to
observe the indicative effect of oscillation death associated with dissipatively coupled
systems [1]. As part of this research, we study the dynamics of coupled generators of
quasi-periodic oscillations, while as a basic model we choose another modification of the
generator, which was proposed in [29] and has an equilibrium state. The dynamics of
such a system is much more extensive; in particular, we are going to demonstrate that
there is an effect of oscillation death and with a decrease in the coupling force there is a
regime of two-frequency quasi-periodicity in a very wide range of frequency mismatch.
The two-parameter analysis also reveals Arnold’s resonance web and new quasi-periodic
codimension two bifurcations.

This paper is structured as follows. Section 1 presents a brief overview of dynamics
of autonomous generator, deals with arrangement of control parameters plane, which is
interesting in terms of coupled generator system dynamics. Section 2 presents a study of
coupled generator system. Section 2.1 deals with arrangement of parameter plane and pos-
sible types of regimes. Section 2.2 deals with regimes of oscillation death and broadband
quasi-periodicity. Section 2.3 deals with quasi-periodic codimension two bifurcations.
Section 2.4 is focused on the study of chaotic dynamics in a system of coupled generators.
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1. Dynamics of model of a quasi-periodic oscillator
with one equilibrium state

In [28] there is a generator of autonomous quasi-periodic oscillations described by
equations:

ẍ− (λ+ z + x2 − βx4)ẋ+ ω20x = 0,

ż = µ− x2.
(1)

Various aspects of dynamics of such a generator are described in [28, 16, 27], in particular,
synchronization by external signal [16] and the dynamics of coupled generators [27].
However, model (1), as mentioned earlier, does not have a stable equilibrium state. The
model proposed in [29] offers a more comprehensive view:

ẍ− (λ+ z + x2 − βx4)ẋ+ ω20x = 0,

ż = b(ε− z)− kẋ2.
(2)

The model (2) can be interpreted as a hard-excitation oscillator with an inertial power
supply circuit. Like the model (1) it is a three-dimensional dynamic system, where x,
y = ẋ, z are dynamic variables of the system. Parameter ε indicates energy supply from
the power source, parameter b is responsible for inertial properties of the power circuit.
The term containing the coefficient k is responsible for power extraction to the oscillator.
Model (2) has one equilibrium state:

x0 = y0 = 0, z0 = ε. (3)

The equilibrium state may experience the Andronov–Hopf bifurcation which is the birth of
limit cycles. To find it, we write the system (2) as a system of three first order differential
equations

ẋ = y

ẏ = (λ+ z + x2 − βx4)y − ω20x,

ż = b(ε− z)− ky2.

(4)

The linearization matrix at the equilibrium point is written as

M =


0 1 0

−ω20 −(λ+ ε) 0

0 0 −b

 . (5)

The characteristic equation for determining the eigenvalues of the matrix L has the
following form:

L3 − L2(λ+ ε+ b) + L(b(λ+ ε) + ω20)− bω20 = 0. (6)

The invariants of this matrix are

S = λ+ ε+ b, H = b(λ+ ε) + ω20, J = bω20. (7)
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Fig. 1. Chart of the Lyapunov exponents for model of
generator of quasi-periodic oscillations (2), ε=4, b=1,
k = 0.02, β = 1/18. E – denotes stable equilibrium
point, P – denotes periodic oscillations, T – denotes
two-frequency quasi-periodic oscillations

The condition for the Andronov–Hopf bi-
furcation in a three-dimensional system
has the form J = SH , H > 0 [30]. Then,
from (7) we obtain

λ = −ε. (8)

Figure 1 presents a chart of the Lya-
punov exponents of system (2) in plane,
where eigenfrequency is a control parame-
ter (ω0, λ), and other parameters are fixed:
ε = 4, b = 1, k = 0.02, β = 1/18.
The charts of Lyapunov exponents were
constructed as follows: the full range of
the Lyapunov exponents was calculated for
each point of the parameter plane; in accor-

dance with the spectral signature, a point in the parameter plane was marked in one or
another color shade, where:

E denotes stable equilibrium, Λ1 < 0, Λ2 < 0, Λ3 < 0;
P denotes periodic oscillation (cycle), Λ1 = 0, Λ2 < 0, Λ3 < 0;
T denotes two-frequency quasi-periodic oscillations, Λ1 = 0, Λ2 = 0, Λ3 < 0.

Figure on the right shows the correspondence of the color shade and literal notation. On
all charts there is the Andronov-Hopf bifurcation line (8), which corresponds to the line
λ = −4 for the selected parameter values. Below it is the region of stable equilibrium,
and above is the region of a stable limit cycle. The latter has a fairly wide tongue of
autonomous quasi-periodic oscillations (see Fig. 1), which will be used to select quasi-
periodic dynamics of a separate generator. Note that within this tongue, inversely, there
are very narrow regions of periodic regimes.

2. Dynamics of coupled generators

2.1. The structure of the parameter plane. Let us now consider the dynamics
of coupled quasi-periodic oscillators (2). Two dissipatively coupled generators of this type
are described by the following equations:

ẍ1 − (λ+ z1 + x21 − βx41)ẋ1 + ω20x1 +Mc(ẋ1 − ẋ2) = 0,

ż1 = b(ε− z1)− kẋ21,

ẍ2 − (λ+ z2 + x22 − βx42)ẋ2 + (ω0 + ∆)2x2 +Mc(ẋ2 − ẋ1) = 0,

ż2 = b(ε− z2)− kẋ22,

(9)

where x1, z1 are variables determining the first generator; x2, z2 are variables of the
second generator, ∆ is frequency mismatch of the generators, Mc is coefficient of dissi-
pative coupling. The system (9) is determined by four independent frequencies that are
defined by the control parameters. As the control parameters we consider the eigenfre-
quency ω0 and parameter λ, responsible for excitation of self-excited oscillations in each
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generator. It is important for us to consider the situation when subsystems demonstrate
quasi-periodic oscillations. As seen in Fig. 1, the region of quasi-periodic oscillations is
limited in the parameter space by the Neimark–Sacker bifurcation lines; at λ = −1 a two-
frequency quasi-periodic dynamics is observed in the parameter interval ω0 (6.201...8.45).
If fundamental frequency ω0 is fixed inside the region of two-frequency quasi-periodicity
ω0 = 2π, then the first generator in the autonomous regime always demonstrates quasi-
periodic oscillations. The change of frequency mismatch ∆ into the positive region retains
mainly autonomous quasi-periodic regime in the second subsystem, as well. If the second
boundary of the tongue is reached, a limit cycle will emerge.

As the main research tool let us also use the method of the Lyapunov expo-
nent charts, likewise for the autonomous generator, only in this case the system is six-
dimensional, and the dynamics analysis will be based on the analysis of six Lyapunov
exponents:

E denotes stable equilibrium, Λ1 < 0, Λ2 < 0, Λ3 < 0, Λ4 < 0, Λ5 < 0, Λ6 < 0;
P denotes periodic oscillation (cycle), Λ1 = 0, Λ2 < 0, Λ3 < 0, Λ4 < 0, Λ5 < 0,
Λ6 < 0;

T2 denotes two-frequency quasi-periodic oscillations, Λ1 = 0, Λ2 = 0, Λ3 < 0,
Λ4 < 0, Λ5 < 0, Λ6 < 0;

T3 denotes three-frequency quasi-periodic oscillations, Λ1 = 0, Λ2 = 0, Λ3 = 0,
Λ4 < 0, Λ5 < 0, Λ6 < 0;

T4 denotes the four-frequency quasi-periodic oscillations, Λ1 = 0, Λ2 = 0,
Λ3 = 0, Λ4 = 0, Λ5 < 0, Λ6 < 0;

C denotes chaos, Λ1 > 0, Λ2 = 0, Λ3 < 0, Λ4 < 0, Λ5 < 0, Λ6 < 0;
HC denotes hyperchaos, Λ1 > 0, Λ2 > 0, Λ3 = 0, Λ4 < 0, Λ5 < 0, Λ6 < 0.

Figure 2 shows arrangement of the parameter plane, with frequency mismatch of the
coupling parameter (∆,Mc) for a system of coupled generators (9) at λ = −1. Figure 2, a
is a chart of Lyapunov exponents. Correspondence of the color shade to literal notation
is given on the right. Figure 2, b shows the main bifurcation lines obtained by using the
numerical bifurcation analysis package XPP AUTO.

At a small value of coupling force and frequency mismatch a four-frequency regime
of quasi-periodicity T4 is observed. With increase of the coupling force at low frequency
mismatches a sufficiently large region of two-frequency quasi-periodic oscillations is ob-
served (region T2 in Fig. 2). This region corresponds to phase synchronization of two-
frequency quasi-periodic oscillations.

Figure 3, a shows the graph of the winding number through variation of frequency
mismatch. The winding number was defined as ratio of phases in each oscillator. The
phases were calculated for two-dimensional projections in the plane (x, y). Note that the
graph stops at a certain value of the winding number, since the phase trajectory projec-
tion of the first oscillator in the plane (x, y) moves into the region of the origin, and the
phase ceases to be defined. As can be seen from the figure, at low frequency mismatches
the winding number is equal to one; however, on the chart of the Lyapunov exponents
(Fig. 3, b) we see that two-frequency quasi-periodic oscillations occur, that is, the gen-
erators are mutually captured, but their attractor is a two-dimensional torus. Thus, we
may speak of the synchronous quasi-periodicity regime. In figure 3, a these regions are
marked with letters PS. Figure 3, c gives an example of phase portrait (grey color) and
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Fig. 2. Chart of Lyapunov exponents (a), bifurcation lines (b) in the parameter plane (∆,Mc) for model of
coupled quasi-periodic generators for b = 1, ε = 4, k = 0.02, λ = −1, β = 1/18, ω0 = 2π

Fig. 3. Dependence of the wending number (a) and the largest four Lyapunov exponents (b) on the frequency
mismatch for coupled oscillators (9), b = 1, ε = 4, k = 0.02, λ = −1, β = 1/18, ω0 = 2π, Mc = 2.5.
Phase portraits (grey color) and Poincaré section by plane y1 = 0 (black color) for ∆ = 0.5 (c), 2.56 (d),
2.58 (e), ∆ = π (f ). PS denotes phase synchronized quasi-periodicity, CS is complete synchronization
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Poincar? section (black color) in the synchronous quasi-periodicity region PS, where a
smooth invariant curve is clearly visible.

The capturing phase region includes not only the tongue of synchronous quasi-
periodicity, but also the tongue of full synchronization (CS on the graph of the winding
number in Fig. 3, a and P on the chart of the Lyapunov exponents in Fig. 2, a). Note that
in the charts of Lyapunov exponents we can see a bifurcation of the torus doubling at the
transition of frequency mismatch through the value ∆ = 2.57 (transition from Fig. 3, d to
Fig. 3, e). Figure 3, f corresponds to an even greater value of the mismatch ∆ = π; we
are going to discuss the properties of this regime later.

With mismatch increasing at high coupling in the parameter plane (∆,Mc) (see
Fig. 2, a) there is a region of complete synchronization P, that forms the tongue, but it has
its own features. First, there is a coupling value threshold and, secondly, this region has
a frequency mismatch value threshold. The boundaries of this region form bifurcations
of various types. In figure 2, b the dotted line represents the Neimark-Sacker bifurcation
line (TR), the black solid line is the saddle-node bifurcation line (LP) and in grey color is
the Andronov-Hopf bifurcation line (HB). The left border of the tongue fully corresponds
to the Neimark-Sacker bifurcation, as a result of which the limit cycle becomes unstable
and a two-dimensional torus occurs. The right border of the tongue with a small coupling
force is the line of Neimark-Sacker bifurcation. The line of Neimark-Sacker bifurcation
ends at point p2 (3.034, 2.978), stopping on a line of the Andronov–Hopf bifurcation when
Mc = 3. For large values of the coupling coefficient the boundary of full synchronization
tongue is an Andronov-Hopf bifurcation, as a result of which the equilibrium state loses
stability and simultaneously there occurs a saddle-node bifurcation, as a result of which
a stable limit cycle occurs. Note that these bifurcations occur simultaneously only in a
small region and the saddle-node bifurcation line ends at p1 (4.303, 4.397) in the parameter
plane.

2.2. Region of oscillation death and broadband quasi-periodicity. One of the
essential features of the pattern observed at high frequency mismatch and strong coupling
force is the region of oscillation death that corresponds to the regime of stable equilibrium
and is denoted by the letter E. The boundary of the region of oscillation death has a
coupling force threshold, in accordance with the ratio Mc = λ + ε, which corresponds
to the equilibrium stabilization as a result of Andronov-Hopf bifurcation; for the nonce
Mc = 3. Figure 2, b shows the bifurcation lines limiting the region of oscillation death.
The lower boundary is the Andronov–Hopf bifurcation line. However, the left border
has unique features: as mentioned above, at Mc > 4.397 the limit cycle occurs due to
the saddle-node bifurcation, which occurs simultaneously with Hopf bifurcation. Also, a
specific feature is that the Andronov–Hopf bifurcation line has a continuation forMc < 3.

The next significant point is the presence of a region of two-frequency oscillations,
forming a differential band between the region of three-frequency quasi-periodic oscilla-
tions and the region of oscillation death. The same regime that occurs below the region
of the oscillation death was observed in [20, 21]1 and is called partial broadband synchro-
nization. In our case, we may speak of a broadband quasi-periodicity. The corresponding
region is denoted with letters BQ in Fig. 2, a. The regime?s main feature is that there

1see Fig. 7 in [20].
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are two-frequency oscillations in a certain range of the coupling parameter and a wide
range of frequency mismatch. Figure 3, f shows an example of a three-dimensional phase
portrait and a two-dimensional Poincar? section of a two-dimensional torus corresponding
to the broadband quasi-periodicity BQ.

The BQ region is represented by two-frequency quasi-periodic oscillations, there-
fore, with a decrease in the coupling force between the oscillators in Fig. 2, a there is
an instant transition from a steady state of equilibrium to two-dimensional torus. This
feature is due to the fact that related subsystems are identical by the excitation parameter
of self-oscillations. Since the parameters λ are the same, a degenerate Andronov–Hopf
bifurcation occurs, as a result of which the point becomes unstable and a two-dimensional
torus occurs. This situation corresponds to the fact that two Lyapunov exponents become
zero. Figure 4, a shows four largest Lyapunov exponents at variation of the coupling pa-
rameter Mc for ∆ = 2π. As seen in the figure, at a large coupling force all four exponents
are negative, while the first and second are equal in absolute value. As the coupling force
decreases, the absolute value of the first four exponents increases, and at Mc = 3, all four
exponents are zero. With a further coupling force decrease the two largest exponents are
zero, and the third and fourth become negative again.

This degeneration is removed with the introduction of non-identity for parameter
λ between the coupled oscillators; an example is shown in Fig. 4 for λ1 = −1 and
λ2 = −0.5. As in the previous case, with a strong coupling force all exponents are
negative, which corresponds to the oscillation decay. At Mc = 3.61, a supercritical Hopf
bifurcation (HB) occurs, after which the largest exponent becomes zero, and the second
one becomes negative again, which corresponds to self-oscillations. Then, atMc = 2.946,
the Neimark–Sacker bifurcation (TR) occurs, as a result of which a two-dimensional torus
occurs and the two Lyapunov exponents become zero.

Fig. 4. a, b – dependence of the largest four Lyapunov exponents on the coupling strength, b = 1, ε = 4,
k = 0.02, β = 1/18, ω0 = 2π, λ = −1 и λ1 = −1, λ2 = −0.5; c, d – bifurcation diagrams for the same
parameters
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Figures 4, c and 4, d show bifurcation diagrams for variation of the parameter Mc,
where bold and thin grey lines denote stable and unstable equilibrium states, respectively,
solid and dotted black lines denote stable and unstable cycles. Bifurcation analysis shows
that in the first case, as a result of the Andronov–Hopf bifurcation (HB), an unstable cycle
occurs, which then collapses to zero in the coupling parameter. For the second case, the
Andronov–Hopf bifurcation (HB) occurs simultaneously with a saddle-node bifurcation
(LP); thus, the equilibrium state loses stability and simultaneously, as a result of saddle-
node bifurcation, a limit cycle occurs, which at a weaker coupling force undergoes the
Neimark–Sacker bifurcation (TR).

Note that in Fig. 2, a on the right side of the chart below the BQ region one may
observe Arnold resonance web [15] based on the region of three-frequency oscillations.

2.3. Quasi-periodic bifurcation of codimension two. Now let us consider the
features of system dynamics with a small coupling force. Figure 5 shows a zoomed
fragment of the Lyapunov exponent chart. One may see the regions of four frequency
quasi-periodic oscillations T4, in which two tongues of three-frequency quasi-periodicity
T3 are embedded. The bases of these tongues are marked with values ∆1 and ∆2 and
lie on the abscissa axis corresponding to the zero value of the coupling parameter Mc.
These tongues are bounded by the lines of saddle-node bifurcations of four-dimensional
tori [13], in the figure denoted by SNT. Two such lines SNT1 and SNT2 begin at the
point of codimension two ∆1 on the horizontal axis2. Note that this picture is similar to
the classical one for the Arnold tongue, only instead of the region T3 there is a periodic
regime, and instead of T4 there is a two-dimensional torus.

Whereas, two such lines SNT2 and SNT3, belonging to two different tongues, inter-
sect and end at the point QSNF, which arises when two parameters are regulated and also
has a codimension of two. Above this point, two-frequency quasi-periodic oscillations T2

are observed in the overlap region of the three-frequency tongues, and this region also
has a form of tongue. A similar structure is typical for systems with multi-frequency
quasi-periodic oscillations [4]. Such points in [4] are called Quasi-periodic saddle-node
fan QSNF.

A similar structure was described in [4] for four coupled Van der Pol oscillators, as
well as a system of equations in phase approximation.

In figure 5 there are two points QSNF1 and QSNF2. The coupling amplitude
threshold for each of them is approximately the same.

Fig. 5. Zoomed fragment of the chart of Lyapunov
exponents of coupled oscillators (9) near special points
QSNF. b = 1, ε = 4, k = 0.02, λ = −1, β = 1/18,
ω0 = 2π

Also in figure 5 the point with coor-
dinates (∆3, 0) is marked. To the right of
it, a three-frequency quasi-periodicity oc-
curs at an arbitrarily small coupling force.
The reason for it is that mismatch value
corresponds to transition of the second in-
dividual generator from quasi-periodic to
periodic oscillations in accordance with
figure 1. (The right boundary of the re-
gion of two-frequency quasi-periodicity in
figure 1.)

2A similar picture was observed in [31], only the dimension of tori was reduced by one.
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2.4. Chaotic dynamics. Another feature of the model (9) is the formation of
chaotic dynamics. The regions of chaotic dynamics C are localized under the tongue
of full synchronization, in the region where small tongues of high-order synchronization
overlap. With large frequency mismatches and strong coupling force chaotic oscillations
are not observed. Despite the fact that the region of chaos is small in the parameter space,
there is not only chaos, but hyperchaos with two positive Lyapunov exponents HC.

Figure 6, a shows a zoomed fragment of the Lyapunov exponent chart near region
of the main “island” for chaotic dynamics. As seen from the figure, most of the chaotic
regimes represent chaos with one positive Lyapunov exponent, but within the island one

Fig. 6. a – zoomed fragment of the chart of Lyapunov exponents of coupled oscillators (9) near area of
chaotic dynamics for b = 1, ε = 4, k = 0.02, λ = −1, β = 1/18, ω0 = 2π; phase portraits, Poincare
sections and Fourier spectrums for chaotic regime (b, d): ∆ = 2.5, Mc = 1.7; and hyperchaotic regime (c,
e): ∆ = 2.34, Mc = 1.69

50
A.P. Kuznetsov, N.V. Stankevich

Izvestiya VUZ. AND, vol. 26, no. 2, 2018



can distinguish regions of hyperhaos. Figures 6, b, d and 6, c, e illustrate the arrange-
ment of phase space and Fourier spectra for the chaos and hyperchaos, respectively. For
Fig. 6, b, d were recorded parameters ∆ = 2.5, Mc = 1.7, for which the largest Lyapunov
exponents have values Λ1 = 0.088, Λ2 = 0, Λ3 = −0.025. For Fig. 6, c, e we chose
parameters ∆ = 2.34,Mc = 1.69, for which three largest Lyapunov exponents have values
Λ1 = 0.106, Λ2 = 0.018, Λ3 = 0.

As seen from the figure, the structure of attractors in a phase space is quite com-
plicated both for chaos and hyperchaos. Fourier spectra have a base peak at frequency
ω0 = 2π, and there is also a peak at frequencies ω0 = 2π + ∆. Herewith, in the case
of chaos in the Fourier spectrum, peaks at combinational frequencies are also observed,
which is typical for quasi-periodic oscillations. Therefore, we may say that chaos arose as
a result of the torus destruction. For hyperchaos the matching frequency is far less notice-
able, the spectrum becomes smoother and more uniform, a small extension is observed.

Conclusion

Features of mutual synchronization of quasiperiodic oscillations have been studied
on the example of a model with two coupled quasiperiodic oscillation generators in equi-
librium state. Synchronization of generators in the plane (frequency mismatch ? coupling
force) is described in detail. We have clearly demonstrated that in such a system both full
synchronization corresponding to the periodic regime and synchronous quasi-periodicity
regime is possible, if the oscillations are quasi-periodic and the phases of the generators
are accurately captured. There was also a regime of oscillation death. The peculiarity of
this system is also the possibility of broadband quasi-periodicity, which consists in the fact
that there are two-frequency oscillations in a certain range of changes in the coupling force
parameter and a wide range of frequency mismatch. This area is observed with a decrease
of the coupling force parameter below the region of the oscillation death. Other regimes
of two-frequency quasiperiodicity have the form of tongues embedded in the region of
three-frequency oscillations, and forming a resonant Arnold web.

We have studied in full detail the transition from phase of full synchronization to
broadband quasi-periodicity regime. At such a transition two-dimensional torus doubling
bifurcations are found. The transition from four-frequency to three-frequency quasiperiod-
icity with weak coupling force has been studied. This transition is associated with points
of quasi-periodic codimension two bifurcations QSNF (quasiperiodic saddle-node fan).
These points are the tips of the tongues in two-frequency regimes, having a threshold
value for the coupling coefficient. Near them there are also observed three- and four-
frequency quasi-periodic regimes. We have discovered a possible application of chaotic
dynamics with both one and two positive Lyapunov exponents for the proposed model.

This work was carried out at the expense of the Russian Science Foundation grant
№ 17-12-01008 (problem statement, analytical research, numerical modeling, general-
ization of results, sections 1, 2.1, 2.2, 2.3) and the grant of President of the Russian
Federation for governmental support of young scientists MK-661.2017.8 (study of chaotic
dynamics, section 2.4).
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