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Aim. The aim of the study is to formulate an effective model of the power grid, to
determine the stable modes of its operation, to identify differences in the considered modes
and to test the stability of the system to changes in control parameters, initial conditions and
to various types of external influence. Method. The effective model of the energy network,
which consists of three coupled oscillators, is considered for different methods of setting the
initial conditions and variation of the control parameters. Numerical simulation of power
systems allows to reveal the steady states of the oscillators, at which the stable operation of
power systems is observed. This approach makes it possible to optimize power systems, to
determine the mechanisms for improving the stability of the system and to identify the parts
of power systems, that are more prone to negative factors. In the framework of our study,
the operating modes of the power grid are compared under the influence of external noise of
different intensities and rectangular pulses, which simulate power surges in the power grid.
Results. The effective model of the power system consisting of three coupled generators
has been proposed and numerically explored. It is shown that when the output power of the
generator is changed, a regime which is resistant to variations of the initial conditions can
be obtained. It is found that the functioning of such a system is less sensitive to various
external factors. In particular, the mode with synchronization of phase velocities of all the
oscillators is more resistant to power consumption changes, noise effects and transmission
line breaks in comparison with the mode of synchronization with different phase velocities.
Discussion. The study of the power grid of three coupled generators has demonstrated the
behavior of the key modes of operation of the power grids and has shown the possibility for
optimizing the network by adjusting the generator output power parameter. In this paper, we
have considered the synchronization of power grid for only one model of the network. As a
further study of networks, it is necessary to conduct a comparative analysis of synchronization
modes of several power grid models.
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Introduction and problem statement

Nowadays it is crucial to provide technical solutions to overcome the power grid
stability challenges. It implies the advanced knowledge in electrical engineering and
design and thorough consideration of dynamic processes between power plants and con-
sumers. The ever-expanding circle of consumers entails an increased number of power
sources, further complicating the task of fostering the sustainability of the power grid.
Moreover, the emergence of renewable energy sources makes their integration with high-
powered electrical grids, that include turbogenerators, a priority [1]. The power grid is
monitored through data collection and controlled by the operator. Such an approach is
less effective than an ongoing monitoring of power grids and computer automation of the
processes. Quick decision-making process and grid resilience in the emergency mode are
the key issues for power grid stability. Another solution to the problem might be computer
modeling and the application of optimization modeling techniques, which involve a set of
stress-tests to analyze the vulnerability and stability of the grid.

With the advent of synchronous machines as production sources of power in power
grids, concerns have emerged regarding the stability and sustainability of electrical power
generators. Synchronous machines are the basic elements in the construction of the power
plants. Due to the restrictions of output capacity of these facilities and the increased
consumption, there is a need for additional electricity supply. Thus, a power grid is a
complex system consisting of multiple generators and consumers. It is also worth noting
that renewable energy sources are responsible for the heterogeneous topology of the power
grids [2], thus making it difficult to determine the steady-state stability of synchronous
machines. Another challenge is to ensure minimum losses and rational distribution of
power provided by different sources between the consumers [3–5]. Thus, the main objec-
tives of the study of power grids are optimized energy distribution between the consumers
and their grid resilience in the emergency mode and against other factors that may impair
electrical power generators.

Fig. 1. Network layout for one synchronous machine:
(a) schematic diagram of the one-machine system;
(b) simplification of the circuit while eliminating the
effect of capacitance and active resistance of the trans-
mission line; (c) schematic diagram with a generaliza-
tion of all inductances into a single inductance

Consider the simplest model of the
electric power system [6], consisting of
an equivalent generator (synchronous ma-
chine), an output node of the genera-
tor (transformer), and a transmission line
(Fig. 1, a).

Let’s introduce the following con-
straint: the transmission line is con-
nected to the massive power system
through an infinite bus. This implies
that the output voltage module and the
output frequency are regarded as invari-
able. Let’s simplify the layout by elim-
inating the effect of capacitance and ac-
tive impedance of the transmission line
(Fig. 1, b). Consider the synchronous
EMF of the generator Eq connected to the
source of voltage U through the equivalent
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Fig. 2. Vector diagram of the synchronous machine
parameters

inductance x (Fig. 1, c). Equivalent induc-
tance is the sum of all inductances of all
the elements involved:

x = xd + xT1 + xL + xT2, (1)

where xd is the transient inductive resis-
tance of the generator; xT1 and xT2 are
equivalent inductances of transformers T1

and T2, respectively; xL is the equivalent
inductance of the transmission line.

Consider the relationship between
the capacity P and the values Eq and U ,
shown in the vector diagram of voltages
and currents (Fig. 2). The diagram shows
that the values Eq and U are determined

by the angle δ between them. Next we expand the diagram with the active Ia and reactive
Ip components of current I and active Iajx and reactive Ipjx components of the voltage
drop Ijx at the equivalent resistance x. The resulting equation is:

Iax = Eq sin δ. (2)

Multiplying both sides of the equation (2) by 3U/x and taking into account that the
three-phase power is equal to P = 3UIa, for single-phase power Pe we obtain:

Pe =
EqU

x
sin δ. (3)

With constant values Eq = const and U = const equation (2) is a sinusoidal function of
the active capacity of the generator, which depends on the angle. Now rewrite the swing
equation (see Annex) by adding an expression for Pe:

2H

ωR
δ̈+

D

ωR
δ̇ = Pm − EqU

xd
sin δ. (4)

The equation (4) represents the electromechanical description of power imbalance in the
swing equation (see Sec. 4)) and we will use precisely this representation of the model in
the study of the single and collective dynamics of synchronous machines.

1. Equations of an effective network model
for the chain of three coupled oscillators

Consider the structure and parameters of the network, which consists of nine ele-
ments (Fig. 3, a). The total number of elements is defined as N=2ng+nl, where ng de-
notes elements that belong to generators (since generators are always represented through
the output nodes of the transformers, the total number of generators is doubled); nl stands
for the total number of the network load elements.
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Fig. 3. Scheme of transformation of a physical net-
work to an effective network model: topology of the
physical network (a); topology of the effective network
model (b); the generators are denoted by a circle, the
output nodes (transformers) – by a square and the con-
stant power grid loads – by a hexagon

To simplify the differential equa-
tions, we use the effective network
method presented in [7]. The method is
based on eliminating from consideration
the network load, on the condition that
the electric power load consumption does
not change over time Pi + jQi= const.
By applying this method to a physical
network, we get an efficient network,
which topology contains no loads. Thus,
we are able to consider only the inter-
action of coupled generators (Fig. 3, b).
Transformation of such a network is carried out using Kron reduction for the initial con-
ductance matrix of the physical network [8].

The algorithm for the conductance matrix transformation is described in the MAT-
POWER software package [9]. The transmission lines between the physical network nodes
are seen as a set of values for the overall conductivities. Since there is a heterogeneous
network with nodes of different connectivity, it should be taken into account when calcu-
lating the conductance matrix. Then using the software package, the parameters of active
generator power Pgi, reactive generator power Qgi, the output node voltage of the trans-
former Vi and its phase 3i are obtained. As a result, we get the complete physical network
configuration, which is necessary to form a simplified topology, and the model parameters
of the effective network. Therefore, the effective network model takes the form:

2Hi

ωR
δ̈i +

Di

ωR
δ̇i = AEN

i −
ng∑

j=1,j ̸=i

KEN
ij sin(δi − δj − γENij ), i = 1, · · · , ng (5)

AEN
i = Pg,i − |Ei|2GEN

ii , KEN
ij = |EiEjY

EN
ij |, γENij = αENij − π

2
, (6)

where ωR is the reference angular frequency of the system; Hi and Di are the constants
of inertia and damping of the oscillators, respectively; Ai stands for the parameters of
the pure generation capacity; the parameters Kij represent the dynamic connection of
the coupled oscillators i and j or maximums of reciprocal capacity of the generators and
receiving systems; γij denotes phase shifts between the corresponding oscillators. All
the abovementioned system parameters are given in the dimensionless form. The basic
capacity PR = 100 MVA is used as the normalizing value.

The network frequency ωR = 50 Hz or 314.1593 rad/s was taken as a sys-
tem reference frequency. The values of the inertia constant and the transient induc-
tive resistance of the generator can be approximated by the formulas Hi = 0.04Pi and
xd = 92.8P−1.3

i , respectively. Next we calculate the combined dissipation parameter as
follows Di = (Dmi + Dei + 1/Ri)(ωR/PR), where the mechanical friction of the rotor
shaft (Dmi = 0) and the electric parasitic effect of the generator stator windings (Dei = 0)
are negligible. It now remains to examine the parameter that defines the reference fre-
quency of the generator as Ri = 0.02ωR/PR = 0.0628. Substituting this value into the
generalized dissipation parameter yields Di = 50. Consider an example where damping
parameter is completely absent, that is, Di = 0. Consequently the reference frequency of
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the generator is not controlled by the control system and its value may differ considerably
from the network frequency. At the same time, however, the rotor of the synchronous
machine is selfexcited, thus constantly changing the rotation speed and, more often than
not, disrupting the steady-state operation of the generator [10].

Further we define the parameters Ai, Kij and γij in the right-hand side of the
equations. Thus, it is necessary to transform the conductance matrix of a physical network
Y0 into the matrix of an effective network Y EN .

Y0 =

(
Y gg Y gl

Y lg Y ll

)
(7)

Here Y gg, Y gl, Y lg, Y ll are the conductance sets of the network elements, grouped with
regard to the intrinsic and mutual conductivities of the transmission line of generators
and network loads. We supplement the given matrix with the component Yd, that con-
sists of the diagonal elements of the transient resistances of the generators’ inductances
(jxd, 1)

−1 · · · (jxd, ng)
−1, where ng is the total number of generators. Providing that the

shunting conductivity Y l,i is equivalent to the load Y l,i = (P l,i − jQli)/|Vi|2, the com-
ponents Ȳ gg and Ȳ ll are determined as Ȳ gg = Y gg + Y li и Ȳ ll = Y ll + Y li, we obtain
the final form of the matrix:

Y0 =

 Yd −Yd 0

−Yd Ȳ gg + Yd Y gl

0 Y lg Ȳ ll

 . (8)

Finally, we define the desired elements of the effective matrix using Kron reduction in ac-
cordance with the formula Y EN = Y ′(1 + Y −1

d Y ′)
−1

, where Y ′ = Ȳ gg −Y gl(Ȳ ll)
−1

Y lg.
Using this matrix, we determine the parameters for three generator nodes under investiga-
tion via the effective network method:

AEN
1 = Pg1 − |E1|2GEN

11 , AEN
2 = Pg2 − |E2|2GEN

22 , AEN
3 = Pg3 − |E3|2GEN

33 , (9)

KEN
12 = |E1E2Y

EN
12 |, KEN

13 = |E1E3Y
EN
13 |, KEN

23 = |E2E3Y
EN
23 |, (10)

γEN12 = αEN12 − π
2
, γEN13 = αEN13 − π

2
, γEN23 = αEN23 − π

2
, (11)

where Pgi is the active capacity i of the generator; GEN
ii is the real part of the diagonal

elements of the effective matrix Y EN; Ei and Ej are synchronous EMF of the coupled
generators; αENij is the phase angle |Y EN

ij |ejα, that is responsible for the angular displace-
ment of the synchronous machine.
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As a result, we get the equations for the system under consideration

2H1

ωR
δ̈1 +

D1

ωR
δ̇1 = AEN

1 −KEN
12 sin(δ1−δ2−γEN12 )−KEN

13 sin(δ1−δ3−γEN13 ),

2H2

ωR
δ̈2 +

D2

ωR
δ̇2 = AEN

2 −KEN
12 sin(δ1−δ2−γEN12 )−KEN

23 sin(δ2−δ3−γEN23 ),

2H3

ωR
δ̈3 +

D3

ωR
δ̇3 = AEN

3 −KEN
13 sin(δ1−δ3−γEN13 )−KEN

23 sin(δ2−δ3−γEN23 ).

(12)

2. Numerical results

Now rewrite the system of equations (12) as:

ẋ1 = y1,

ẏ1 = (A1 −K12 sin(x1 − x2 − γ12)−K13 sin(x1 − x3 − γ13)−
D1

ωR
y1)
ωR
2H1

,

ẋ2 = y2,

ẏ2 = (A2 −K12 sin(x1 − x2 − γ12)−K23 sin(x2 − x3 − γ23)−
D2

ωR
y2)
ωR
2H2

,

ẋ3 = y3,

ẏ3 = (A3 −K13 sin(x1 − x3 − γ13)−K23 sin(x2 − x3 − γ23)−
D3

ωR
y3)
ωR
2H3

.

(13)

Here xn and yndenote, respectively, the phases and the oscillator phase n (n = 1, 2, 3).
Since the phases of the oscillators under consideration are constantly increasing in time, it
is convenient to use periodic coordinates in the range from 0 to 2π to study the system.

Consider the first case of power system operation in which synchronous machines
are in equilibrium, but the condition for synchronization of phase velocities y1 = y2 = y3
is not satisfied. We use MATPOWER to define the physical network parameters, such
as the total output capacity of the generator Pgi, Qgi and the total power consumption
load Pli, Qli. The parameters of generators output capacity are, MW: Pg1 = 71.64,
Qg1 = 27.05, Pg2 = 163, Qg2 = 6.65, Pg3 = 85, Qg3 = −10.86. The parameters of
the total power consumption load are, MW: Pl1 = 125, Ql1 = 50, Pl2 = 90, Ql2 = 30,
Pl3 = 100, Ql3 = 35. The effective network model parameters are A1 = −0.2276,
A2 = 1.1668, A3 = 0.5635, K12 = 1.7089, K13 = 1.3361, K23 = 1.184, γ12 = −0.1875,
γ13 = −0.1694, γ23 = −0.1964, H1 = 23.64, H2 = 6.4, H3 = 3.01, D1,2,3 = 50,
ωR = 314.1593.

As an analysis tool, we apply the stroboscopic section method: the angular phase
of X2,3 oscillators is observed relative to the phase of the selected oscillator x1. For
this purpose, we choose a small range of values of the variable x1 on the periodic plane
(0 6 x1 6 2π) near x1 = x∗1. If the trajectory in a projection onto x1 falls within
this range (x∗1 − ε;x∗1 + ε) (ε ≈ 1 · 10−6), then the corresponding values of X2,3 are
plotted on the plot of the time dependence X(t). In other words, when the phase of
the oscillator is within the selected range of values (x∗1 − ε;x∗1 + ε), the phase values of
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the remaining oscillators are fixed. The obtained phase values are plotted against time
X2,3(t). Analyzing the obtained data, we can draw a conclusion on the phase velocity
change of the oscillators under study with respect to the given one.

Let us set the value of x∗1 = 3 and observe the phase change of the second and third
oscillators relative to the first one, plotting the dependencies of their stroboscopic sections
on time. In the case of phase synchronization the oscillators X2,3 remain unchanged in
the stroboscopic section. Furthermore, there are two typical cases of oscillator synchro-
nization: when the phase-change velocities of all oscillators are equal or when they are in
the multiple ratio. On the stroboscopic section the synchronization mode is represented by
the straight line, that is parallel to the abscissa axis. The coincidence of the phase-change
velocities should be checked separately. If there is no synchronization, the phases in the
stroboscopic section will change. Thus, using the stroboscopic section, we can investigate
the stability of the synchronization regime.

We now consider the behavior of the system as the initial conditions change.
(Fig. 4, a) indicates that over time the system (13) is set to the stable operation mode
of the power grid under the initial conditions x1 = 0, y1 = 0, x2 = 2.0944, y2 = 0,
x3 = 4.1889, y3 = 0. We may specify initial conditions (for example, x1 = 0.1745,
y1 = 0, x2 = 2.0944, y2 = 0, x3 = 4.1889, y3 = 0 на рис. 4, b) so that the system
does not go into the stable operation mode over time. To illustrate the establishment of
stable operation of the power grid (Fig. 4, c) versus its unstable operation (Fig. 4, d), we
also indicate temporal realizations of the change in phase velocities of the selected oscil-
lator. The figures show that phase velocities are constant in the stable operation mode and
change periodically in the unstable one.

Fig. 4. Stroboscopic section of X(t) for x∗
1 = 3 for initial conditions x1 = 0, y1 = 0, x2 = 2.0944, y2 = 0,

x3 = 4.1889, y3 = 0 (a), when initial conditions change for x1 = 0.1745 (b). The time series of the change
in the phase velocity of the second oscillator for initial conditions x1 = 0, y1 = 0, x2 = 2.0944, y2 = 0,
x3 = 4.1889, y3 = 0 (c), and when the initial conditions change for x1 = 0.1745 (d)
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Now let’s compare the modes of power grid operation for the various parame-
ters of the oscillators. For this purpose, we change the output power values. We in-
crease the output active power of the second generator Pg2 from 163 to 219 MW. Thus,
the new parameters of the effective network model are the following: A1 = −0.2276,
A2 = 1.7238, A3 = 0.5635, K12 = 1.7274, K13 = 1.333, K23 = 1.1982, γ12 = −0.1912,
γ13 = −0.1726, γ23 = −0.1959, H1 = 23.64, H2 = 6.4, H3 = 3.01, D1,2,3 = 50,
ωR = 314.1593. We investigate the effective network model, using the abovementioned
initial conditions that enable the stable mode operation. The analysis showed that when
the active power is changed, the system remains in the stable operation mode of phase
oscillators. Moreover, the synchronization mode is not disrupted even with the change
of the initial conditions (Fig. 5, a). The temporal realization (Figure 5, b) shows that
the phase velocities of the oscillators soon become constant and equal to each other
y1 = y2 = y3 = 1.1769. Thus, there is a synchronization in the system of coupled
oscillators. To compare the eigenfrequencies of the oscillators, consider their deviation
with respect to the reference frequency of 50 Hz. We calculate the eigenfrequencies for
both modes of the power system operation, using the formula: fi = (1+Ai/Di)ωR/(2π).
In the first case of synchronization with different phase velocities, the eigenfrequencies
were the following: f1 = 49.77, f2 = 51.17, f3 = 50.56 Hz. In the synchronous mode
with identical phase velocities the eigenfrequencies were the following: f1 = 49.77,
f2 = 51.72, f3 = 50.56 Hz. It should be noted that in both cases the eigenfrequencies of
the corresponding oscillators f1 и f3 were chosen to be close to the value of the reference
frequency, whereas the eigenfrequency of the second oscillator f2 differs significantly
from it. The increase in the generator output power led to an increase in its own rotational
speed. Generally speaking, such an increase in frequency would result in additional heat
generation in the synchronous machine. When designing such a network, it should be
taken into consideration, as it may cause the generator to overheat.

Let’s perform several different tests for a more detailed consideration of the differ-
ences between the two synchronous modes of power grid operation [11]. First consider 

Fig. 5. Stroboscopic section X(t) for x∗
1 = 3 for any initial conditions (a), time series of the phase velocity

change for any initial conditions (b)
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equation of the system (13) and thus obtain the following equations:

ẋ1 = y1,

ẏ1 = (A1−K12 sin(x1−x2−γ12)−K13 sin(x1−x3−γ13)−
D1

ωR
y1 +

√
2σ1ξ1(t))

ωR
2H1

,

ẋ2 = y2,

ẏ2 = (A2−K12 sin(x1−x2−γ12)−K23 sin(x2−x3−γ23)−
D2

ωR
y2 +

√
2σ2ξ2(t))

ωR
2H2

,

ẋ3 = y3,

ẏ3 = (A3−K13 sin(x1−x3−γ13)−K23 sin(x2−x3−γ23)−
D3

ωR
y3 +

√
2σ3ξ3(t))

ωR
2H3

,

(14)
where σi is the noise intensity, ξi is an independent noise source.

To study the effect of noise on the system, we choose the time interval from t1=500
to t2 = 1500 (σ1,2,3 = σ0 at T ∈ [t1, t2], and σ1,2,3 = 0 at t /∈ [t1, t2]) and examine the
modes at high noise intensity σ1,2,3 ∼ 0.1. Fig. 6, a shows that, in a stable operation mode
with different phase velocities there might be the loss of oscillator stability after Gaus-
sian noise exposure has stopped. This phenomenon can also be observed at sufficiently
low noise intensities. Furthermore, the probability of the disruption of stable operation

Fig. 6. (a, b) – Stroboscopic sections X(t) for x∗
1 = 3 for synchronous modes with different and identical

phase velocities, respectively, black dots – stroboscopic section for X2, gray – for X3, (c, d) are the time
series of the phase velocities of stable regimes with different and identical phase velocities, respectively

70
P.A. Arinushkin, V.S. Anishchenko

Izvestiya VUZ. AND, vol. 26, no. 3, 2018

the system under the influence of additive white Gaussian noise. We add the noise to each



increases with the noise increase in the system. The synchronous mode showed very high
noise immunity (Fig. 6, b). It should be noted, however, that this mode is resistant to noise
effects even in the initial period of time (Fig. 6, d), when the phase velocity undergoes
significant changes, but tends to equilibrium. The noise effect on a synchronous mode
with different phase velocities at the initial instant of time results in the loss of oscillator
stability (Fig. 6, c).

It is worth considering the behavior of the system under the influence of a rectangu-
lar pulse, which simulates power surges in the power grid. We add a pulse to the second
equation of the system under consideration for both synchronous modes (with different
behavior of phase velocities). The equations of the system (13) will take the form:

ẋ1 = y1,

ẏ1 = (A1 −K12 sin(x1 − x2 − γ12)−K13 sin(x1 − x3 − γ13)−
D1

ωR
y1)
ωR
2H1

,

ẋ2 = y2,

ẏ2 = (A2−K12 sin(x1−x2−γ12)−K23 sin(x2−x3−γ23)−
D2

ωR
y2+f1(τ))

ωR
2H2

,

ẋ3 = y3,

ẏ3 = (A3 −K13 sin(x1 − x3 − γ13)−K23 sin(x2 − x3 − γ23)−
D3

ωR
y3)
ωR
2H3

,

(15)

where f1(τ) is a rectangular pulse of a given amplitude and duration. Let us determine the
pulse duration τ=1000, the pulse-on time t=500 and the pulse action amplitude A=1.9.

The application of the rectangular pulse to the system with unequal phase velocities
causes the disruption of its stable operation, so the phase velocities of all the oscillators
are changing according to the periodic law. After the application of the pulse has ceased,
the system does not return to its original state and continues to operate in asynchronous
mode (Fig. 7, a). Perturbation of the system in synchronous mode leads to the different
behavior of the oscillators. At the initial stage of the perturbation time, there is a short

Fig. 7. Stroboscopic sections X(t) for x∗
1 = 3 for stable regimes in the case of different (a) and identical (b)

phase velocities. Black points of the stroboscopic section mark X2, gray points – X3
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Fig. 8. Stroboscopic sections X(t) for x∗
1 = 3 for synchronous operation with different (a, b, c) and identical

(d, e, f ) phase velocities when removed the next links: K12 (a, d); K13 (b, e); K23 (c, f ). Black dots denote
the stroboscopic section for X2, and gray ones for X3

perturbation of phase velocities and the system reaches an equilibrium. That is, a new
synchronous mode is formed (Fig. 7, b). After the application of the pulse has ceased, the
power grid returns to its original stable operation mode.

In real power grids decoupling between the generators should also be taken into
account. To simulate this situation, we eliminate one coupling in the system of equations
(13). Let’s eliminate one coupling in the time interval from t1 = 500 to t2 = 1500, thus
simulating the emergency mode caused by transmission line breaks. The inclusion of the
coupling term corresponds to the restoration of the transmission line.

As can be seen from Fig. 8, both stable modes behave in the same way: when one
coupling is eliminated, the oscillators switch to the new stable operation mode and return
to their previous stable state once the coupling has been restored. It was also found that
phase velocities are synchronized in the absence of K12 or K13 сouplings (Fig. 8, a, c).
That is, the initial mode is replaced by the mode with identical phase velocities during the
decoupling.

Concluding Remarks

An effective network model was considered, focusing on the behavior of coupled
generators, while eliminating from consideration the network load. The aim of the study
is to analyze the stable operation modes of the power grid under the influence of various
external factors. Firstly, the model under consideration can demonstrate different modes
of operation in relation to the initial conditions. It is shown that by adjusting the gener-
ator output power it is possible to insure the stability of the system, which is resistant to
variations of the initial conditions. Moreover, it was found that the functioning of such
a system is less sensitive to various external factors. Secondly, the influence of various
external factors on two key operation modes (synchronous and asynchronous) was con-
sidered. The system was examined under the influence of additive white Gaussian noise
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and rectangular pulse in a given time interval. Furthermore, the steady-state modes have
been investigated corresponding to the topology changes. Thus, the power grid in the
synchronous mode is independent of initial conditions and is more resistant to negative
factors in comparison with the mode of synchronization with different phase velocities.
In this regard, it is worth drawing attention to the deviation of eigenfrequencies of the
generators with respect to the reference frequency. The frequency difference of more than
±2 Hz results in the increased accumulation of heat in the synchronous machine and, con-
sequently, in an early failure of the generator. In the investigated stable operation modes
the frequency difference is within 4% of the 50 Hz reference frequency. Thus, the study
of the power grid of three coupled generators has demonstrated the behavior of the key
modes of operation of power grids and has shown the possibility for optimizing the energy
network by adjusting the generator output power parameter.

Annex

Consider the swing equation, suggested in [7]. To derive the equation of motion
and describe the dynamics of the generator, we may write the following equation for the
rotational velocity of the rotor (the rotational velocity is equal to the rotor torque):

J δ̈ = T̄m −Dmω− 1

R
∆ω−De∆ω− Te, (An.1)

where J is the moment of inertia in [kg·m2]; δ is the rotor angle relative to a frame
rotating at the reference frequency ωR, [rad/s]; T̄m is the mechanical torque, [N·m];
Dm is the damping coefficient in [N·m·s]; ω is rotor angular frequency, [rad/s]; R is the
regulation parameter in [rad/ (N·m·s)], characterizing the proportional frequency control
by a governor with the frequency deviation ∆ω = ω− ωR; De is the damping coefficient
in [N·m·s], for the electrical effect of the generator’s damper windings, and Te is the
typically decelerating torque in [N·m] due to electrical load in the network. Noting that
ω− ωR = ∆ω, we can rewrite the equation as (An.1) as

J δ̈+ D̄δ = T̄m − Te, (An.2)

where D̄ = Dm + De + 1/R is frictional loss at the reference frequency and T̄m =
= Tm −DmωR is the net mechanical torque. Multiplying both sides by ω and using the
fact that torque in [N·m] multiplied by angular velocity in radians per second gives power
in watts, the equation (An.2) can be written in terms of power:

JωRδ̈+ D̄ωRδ̇ =
ωR
ω

(Tmω− Teω) ≈ P̄m − P̄e. (An.3)

Next we define the right-hand side of the equation in terms of power P̄m = Tmω and
P̄e = Teω. Then we assumed the factor ωR/ω to be nearly equal to one, i.e., that the
generator’s frequency ω is close to the reference frequency ωR. We now divide both
sides of the equation (An.3) by the rated power PR (used as a reference) as normalization
procedure to make Pm and Pe per unit quantities. The factor JωR then becomes 2H/ωR,
where we defined the inertia constant H = W/PR (in seconds) and the kinetic energy
of the rotor W = Jω2R/2 (in joules). We define the combined damping coefficient
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as D = ωR/PR (in seconds).We then obtain the desired equation known as the swing
equation

2H

ωR
δ̈+

D

ωR
δ̇ = Pm − Pe, (An.4)

which is the fundamental equation of motion for a generator. The term Pm represents
the net mechanical power input to the rotor, while Pe represents the electrical power
demanded by the rest of the network and includes terms that depend explicitly on δ,
and the state variables of the other generators and loads in the network. There has been
substantial effort in the power systems literature [12] to model the dynamical behavior
of the generator.s internal magnetic flux, which affects the value Pe. One may also need
to include the nonlinear dynamics of the governor that controls the generator frequency
and the excitation system that controls the voltage magnitude at the generator terminal.
Thus, Pe is a dynamic quantity, which may need to be accounted for in high-accuracy
simulations of power systems.
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