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Abstract . Purpose of this work is to develop a reconstruction technique for the equations of a phase-locked loop
system under periodic external driving from a scalar time series of one variable. Methods. Instead of the original
model, we reconstructed a time-integrated model. So, since it is not necessary to evaluate the second derivative of
the observable numerically, the method sensitivity to observation noise has significantly decreased. The external
periodic driving is approximated with a trigonometric polynomial of time, the antiderivative of which is also a
trigonometric polynomial. The assumption about continuity of an unknown nonlinear function is used to construct
the target function for optimization. Results. It is shown that the proposed approach gives a significant advantage
over the previously developed approach to the reconstruction of non-integrated equations, allowing to achieve
acceptable parameter estimates with measurement noise being about 10% of the RMS deviation of the signal even
in the presence of external driving. Conclusion. The described approach significantly extends the possibilities of
reconstruction of phase-locked loop systems, allowing systems to be reconstructed under arbitrary periodic driving
and at the same time significantly increasing noise resistance.
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Introduction

The theoretical possibilities of methods based on the reconstruction of equations over
time series are very large [1]: indirect measurement of quantities and even whole functions that
cannot be measured directly; clustering of objects according to model parameters; verification
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of different models of the same object or phenomenon; prediction of future behavior in time or
prediction of behavior with a small changing parameters (bifurcation forecast). In the application
to biological neurons, all these possibilities are in demand. Since direct measurements of most
model parameters are impossible, the experiments themselves are traumatic for the cell. It is very
important to be able to identify cells and use their signals to determine which type a particular
cell belongs to. However, progress in this area in recent years has not been very great. This is
due to a number of factors: imperfection of models, noise and interference during measurement.
To date, none of the known mathematical models of neurons (Hodgkin–Huxley [2], Fitzhugh–
Nagumo [3, 4], Hindmarsh–Rose [5], Morris–Lekar [6]) failed to reconstruct the equations from
experimental time series of cellular activity of real neurons. One of the main reasons for this is
the need to measure all model variables in an experiment. However, this is not possible, since
some of the models are conditional. In fact, the only measurable variable is the transmembrane
potential. There are several approaches to get the remaining variables (hidden). Either they are
obtained by numerical differentiation or integration, as proposed in [7], or by the method of
time delays, as in [8], or it is necessary to set initial guesses for them and then adjust the series
themselves together with unknown parameters and nonlinear functions to the observed ones (this
approach is called methods of working with hidden variables [9]).

The time delay method is suitable in two cases: if the equations for the object are completely
unknown and any approach to the reconstruction of the state vector is suitable, or when reconstructing
systems with a delay, if the lagging variable is the only one (if the equation is of the second order,
you have to resort to a combination of delays and numerical differentiation [10]). To reconstruct
the equations of neurons written for biophysical reasons, this method is not suitable, since it
is impossible to get the missing variables by shifting — they have a different meaning and a
different dimension. Numerical differentiation and integration are used either when nothing is
known about the equations for the object [7], or when the equations are composed in such a way
that one of the variables has, for example, the physical meaning of the coordinates, and the other
— velocity (charge — current, etc., etc.). For neuron models [2, 3, 5, 6] this is not applicable due
to their device. But some other models of biological systems allow us to reconstruct some of the
variables from the model of the vocal cords observed in this way [11] or the nephron [12]. The
most significant successes in this area are associated with the use of statistical estimates [13].

In addition to models of neurons built for biophysical reasons, there are also models
of generators capable of demonstrating a wide variety of behavioral modes characteristic of
the activity of neurons. One of these generators was originally proposed for communication
purposes. It is a phase-locked loop (PLL) system with a bandpass filter [14]. Modes of neuropodic
generation, including periodic and chaotic bursts of pulses, were found in the model in the
works [15,16]. Then they were demonstrated experimentally [17]. The PLL system is not a neuron
model. Therefore, it will not be possible to verify it according to the activity of a biological neuron
or evaluate physiologically significant parameters of a neuron with its help. But it can be useful
for clustering neurons and for detecting connections between them. This is already enough for
the solution of the problem of reconstructing this system according to experimental data to be
justified. Its advantage is that for this system, one of the two missing variables can be obtained
by numerical differentiation, and the second by numerical integration of the observable.

Earlier, based on the approach proposed in [18] for first-order oscillators with a delay in
their own dynamics, in [19], a method was constructed for reconstructing one autonomous PLL
system with a bandpass filter, which also has a delay in the variable 𝑦. Further, a similar approach
was extended to the ensemble of linked PLL [20] without delay. However, for the practical
application of the approach, the developments presented in [19, 20] are not enough, since they
have a number of significant drawbacks. Firstly, the proposed technique is quite sensitive to noise:
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in a numerical experiment, it was possible to reconstruct the dynamics in the ensemble only in the
presence of additive noise of the order of 1%. In a real experiment with extracellular recordings
of neurons, the noise level is much higher [21]. Despite the use of smoothing polynomials for
numerical differentiation, the need to obtain the second derivative of the observed does not make
it possible to achieve the operability of the method with noticeably large noises. Secondly, the
methodology proposed in [19, 20] operates when evaluating a nonlinear function with terms of
the type 𝑣/𝑦 or 𝑣/𝑦(𝑡 − τ), where 𝑣 is some well—known expression depending on the observed
𝑦 and its first and second the derivative, and the argument 𝑡 − τ means that in this case the
time-delayed value of the observable is used. Such terms give a singularity at 𝑦 → 0. Since in the
experiment 𝑦 is measured with errors caused by noise, all the results for |𝑦| < µ, where the value
of µ has to be selected empirically, turn out to be unreliable. Small values of 𝑦 are typical for
quite long periods of time, especially in excitable mode. because of this, most of the time series
is excluded from consideration, and for some modes, the nonlinear function can only be partially
reconstructed at all. Thirdly, the methodology proposed in [19] works only for a solitary system,
which is almost meaningless when reconstructing from biological data: individual cells are silent
and generate nothing, and when reconstructing related cells using the methodology from [20], it
is necessary to have rows of all.

The purpose of this work is to expand the scope of the PLL reconstruction technique with
a bandpass filter for its further application to experimental time series of real neurons. In order
to eliminate the above disadvantages, a transition has been made from the initial equations
described in [15,16] to time-integrated equations. The external impact will be approximated by
a trigonometric polynomial of degree 𝑃 , as it was proposed for systems of another type in [22].

1. Mathematical model of the PLL system

The dynamics of the phase-controlled generator considered here in the presence of external
influence 𝐼ext(𝑡) is described by a non-autonomous system of third-order ordinary differential
equations defined in a cylindrical phase space (3 mod 2π, 𝑦, 𝑧):

𝑑3
𝑑𝑡

= 𝑦,

𝑑𝑦

𝑑𝑡
= 𝑧, (1)

𝜀1𝜀2
𝑑𝑧

𝑑𝑡
= γ+ 𝐼ext(𝑡)− (𝜀1 + 𝜀2)𝑧 − (1 + 𝜀1 cos3)𝑦.

In terms of the phase-locked frequency system 3 — the current phase difference of the
tuned and reference oscillator, γ — initial frequency detuning, 𝜀1, 𝜀2 — the inertia parameters of
the filters. Applied to the dynamics of a neuron, the variable 𝑦 can be interpreted as describing
a change in the membrane potential. The parameters 𝜀1 and 𝜀2 allow you to set the necessary
dynamic mode, γ — the external ion current in the intercellular substance is constant at the
measurement time (slowly changing component [2]), 𝐼ext — periodic exposure to another neuron
or external electrical stimulation. If 𝐼ext has a nonzero constant component (shift), it is actually
taken into account as part of the parameter γ.

In [23] it was shown that this generator is able to demonstrate various dynamic modes that
are characteristic of neurons: regular pulse dynamics (spikes), burst oscillations (bursts) with a
different number of pulses in a bundle. In the work [15], the plane of the model parameters
was divided into the regions of existence of the corresponding dynamic modes: quasi-regular
oscillations, oscillations with a different number of pulses in a bundle, chaotic oscillations. In the
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work [24], the model of the generator under consideration, which is in an excitable state, is studied
in detail. In this model, responses appear only when an external influence is applied. The presence
of an excitable mode is very important, since the neurons of the brain are in an excitable state
most of the time. It is shown that for γ = 0 and 𝐼ext(𝑡) = 0 in the system (1) there is a continuum
of equilibrium states (3*, 0, 0) located on the segment 3* ∈ [− arccos(1/𝜀1); arccos(1/𝜀1)], one of
which eventually turns out to be a system (1) with non-zero initial values of 𝑦 and 𝑧. It is possible
to force the system to generate pulses at γ = 0 by applying an external pulse action 𝐼ext(𝑡) —
harmonic action in such a system with such parameters leads to forced harmonic oscillations.
In [25], the influence of periodic stimulation parameters on the response of the studied generator is
considered. Various methods of evaluating the generator responses to external excitation showed
that the response significantly depends on the amplitude of the stimulating pulses and depends
less on the period of their repetition; this is confirmed by the results of the Poisson random
sequence.

2. The method of reconstruction of the integrated equations of the PLL system

In the hardware implementation of the PLL system [17], it is possible to measure a single
variable 𝑦. It also corresponds to the transmembrane potential recorded in a biological experiment
from individual neurons [26, 27]. Therefore, the problem of reconstructing the equations (1)
was immediately formulated in such a way that only the variable 𝑦 is measured. Following the
work of [19], the variable 3 was restored by numerical integration by the Simpson method,
the variable 𝑧 — by numerical differentiation using a polynomial approximating by 𝑚 points
(Savitsky filter–Golay [28]). For reconstruction using noiseless or low-noise implementations, the
smallest 𝑚 = 3 is suitable. In the presence of noise, 𝑚 can be selected using the quality of
reconstruction of a nonlinear function as a criterion, as was done in [19]. The method proposed
in [19, 20] also required numerically obtaining the second derivative of the observed — time
series of the value 𝑑𝑧/𝑑𝑡, which was the main reason for its low noise resistance. The algorithm
proposed below does not require numerical calculation of the second derivative. The variable
3 can be restored by numerical integration by the Simpson method. Since the method uses
the construction of parabolas at intervals equal to two sampling times, then an odd number of
points in the measured series (𝑁) will always be considered: if necessary, one value can always
be discarded without significant loss of information.

To increase the generality and applicability of the method to experimental data, it is
necessary to make the reconstructed model more general. To do this, we will rewrite the last
equation of the system (1) in the form (2), where the function 𝑓 does not have to correspond to the
formula (3) (in a real system it almost certainly does not correspond), that is, the reconstruction
method we will write immediately for an arbitrary continuous function 𝑓 .

𝑑𝑧

𝑑𝑡
=

γ
𝜀1𝜀2

+
1

𝜀1𝜀2
𝐼ext(𝑡)−

𝜀1 + 𝜀2
𝜀1𝜀2

𝑧 − 𝑓(3)𝑦, (2)

𝑓(3) =
1 + 𝜀1 cos3

𝜀1𝜀2
. (3)

Next, we integrate the last equation of a separate oscillator (2) in time and introduce
additional designations α0 and α1 similarly to [20]:
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𝑧 = α0𝑡+ α1𝑦 −
∫︁

𝑓(3)
𝑑3
𝑑𝑡

𝑑𝑡+

∫︁
𝐼 ′ext(𝑡)𝑑𝑡, (4)

α0 =
γ

𝜀1𝜀2
, α1 = −𝜀1 + 𝜀2

𝜀1𝜀2
, 𝐼 ′ext =

𝐼ext
𝜀1𝜀2

, (5)

where we used the fact that
∫︀
𝑧𝑑𝑡 = 𝑦,

∫︀
(𝑑𝑧/𝑑𝑡) = 𝑧. Next, we will introduce into consideration

a new nonlinear function Φ(3), which will be smooth, since by definition its first derivative is
𝑓(3), for which we have agreed that it is continuous.

∫︁
𝑓(3)

𝑑3
𝑑𝑡

𝑑𝑡 =

∫︁
𝑓(3)𝑑3 = Φ(3). (6)

Also note that the integration constant in the equation (4) can be entered into Φ(3) without
loss of generality.

Following the ideas of [18], we will build an objective function for calculating the coefficients
α0 and α1, based on minimizing the length of the description of the nonlinear function Φ. This
will eliminate the explicit decomposition of the function 𝑓 and its primitive Φ in a row and at
the same time increase the generality of the method (it can be used for arbitrary 𝑓) and reduce
parameterization (the number of parameters to be evaluated α). This will improve the statistical
properties of the estimates of the coefficients remaining in the model: the fewer parameters,
the better their estimates. The external effect, following [22], is represented as a trigonometric
polynomial, where the frequency Ω = 2π/𝑇ext is known. The question of how to pick it up, we
will analyze further. Thus, the following expression for the nonlinear function Φ obtained from
the equation (4) becomes the basic one for us:

Φ(3) = α0𝑡+ α1𝑦 +
𝑘=𝐾∑︁
𝑘=1

(︀
α2𝑘 cos(𝑘Ω𝑡) + α2𝑘+1 sin(𝑘Ω𝑡)

)︀
− 𝑧, (7)

where 𝐾 is the degree of the trigonometric polynomial. The constant term in the formula (7)
is not necessary: it, like the integration constant, is included in Φ; that is, in fact, Φ can be
determined up to a constant, but this is natural, since Φ is a primitive 𝑓 .

Next, we will conduct all calculations, following the work of [20]. However, we will keep
in mind a new expression for a nonlinear function (7). Let’s introduce a sorting mapping 𝑄(𝑛),
where 𝑛 is the number of a point in a series, matching the 𝑛th point in the original series with its
number 𝑄(𝑛) in ascending order 3. Let’s also consider the inverse mapping 𝑄−1, which calculates
by number in the sorted series the number in the original one, so that 𝑄−1(𝑄(𝑛)) = 𝑛. Consider
the point located in the sorted series immediately before 𝑄(𝑛)th. Then in the original series it
has the number 𝑄−1(𝑄(𝑛)− 1), which we denote as 𝑝𝑛 for brevity. Increment δ𝑛 of the function
Φ on the segment [3(𝑝𝑛);3(𝑛)] will be expressed by the formula (8):
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δ𝑛 = Φ(3(𝑛))−Φ(3(𝑝𝑛)) = α0∆𝑡(𝑛) + α1∆𝑦(𝑛)− ∆𝑧(𝑛) +
𝑘=𝐾∑︁
𝑘=1

(︀
α2𝑘∆Θ𝑘 + α2𝑘+1∆Ξ𝑘

)︀
,

∆𝑡(𝑛) = 𝑡(𝑛)− 𝑡(𝑝𝑛),

∆𝑦(𝑛) = 𝑦(𝑛)− 𝑦(𝑝𝑛), (8)

∆𝑧(𝑛) = 𝑧(𝑛)− 𝑧(𝑝𝑛),

∆Θ𝑘 = cos(𝑘Ω𝑡(𝑛))− cos(𝑘Ω𝑡(𝑝𝑛)),

∆Ξ𝑘 = sin(𝑘Ω𝑡(𝑛))− sin(𝑘Ω𝑡(𝑝𝑛)).

At the same time, the value of 𝑛, at which 𝑄(𝑛) = 0 (we will continue to assume that the
numbering starts from zero, that is, 𝑛 = 0.1, . . . , 𝑁 − 1), is not acceptable, since there is no
corresponding 𝑝𝑛 for it (no the previous point in the sorted series is our smallest value). As an
objective function, consider the value 𝐿:

𝐿(α0,α1, . . . ,α2𝐾+1) =
∑︁
𝑛

δ2𝑛. (9)

It is obvious from (8) that 𝐿 will depend on α𝑘|𝑘=0,...,2𝐾+1 is quadratic. The formula (9)
can be considered as a formulation of the least squares problem for approximating the values of
∆𝑧(𝑛). Expressions with coefficients α𝑘 are basic functions (more precisely, their values available
at the time of measurements), and δ𝑛 correspond to residuals. With the correct choice of α𝑘, the
objective function 𝐿 will be much smaller than with the wrong one, when the coefficients α𝑘 are
incorrectly defined and the function 𝑓 has gaps at almost every point.

Since even with the correct choice of α𝑘 in the general case 𝐿 > 0, then with a finite 𝑁 the
estimates obtained in this way must be biased — their mathematical expectation will not exactly
coincide with the true values. Since the function Φ is not only continuous, but also differentiable
(by definition, it is the prototype of the continuous function 𝑓) on the half-interval 0 ⩽ 3 < 2π,
then δ𝑛 → 𝑑Φ(3(𝑝𝑛)), δ𝑛 is an approximation of the differential of the function Φ at the point
3(𝑝𝑛) on the right or at the point 3(𝑛) on the left, and for a differentiable function in the limit
it is the same. Then the following relation must be fulfilled:

lim
𝑁→∞

𝐿 =

2π∫︁
0

(𝑑Φ)2 =

2π∫︁
0

(︂
𝑑Φ
𝑑3

)︂2

(𝑑3)2 =
(︂
𝑑Φ
𝑑3

)︂2

𝑑3

⃒⃒⃒⃒
⃒
2π

0

= 0. (10)

Thus, the estimates by the proposed method are asymptotically unbiased.
The proposed approach allows us to estimate the values of α0 and α1, which are combinations

of the original parameters γ, 𝜀1 and 𝜀2, but not these parameters themselves. If we consider the
third equation of the system (1), we can see that when replacing 1 + 𝜀1 cos3 = 𝑓(3) it will be
impossible to evaluate separately γ, 𝜀1 and 𝜀2, because all the terms of the equation, including
the right part, stand with unknown coefficients (or functions). Thus, the system of equations for
determining the coefficients that could be compiled would be degenerate (there is no free term).
This means that there is no other way to evaluate γ, 𝜀1 and 𝜀2 separately according to the data.
This limitation is a property of the system, not a disadvantage of the method.

The described algorithm assumes knowledge of the period of external influence. Even a
small error in its value will greatly affect the reconstruction results, as it was shown in [29]. The
simplest and most effective solution to this problem with modern computing tools is to iterate

396
Sysoeva M.V., Kornilov M.V., Takaishvili L. V., Matrosov V.V., Sysoev I. V.

Izvestiya Vysshikh Uchebnykh Zavedeniy. Applied Nonlinear Dynamics. 2022;30(4)



over the values of the trial period of the impact of 𝑇 in a rather large range with a step of ℎ of the
order of the sampling step. In this case, the integer ratio between 𝑇 and ℎ is not necessary. By
the minimum of the constructed dependency 𝐿(𝑇 ) it is possible to estimate the true period fairly
accurately. Relying on the results of [22], we can expect that the high sensitivity of the objective
function to the exposure period in a typical case will ensure the correct determination of the
period even with low values of the degree of the trigonometric polynomial 𝑃 and insufficient
smoothing of 𝑚 in the fight against measurement noise.

The proposed approach also makes it possible to reconstruct the external impact based
on estimates of the α𝑘|𝑘=2,...,2𝐾+1 up to a multiplier of 1/(𝜀1𝜀2), which in general cannot be
determined. To do this, you need to differentiate the incoming (7) trigonometric polynomial:

𝐼 ′ext(𝑡) =
𝑘=𝐾∑︁
𝑘=1

(︀
− 𝑘Ωα2𝑘 sin(𝑘Ω𝑡) + 𝑘Ωα2𝑘+1 cos(𝑘Ω𝑡)

)︀
. (11)

Since the values of the coefficients are α𝑘|𝑘=2,...,2𝐾+1 and the frequency value of Ω are known,
the external impact by the formula (11) can be calculated for any time 𝑡.

After receiving the values of α𝑘, it can be tabulated using the formula (7) function Φ.
Tabular, because in the formula (7) includes the values of 𝑦 and 𝑧, and these variables are
available only at the moments of measurement. But the Φ function itself is not very interesting.
For the reconstruction of the model, its primitive 𝑓(3)𝑖𝑠𝑖𝑛𝑡𝑒𝑟𝑒𝑠𝑡𝑖𝑛𝑔. How can one analytically
integrate (7) by 3 — not clear. Therefore, it is easier to express 𝑓 from the formula (2) by
substituting expressions for α0 and α1 from (4) there:

𝑓(3) =
(︂
α0 + α1𝑧 + 𝐼 ′ext(𝑡)−

𝑑𝑧

𝑑𝑡

)︂⧸︂
𝑦. (12)

Calculation by the formula (12) is possible only for 3 corresponding to the observed 𝑦 (otherwise
there will be no values of 𝑦, 𝑧 and 𝑑𝑧/𝑑𝑡). At the same time, there are two limitations that
the rest of the algorithm lacks. These limitations were inherent in the original method proposed
in [19]: firstly, it is necessary to numerically calculate the second derivative of the observable, since
𝑑𝑧/𝑑𝑡 = 𝑑2𝑦/𝑑𝑡2; secondly, at 𝑦 ≈ 0 the calculated values will be highly inaccurate, especially
in the presence of noise. It should be noted that even despite these limitations, the estimates
obtained will be noticeably more accurate than using the original approach from [19], since the
coefficients α𝑘 were calculated without relying on the estimate 𝑑𝑧/𝑑𝑡 and without restrictions for
𝑦 ≈ 0.

3. Results

3.1. Generating series and restoring the state vector. The equations (1) were
solved by the Euler method. The sampling interval ∆𝑡 = 1/32, equal to the integration step, was
selected empirically in such a way as to obtain a stable solution. A detailed study of this issue
was conducted at [30].

To test the method, the PLL system was considered in two modes: excitable (γ = 0, 𝜀1 =
4, 𝜀2 = 10) and oscillatory (γ = 0.075, 𝜀1 = 4.5, 𝜀2 = 10 — spike mode according to the
classification [20]). Three types of effects were applied: rectangular pulses, Gaussian pulses and
harmonic effects. Pulse action of both types in both modes (Fig. 1, c, e), and harmonic - only for
oscillatory mode (Fig. 1, a). The choice of impact types is due to the fact that harmonic impact is
the easiest to describe and it is the easiest to test the method on it. Gaussian pulses are required
to describe trigonometric polynomials of high orders. Being smooth, they can still be described
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satisfactorily, and rectangular pulses are typical in radio engineering and were considered for
this PLL system in [25]. If the system is in a subthreshold mode, then under harmonic influence
it demonstrates forced linear oscillations — the mode is both meaningless from the point of view
of neurodynamics and inconvenient for reconstruction, since it contains too little information.

In accordance with the work of [25], we introduce the notation we introduce the notation:
𝐴sp — the amplitude of the stimulating pulse, τsp — the duration of the input pulse, 𝑇sp — the
period of stimulation. In order to maintain the same power of external influence for its different
forms, the following parameters were used:

1. for rectangular pulses 𝐴sp = 0.26, 𝑇sp = 100, τsp = 10, duty cycle 𝑄sp = 𝑇sp/τsp = 10;
2. for Gaussian pulses 𝐴gp = 𝐴sp = 0.26, 𝑇gp = 𝑇sp = 100, τgp = τsp/

√
π;

3. for harmonic effects 𝐴h = 𝐴sp

√
2/𝑄sp, 𝑇h = 𝑇sp = 100.

Measuring noise with a standard deviation of 10% from the standard deviation of the
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Fig. 1. Time series of variables 𝑦 (observable) and 𝑧 from the model (1) and external driving (a, c, e). Phase
portraits in the projection (𝑦, 𝑧) of the system (1) (b, d, f ). Parts a, b correspond to the system under harmonic
driving in the oscillatory regime. Parts c, d correspond to the system under square pulse driving in the oscillatory
regime. Parts e, f correspond to the system under square pulse driving in the excitable regime
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signal was added to all time series. In Fig. 1 time series and phase portraits are given without
observation noise. The reconstruction was carried out both in rows with noise and in rows without
noise. The following results are given only for rows with noise, unless it is additionally specified,
since the method is focused on working with noisy data.

3.2. Reconstruction of PLL parameters. The easiest way to assess the quality of
reconstruction is by comparing the recovered values of the effective parameters α0 and α1
with the values calculated analytically using the formula (5). For α0 with pulsed exposure, an
additional correction is introduced, caused by a non-zero average of the external impact, which
is compensated by an effective change in the parameter γ. The reconstruction results for all five
modes are shown in Fig. 2. We see that in the oscillatory mode for all three types of impact,
the estimates of α1 turn out to be quite accurate: their relative error does not exceed 2%. For a
pulse effect, such accuracy can be achieved already at 𝐾 = 3 — a further increase in the number
of harmonics does not lead to a refinement of estimates. For the excitable mode, the relative
error of estimates α1 is greater and is on the order of 4%. At the same time, the best results are
achieved when using 𝐾 = 5.

The estimation errors of α0 are generally significantly higher than α1. This can be caused
by various reasons. One of them is that in the formula (7) this coefficient stands for time, and it
is not a bounded variable, unlike 𝑦, 𝑧 and φ. Unlimited linear growth of 𝑡 with an increase in the
length of the series is a problem in numerical counting, worsening the statistical characteristics
primarily of the estimate α0. In [19], the main source of errors was the derivative 𝑑𝑧/𝑑𝑡. In the
modified algorithm described in this paper, there is no need to calculate the second derivative.
But due to the integration of the original equation (1), a term containing a linear dependence on
time appeared. Therefore, errors in the definition of α0 in a sense can be considered a payment or
compensation for the absence of the need for double numerical differentiation. Another possible
reason for the low accuracy of the recovery of the parameter α0 is the smallness of the value γ
in the considered modes. This automatically means both the smallness of its contribution to the
overall dynamics, and high relative errors of estimates with small absolute ones.

3.3. Reconstruction of external influence. The second important criterion for the
success of the reconstruction procedure is the restoration of external influence when using
trigonometric polynomials of varying degrees. The results for the oscillatory mode for some
used values of the degree of the trigonometric polynomial 𝐾 are shown in Fig. 3. In numerical
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experiments, others were also used: larger and smaller values of 𝐾, the results for which are not
shown in Fig. 3, so as not to clutter it up.

The harmonic effect is well restored at any 𝐾. A significant increase in 𝐾 relative to the
optimal value of 𝐾 = 1 leads only to small distortions of the sine wave, which is clearly seen in
Fig. 3, a. For Gaussian pulses, 𝐾 = 15 makes it possible to achieve a decent approximation — such
that visually the oscillations 𝐼 ′ext(𝑡) inside the period, inevitably present when approximated by a
finite trigonometric polynomial, become invisible (Fig. 3, b — orange curve corresponding to 𝐾 =
5). The exact approximation of rectangular pulses is theoretically achievable only in the limit. We
take into account that they have a vertical front, which means that they contain all frequencies,
including infinitely large ones (or at least so large that they are unsolvable at the current sampling
frequency). Rice. 3, c contains several different variants: the variant at 𝐾 = 5 is very visually
similar to the effect of Gaussian pulses reconstructed at the same 𝐾 = 5. Reconstruction at
𝐾 = 15 logically has more local minima on the period, and the oscillation amplitude itself is
smaller; there are already two extremes on the pulse itself, and the front is noticeably steeper,
which distinguishes it from the approximation of Gaussian pulses. Reconstruction at 𝐾 = 25
already has three highs on the pulse itself and an even steeper front.

The results of the reconstruction of the exposure for the excitable mode (Fig. 4) do not
differ qualitatively from what is presented in Fig. 3, b, c for oscillatory mode. In general, it can
be stated that the proposed approach makes it possible to fairly accurately restore the shape of
the external periodic effect, while for some types it requires a very high degree of trigonometric
polynomial. Interestingly, the accuracy of the approximation of the impact has little effect on
the accuracy of the reconstruction of the PLL parameters α0 and α1. For example, according to
the PLL series, under the influence of rectangular pulses at 𝐾 = 5, the parameter values are
restored no worse than at large values, but the effect itself cannot be identified as rectangular.

3.4. Reconstruction of a nonlinear function. The third criterion for the success of
the reconstruction — identification of the nonlinear function 𝑓(3), which can be calculated by
the calculated coefficients α𝑘 using the formula (12). At the same time, it should be understood
that the reconstruction of the nonlinear function 𝑓 is a relatively weak point of the algorithm,
since the formula (12) assumes division by 𝑦, and values of 𝑦 ≈ 0 are often found, especially
for excitable mode.

The results of the reconstruction of the nonlinear function for the oscillatory mode are
shown in Fig. 5. The results for all three types of exposure are given for 𝐾 = 15. The different
number of periods of the reconstructed sine is explained by differences in dynamic modes due to
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the presence of exposure — the phase manages to grow by 2π a different number of times during
the same observation time. Vertical "noisy"lines from points correspond to state vectors. When
𝑦 ≈ 0 there are quite a lot of them in a number due to the peculiarities of the dynamics of the
system. To get these results, we had to use a rather significant averaging: 𝑚 = 151. In general,
the reconstruction of the nonlinear function is successful: it is possible to restore its periodic
character and it looks like a harmonic one.

The results of reconstruction in excitable mode are shown in Fig. 6 for exposure to Gaussian
pulses — a and rectangular pulses —b. All the observed dynamics were focused on one period of
the nonlinear function. At the same time, there are significant distortions and the function as
a whole is quite noisy. This is due to the long intervals of 𝑦 ≈ 0 in this mode. For a significant
number of 3, there are no or very few values of 𝑦 significantly different from zero in the time

Sysoeva M.V., Kornilov M.V., Takaishvili L. V., Matrosov V.V., Sysoev I. V.
Izvestiya Vysshikh Uchebnykh Zavedeniy. Applied Nonlinear Dynamics. 2022;30(4) 401



series, which leads to errors during reconstruction.

3.5. Selection of the exposure period. So far, all the results have been given for the
case when the exposure period of 𝑇 is known. In reality, of course, this is not the case. At best,
the period can be known approximately. However, as the experience of reconstruction of non-
autonomous systems [22,29] shows, even a small error in the definition of 𝑇 can be very critical,
since it quickly leads to the accumulation of a phase shift in time on the main harmonic, and on
higher ones — times faster. The easiest way to solve this problem in an experiment is to iterate
over the trial 𝑇 (denote it as 𝑇 ). The iteration can be carried out with any reasonable step value
∆𝑇 , since no resampling of values with this step is performed, and the value Ω = 2π/𝑇 is used
as a multiplier in the formula (7). For simplicity, in the example below, we limited ourselves to
a step equal to the sampling step ∆𝑇 = ∆𝑡. When choosing a search range, you can focus on
the location of local extremes in a smoothed time series (in a noisy series they will stand almost
in a row) — it is unlikely that the impact period will be much less than the smallest of them
or much more than the largest. In the presented case, the search was performed on the segment
𝑇 ∈ [2; 320].

For the most difficult in the approximation of the impact of rectangular pulses, the selection
results are — dependence 𝐿(𝑇 ) is shown in Fig. 7. Even when using a relatively small degree of
the trigonometric polynomial 𝐾 = 5, which does not allow (Fig. 3, b and Fig. 4, b) satisfactorily
describe the shape of the pulse, dependence 𝐿(𝑇 ) demonstrates a clear minimum at the value of
𝑇 = 𝑇 = 100 (see Table), which corresponds to the true value up to ∆𝑡. The minimum is deep
enough, despite the presence of noise. To visualize it, we had to resort to a logarithmic scale.
At the same time, an increase in 𝐾 leads to a deepening not only of the main minimum, but
also of its side multiples — 𝑇 = 2𝑇 and 𝑇 = 3𝑇 . These side deep minima obviously stem from
the possibility of describing the frequency of exposure using the second and third harmonics
(while the period is reduced by just 2 or 3 times); this possibility improves with an increase
in the degree of the polynomial. The minimum 𝑇 = 100 is always global. For Gaussian pulses,
the dependences turned out to be very similar. Only side minima were more pronounced for
relatively small 𝐾. For harmonic effects, the results did not change significantly when 𝐾 ⩾ 3
was changed. When using 𝐾 = 1 and 𝐾 = 2, there were no local extremes on the double and
triple (or only triple) values of the period.
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Table. Local minima of the target function (9)

Колебательный режим Возбудимый режим
𝐾 𝑇 = 100 𝑇 = 200 𝑇 = 300 𝑇 = 100 𝑇 = 200 𝑇 = 300
25 0.204 0.208 0.210 0.393 0.409 0.423
15 0.210 0.218 0.243 0.400 0.434 0.545
5 0.251 1.195 2.257 0.552 3.148 5.158

The results obtained indicate that when using the approximation of the impact by a
trigonometric polynomial, even of a relatively low degree, for the most complex pulses with
vertical fronts, it is easy to detect the true value of the impact period according to the dependence
of the objective function on the trial period 𝐿(𝑇 ) both in oscillatory and excitable mode. The
presence of 10% measuring noise cannot interfere with the procedure. Thus, ignorance of the
exposure period does not limit the applicability of the method described in the work.

Conclusion

In the works [19,20], approaches have already been proposed to reconstruct the PLL system
with a bandpass filter proposed in [14]. They relied, like the algorithm presented in this paper,
on an implicit approximation of one of the nonlinear functions of the model; this approach was
proposed initially for systems with a delay [18], and then developed for other types of equations,
for example, for generalized van der Pol oscillators [31]. The main problem of the solutions
proposed in [18,19,31] was that they required numerical calculation of the second derivative. This
greatly limits the applicability of the method in the presence of measuring noise: the acceptable
noise level is no more than 1-2% from the standard deviation of the signal. How to solve this
problem in general is not yet clear. But for a number of systems, the result can be achieved
by switching to time-integrated equations, as was shown in [32] for van der Pol and Rayleigh
oscillators. The model of the phase-locked frequency system considered in this paper also allows
for a similar modification, which we used.

At the same time, the second problem, specific specifically for the reconstruction of the
PLL system under consideration, was solved: the sensitivity of the method to the values of
the observed one close to zero. In works [19, 20], the state vectors corresponding to 𝑦 ≈ 0 were
completely excluded from consideration, since in this case the objective function itself was poorly
defined. This led to the need to exclude up to half of the entire series in oscillatory modes. And
in the excitable mode at γ = 0, reconstruction was not carried out at all, since in this mode
the values of 𝑦 ≈ 0 correspond to most of the time series, as shown in [15, 30]. The algorithm
presented here lacks this drawback when reconstructing PLL parameters and external influences.
The solution followed from the transition to an integrated system — the corresponding observable
variable 𝑦 left the denominator when determining the nonlinear function of the integrated system
and redefining the objective function of the algorithm. At the same time, this modification of the
algorithm is not possible for every system, and its applicability depends on the type of equations.

The approximation of the periodic external action was performed by the previously tested
for van der Pol oscillators–Toda [22] in a way by decomposition into a trigonometric polynomial.
At the same time, the frequency of exposure was selected simply by brute force, and not using
a nonlinear optimization algorithm, as in [22], where the Newton method was used, in fact,
since the capacities of modern computers allow such an approach. At the same time, there is no
probability of the algorithm running away. Such an approximation has shown high efficiency and
stability: on the one hand, it is possible to describe a rather complex effect with short pulses of
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large borehole close to vertical fronts, on the other hand, even with a significant increase in the
number of harmonics beyond the necessary, the method remains stable.

The proposed approach can be directly used for reconstruction from experimental data of
a non-autonomous generator described in [17]. At the same time, the presented approach is not
suitable for the case of irregular impulse action. It can be assumed that the use of radial basis
functions for the approximation of pulses, where a separate function will be associated with each
pulse, can partially solve the problem.
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