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Abstract. Purpose of the study is to show that the conditions for the propagation of exchanged spin waves (ESWs)
in an asymmetric superlattice with antiferromagnetically ordered cells depend significantly on the chirality of
the precession of the ESW magnetization (polarization, “magnon pseudospin”). Method. When constructing the
EWS spectra, the Croning–Penny model (transfer-matrix method) and the Landau–Lifshitz equation are used to
determine the nature of the waves in the cells. In the case of a uniaxial medium, there is only one type of ESW,
therefore, when fields are joined at the boundary, the conservation of chirality is an essential factor due to which
the ESW in one cell is always traveling, and in the other — evanescent. Thus, a superlattice for ESW is an effective
periodic “potential” in which asymmetry can be realized either by applying an external field, or by a difference in
the thickness and/or physical properties of the cell materials. Results. Based on the analysis of the spectrum, maps
of the transmission zones for ESW of different chirality were constructed in three representations — “Bloch wave
number – frequency”, “frequency – relative cell thickness”, as well as in the plane of cell wave numbers. It is shown
that the presence of asymmetry leads to a difference in the width of the transmission zones for waves of different
chirality. For a finite structure, the frequency dependences of the transmission and reflection coefficients of the
ESW are plotted. An increase in the attenuation of the ESW near the boundaries of the transmission zones was
also found. Conclusion. The results of the study can be used in the design of magnon valves and other devices
based on ESW, in which their chirality can be controlled.

Keywords: magnetic superlattice (crystal), exchanged spin waves, transmission bands, precession chirality,
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Introduction

The fundamental basis for the operation of any logical device is the ability to differentiate
at least two of its states. For example, in electronics, the logical "zero"and "one"are identified
with the absence and presence of current. In quantum physics, the states of two electrons with
the same spatial wave function may differ in the spin value and their behavior in a zero magnetic
field will be the same. The external magnetic field allows you to select their spin number, as a
result of which their energies will be different.

The presence of properties specific to signal transmission in exchange spin waves (ESW)
opens up a wider range of possibilities for their control [1]. Such a parameter for spin waves
is their polarization (chirality of the precession of magnetization). By analogy with the model
mentioned above, a certain chirality of the ESW can be identified with «magnon pseudospin».

In the simplest case of an isolated magnetic moment, the nature of its motion is a Larmor
precession, in which the end of the magnetization vector describes a circle in the clockwise
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direction when observed along the equilibrium magnetization (the so-called right-hand precession).
Under the same conditions, precession in the opposite direction is anti-harmonic and, by virtue
of the Landau equation–Lifshitz, is impossible for an isolated magnetic moment. However, if
there is an exchange field described by the multiplier λ2𝑘2 (λ — exchange length, 𝑘 — wave
number), the effective field is negative if the wave number is imaginary. The corresponding
wave, called evanescent (attenuating), is localized near the boundary and cannot exist in an
unlimited medium [2–7]. Note that evanescent waves in magnets are quite common. However,
they are magnetostatic and inhomogeneous along the thickness of the film [8]. In this work, the
inhomogeneous ESW is localized near the boundary and attenuates along the film itself.

ESW scattering and boundary conditions for them were considered earlier [9, 10]. In
the works [2–4] it was shown that in a magnetic structure with uniaxial anisotropy, traveling
and evanescent ESW have mutually opposite circular polarizations with respect to equilibrium
magnetization. When crossing the boundary of cells with opposite magnetization, the traveling
wave becomes evanescent and vice versa. In this case, polarization (pseudospin) ESW is saved [2].
Using this circumstance, we consider its propagation in a one-dimensional magnon crystal
with cells in which the equilibrium magnetizations are oriented antiparallel. We investigate the
transformation of the transmission spectrum of such a structure, due to both the difference in
cell thicknesses and the application of an external field.

1. ESW propagation in an unlimited
antiferromagnetic superlattice

Let’s choose the normal to the boundaries of the layers as the 𝑧 axis, and the direction
of the light axis of uniaxial anisotropy and equilibrium magnetization of the cells — as the 𝑥
axis, with respect to which we will determine the polarization of the ESW. In a uniaxial medium
in each of the cells, the ESW are either traveling or evanescent, depending on the relationship
between the polarization of the wave and the orientation of the equilibrium magnetization [3], for
which the indices "U"and "D"denote a parallel or antiparallel orientation with respect to the 𝑥 axis,
respectively.

Fig. 1. The geometry of the structure. Cell U occupies
an area 𝑧 = [0, 𝐿𝑢] + 𝑁𝐿 (𝐿 = 𝐿𝑢 + 𝐿𝑑), and cell D
occupies an area 𝑧 = [𝐿𝑢, 𝐿] +𝑁𝐿, where 𝑁 — is integer

Note that both types of waves can be present
in biaxial materials [4].

The structure in Fig. 1 by wave
properties is a well-known Croning-Penny
model. However, the difference in the geometric
or magnetic parameters of the cells leads to a
difference in the conditions of the propagation
of ESW with different polarizations. A similar
effect is achieved by applying an external field.
As a result, the transmission spectrum
may have a non-reciprocal character. In a
symmetrical structure, for which the external
field is zero and the cell thicknesses are the
same, there are no non-reciprocity effects. That is, when the sign of the equilibrium magnetizations
in the cells changes, the spectrum does not change its appearance.

In uniaxial materials, where precession is circular, the magnetization dynamics can be set
by a single scalar variable ψ, which is the amplitude of the normalized dynamic magnetization [10].
Using the standard method of the transfer matrix [11], we find that the values of dynamic variables
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through the period are related by the relation:(︂
ψ
ψ′

)︂
(𝑧 + 𝐿) = 𝑇 ,

(︂
ψ
ψ′

)︂
(𝑧) = 𝑒𝑖𝐾𝐿

(︂
ψ
ψ′

)︂
(𝑧) , (1)

where "stroke"means the derivative of the coordinate along the normal to the boundary,

𝑇 =

⎛⎝ cos (𝑘𝑑𝐿𝑑)
sin (𝑘𝑑𝐿𝑑)

𝑘𝑑
−𝑘𝑑 sin (𝑘𝑑𝐿𝑑) cos (𝑘𝑑𝐿𝑑)

⎞⎠⎛⎝ cos (𝑘𝑢𝐿𝑢)
sin (𝑘𝑢𝐿𝑢)

𝑘𝑢
−𝑘𝑢 sin (𝑘𝑢𝐿𝑢) cos (𝑘𝑢𝐿𝑢)

⎞⎠, (2)

𝐾 — the Bloch wave number. The following dispersion equation has the form:

cos𝐾𝐿 = cos (𝑘𝑢𝐿𝑢) cos (𝑘𝑑𝐿𝑑)−
1

2

(︂
𝑘𝑢
𝑘𝑑

+
𝑘𝑑
𝑘𝑢

)︂
sin (𝑘𝑢𝐿𝑢) sin (𝑘𝑑𝐿𝑑) , (3)

where 𝑘𝑢,𝑘𝑑 are the wave numbers in the corresponding cells, which are from the Landau–Lifshitz
equation:

Ṁ𝑛 + γ [M𝑛 ×Hef ] = 0. (4)

Taking into account the type of effective field

Hef,𝑛 = 𝐻n𝑥 − (λ2𝑛𝑘
2 + β𝑛)(𝑚𝑛𝑦n𝑦 +𝑚𝑛𝑧n𝑧), (5)

where λ𝑛 — the exchange length, β𝑛 — the constant of light-axial anisotropy, H > 0 — the
magnitude of the external field, and the periodic dependence of dynamic variables m𝑛 exp 𝑖 (𝑘𝑛𝑧 − ω𝑡) =
(0,𝑚𝑛𝑦,𝑚𝑛𝑧) from (4) we obtain linearized equations for the cyclic components of each layer
(𝑚𝑛± =
= 𝑚𝑦 ± 𝑖𝑚𝑧): (︂

λ2𝑛𝑘
2 + β𝑛 + σ𝑛

ω𝐻 ± ω
ω𝑛

)︂
𝑚𝑛± = 0, (6)

where ω𝐻 = γ𝐻, σ𝑛 = ±1 — markers of the orientation of the equilibrium magnetization with
respect to the axis 𝑥.

Note that traveling waves with Larmor precession in an unbounded structure have right
polarization in U-cells and left — in D-cells. On the contrary, the right waves in D-cells and the left —
in U-cells are evanescent (with an anti-Larmor precession)..

When the right wave (R) propagates, in which the rotation of the magnetization occurs
clockwise when observed along the 𝑥 axis, the component 𝑛− is nonzero. The equation (6) for it
has the form: (︂

λ2𝑛𝑘
2
𝑛 + β𝑛 + σ𝑛

ω𝐻 − ω
ω𝑛

)︂
𝑚𝑛− = 0. (7)

Then in this case

𝑘2𝑢𝑅 =
ω− (β𝑢ω𝑢 + ω𝐻)

ω𝑢λ2𝑢
> 0, 𝑘2𝑑𝑅 = −ω+ (β𝑑ω𝑑 − ω𝐻)

ω𝑑λ2𝑑
< 0, (8)

that is, — in the U-cell the wave is traveling, and in the D-cell — evanescent. In this case, the
conditions must be met for the frequency ω>ω0=β𝑢ω𝑢+ω𝐻 and the value of the external field
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β𝑑ω𝑑−ω𝐻>0. The first of them means that the frequency of the propagating ESW is higher than
the activation one (the frequency of homogeneous ferromagnetic resonance in the U-cell), and the
second ensures the stability of the antiparallel orientation of the magnetization with respect to
the field in the D-cell.

For the left wave (L), where the rotation of the magnetization occurs counterclockwise
when observed along the axis 𝑥, 𝑚𝑛+ ̸= 0:(︂

λ2𝑛𝑘
2
𝑛 + β𝑛 + σ𝑛

ω𝐻 + ω
ω𝑛

)︂
𝑚𝑛+ = 0. (9)

In this case we get

𝑘2𝑢𝐿 = −ω+ (β𝑢ω𝑢 + ω𝐻)

ω𝑢λ2𝑢
< 0, 𝑘2𝑑𝐿 =

ω− (β𝑑ω𝑑 − ω𝐻)

ω𝑑λ2𝑑
> 0. (10)

When switching the equilibrium magnetization, the type of waves in each cell also changes.
The wave numbers of traveling and evanescent waves for any frequency are related by the relation

ω𝑢λ2𝑢𝑘
2
𝑢 + ω𝑑λ

2
𝑑𝑘

2
𝑑 = − (β𝑢ω𝑢 + β𝑑ω𝑑) , (11)

where frequency is not included. By analogy with [12, 13], let’s call the equation (11) a spectrum
line.

Let’s consider the most important special case when the magnetic parameters of the layers
are the same, and introduce dimensionless variables — wave numbers ξ𝑢 = 𝑘2𝑢𝐿

2, ξ𝑑 = 𝑘2𝑑𝐿
2, the

relative thickness of the layers 𝐿𝑢/𝐿 = 𝜀, 𝐿𝑑/𝐿 = 1− 𝜀 and the parameter ∆ = 𝐿2/λ2. Then (3)
and (11) will correspond in form:

cos𝐾𝐿 = cos
(︁√︀
ξ𝑢𝜀

)︁
cos

(︁√︀
ξ𝑑 (1− 𝜀)

)︁
+ β∆

sin
(︀√
ξ𝑢𝜀

)︀
√
ξ𝑢

sin
(︀√
ξ𝑑 (1− 𝜀)

)︀
√
ξ𝑑

, (12)

ξ𝑢 + ξ𝑑 = −2β∆.
The reduced spectrum has symmetry with respect to the replacement of 𝑈 ↔D (which

corresponds to the switching of equilibrium magnetizations) and the simultaneous replacement of
𝜀 ↔ (1− 𝜀), since such a replacement corresponds to the transition to the same structure shifted
by a cell. Simultaneously with the switching of magnetizations, the type of waves (traveling ↔
evanescent) in each cell changes for both types of polarization. Dimensionless wave numbers have
the form:

ξ𝑢𝑅 = ∆ (Ω− β−Ω𝐻), ξ𝑑𝑅 = −∆ (Ω+ β−Ω𝐻) (13)
for the right wave and

ξ𝑢𝐿 = −∆ (Ω+ β+Ω𝐻), ξ𝑑𝐿 = ∆ (Ω+ β+Ω𝐻) (14)

for the left. Here Ω = ω/ω𝑀 , Ω𝐻 = ω𝐻/ω𝑀 — dimensionless frequencies. As can be seen from
(12), the transformation of the transmission zones (ZT) is reduced simply to a frequency shift.If
the external magnetic field is positive — the ZT of the right waves shift up, and the ZT of the
left waves shift down, and vice versa.For both types of polarization, the number of ZT waves of
both polarizations is unlimited for any 𝜀. However, their width decreases rapidly with the growth
of the zone number.

On fig. 2 shows the scheme of the ZT in the diagram «relative layer thickness U—
dimensionless frequency of the ESW Ω» for each type of polarization. The ZT correspond
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a b
Fig. 2. The map of the transmission zones of the left (a) and right (b) waves on the diagram of parameters “relative
layer thickness U — dimensionless frequency of ESW Ω”

to the intersection of horizontal lines 𝜀 = 0.1, 0.3, 0.5, 0.7 and 0.9 with light areas. For all values
except 𝜀 = 0.5, the forbidden zone schemes for right and left waves differ, which clearly illustrates
the difference in propagation conditions due to their polarization.

For each of these values, 𝜀 in Fig. 3 the zone map is shown in a different representation —
in the variables 𝑘2𝑢λ

2, 𝑘2𝑑λ
2, where the ZT corresponds to the intersection of the light regions with

the spectrum line. The right waves correspond to the zones in the fourth quarter, and the left—
in the second. In Fig. 4 ZT are constructed in variables «Bloch wave number — dimensionless
frequency Ω». Frequency dependences for the right waves, the external positive field shifts up,
and for the left — down.

Thus, presented in Fig. 2, 3, 4 ZT illustrate the dependence of the conditions for the
propagation of ESW on their polarization when the symmetry of the structure in the cell is
violated. With an increase in 𝜀, ZT right waves increase and thicken, and the left— vice versa.
This is due to a decrease in the relative volume of cells in which the waves are evanescent.
The obtained dependences are symmetric with respect to the simultaneous replacement of the
polarization 𝐿 ↔ R and the relative thickness of 𝜀 ↔ 1− 𝜀.

Taking into account the Hilbert attenuation leads to the appearance of imaginary terms in

Fig. 3. Maps of allowed (white background) and forbidden (gray) zones for relative layer thicknesses U at 𝜀 = 0.3,
0.5 and 0.7, built on the diagram of variables

(︀
𝑘2
𝑢λ

2, 𝑘2
𝑑λ

2
)︀
. The straight line depicts the spectrum line (8)
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Fig. 4. Dependences of the dimensionless frequency on the Bloch wave number for 𝜀 = 0.3, 0.5 and 0.7. Black lines
correspond to the right waves, gray lines to the left. Thick lines correspond to Ω𝐻 = 0, thin lines — Ω𝐻 = 0.4

expressions for wave numbers:

λ2𝑈𝑘
2
𝑅𝑈 =

ω (1 + 𝑖α𝑈 )− ω𝐻
ω𝑈

− β𝑈 , λ2𝐷𝑘
2
𝑅𝐷 = −ω (1− 𝑖α𝐷)− ω𝐻

ω𝐷
− β𝐷, (15)

λ2𝑈𝑘
2
𝐿𝑈 = −ω (1− 𝑖α𝑈 ) + ω𝐻

ω𝑈
− β𝑈 , λ2𝐷𝑘

2
𝐿𝐷 =

ω (1 + 𝑖α𝐷) + ω𝐻
ω𝐷

− β𝐷, (16)

where α𝑈 , α𝐷 are the Hilbert decay constants in U and in D cells, respectively.
In Fig. 5 for the case of 𝜀=0.7, the frequency dependence of the imaginary part of the Bloch

wave number inversely proportional to the depth of propagation of the ESW in the superlattice is
shown. With increasing frequency (and zone number), absorption increases.

From Fig. 5 it can be seen that this propagation depth is determined by the value of
the Hilbert constant in the cell in which the wave is traveling for this type of polarization and
weakly depends on the attenuation value in the cell where this wave is evanescent, since the
imaginary part in it is a small additive. There is an increase in this absorption at the edges of
the ZT. This behavior of the transmission propagation depth can be explained by a decrease in
the group velocity at the boundaries of the zones. This allows us to draw an analogy between
the described phenomenon caused by the spatial distribution of the amplitude inside the cells
and the well-known Bormann effect [14–16]. The effect of the latter on the attenuation gain is
discussed in more detail in [17].

Fig. 5. Frequency dependence of the imaginary part of the Bloch wave number for the values of the relative
thickness and Hilbert parameters indicated on the graphs. The vertical red lines correspond to the boundaries of
the pass zones. The blue line corresponds to the values of the Hilbert damping parameters α𝑈 = 0.01, α𝐷 = 0,
black — α𝑈 = α𝐷 = 0.05, green — α𝑈 = 0, α𝐷 = 0.01 (color online)

Izvestiya Vysshikh Uchebnykh Zavedeniy. Applied Nonlinear Dynamics. 2022;30(5) 649



2. Scattering by a superlattice with a finite number of layers

Consider an unbounded homogeneous magnetic structure in which the equilibrium magnetization
is oriented antiparallel to the 𝑥 axis. The traveling waves in it are waves with left-hand polarization.
Let 𝑁 plane defects with a thickness of 𝑑𝑈 be embedded in such a structure in the form of layers
of the same material with an equilibrium magnetization parallel to the 𝑥 axis at a distance of 𝑑𝐷
between each other. Let’s write the traveling wave field to the left of the superlattice in the form:

ψ0 (𝑧) = 𝑒𝑖𝑘𝐿𝐷𝑧 +𝑅𝑒−𝑖𝑘𝐿𝐷𝑧, ψ′0 (𝑧) = 𝑖𝑘𝐿𝐷

(︁
𝑒𝑖𝑘𝐿𝐷𝑧 −𝑅𝑒−𝑖𝑘𝐿𝐷𝑧

)︁
, (17)

where 𝑘𝐿𝐷 is the wave number of the incident wave of left-hand polarization to the left of the
structure,
𝑅 is the amplitude reflection coefficient.

Due to continuity conditions(︂
ψ↓
ψ′↓

)︂
(0 + 0) = −

(︂
ψ0
ψ′0

)︂
(0− 0) = −

(︂
1 1

𝑖𝑘𝐿𝐷 −𝑖𝑘𝐿𝐷

)︂(︂
1
𝑅

)︂
. (18)

The index in the form of an arrow indicates the direction of equilibrium magnetization in this
cell. Similarly, the field to the right of the structure:

ψ𝑓 (𝑧) = 𝑇𝑒𝑖𝑘𝐿𝐷(𝑧−(𝑁−1)𝑑−𝑑𝐷), ψ′𝑓 (𝑧) = 𝑖𝑘𝐿𝐷𝑇𝑒
𝑖𝑘𝐿𝐷(𝑧−(𝑁−1)𝑑−𝑑𝐷), (19)

where 𝑇 is the amplitude coefficient of passage.
The system of boundary conditions for 𝑧 = 𝑑 has the form:(︂

ψ𝑓
ψ′𝑓

)︂
(𝑑+ 0) = −

(︂
ψ↑
ψ′↑

)︂
(𝑑− 0) =

(︂
𝑇

𝑖𝑘𝐿𝐷𝑇

)︂
. (20)

Thus, the scattering coefficients satisfy the system:(︂
𝑇

𝑖𝑘𝐿𝐷𝑇

)︂
= 𝑇𝑁

(︂
1 1

𝑖𝑘𝐿𝐷 −𝑖𝑘𝐿𝐷

)︂(︂
1
𝑅

)︂
=

(︂
𝑇11 𝑇12

𝑇21 𝑇22

)︂(︂
1 +𝑅

𝑖𝑘𝐿𝐷 (1−𝑅)

)︂
, (21)

where 𝑇𝑁 = 𝑇𝑒 (𝑑𝑈 )
(︁
𝑇𝑝 (𝑑𝐷)𝑇𝑒 (𝑑𝑈 )

)︁𝑁−1
. From here

𝑅 =
(𝑘𝑝𝑇𝑁22 − 𝑖𝑇𝑁21)−

(︀
𝑘𝑝𝑇𝑁11 + 𝑖𝑘2𝑝𝑇𝑁12

)︀
(𝑘𝑝𝑇𝑁22 + 𝑖𝑇𝑁21) +

(︀
𝑘𝑝𝑇𝑁11 − 𝑖𝑘2𝑝𝑇𝑁12

)︀ , (22)

𝑇 =
2𝑖

(︀
𝑘2𝑝𝑇𝑁22𝑇𝑁12 + 𝑇𝑁21𝑇𝑁11

)︀
(𝑘𝑝𝑇𝑁22 + 𝑖𝑇𝑁21) +

(︀
𝑘𝑝𝑇𝑁11 − 𝑖𝑘2𝑝𝑇𝑁12

)︀ . (23)

In Fig. 6 the frequency dependence of the reflection and transmission coefficients of the
ESW left polarization axis for a structure of 10 antiferromagnetic layers is presented.

Comparison of Fig. 6 for the left wave at 𝜀 = 0.3, 0.5 and 0.7 shows the dependence of the
scattering efficiency on the relative thickness in the transmission zones. The observed peaks are
caused by interference of waves reflected from the cell boundaries and are most pronounced in
the first zone. For 𝜀 = 0.7, when the volume of "allowed"cells for the left wave is relatively small
and scattering is weaker.
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Fig. 6. Reflection coefficients (R) and transmission coefficients (T) for a wave of left polarization in a structure
containing 10 antiferromagnetically ordered layers for values of relative thickness at Hilbert constants α𝑈 = 0.01,
α𝐷 = 0. The vertical lines are the boundaries of the pass zones

Conclusion

The problems of propagation of waves of different nature in a periodic structure (or potential)
have long been classical. However, a feature of spin waves is the presence of an additional degree
of freedom associated with their polarization with respect to the equilibrium magnetization, which
determines the nature of their propagation. Depending on it, the ESW are either running or
evanescent. Therefore, by creating a symmetrical magnetic structure, it is possible to make the
conditions for the propagation of waves of opposite polarization different, as can be seen from the
ZT maps given in the work. We are talking about the difference in the propagation conditions of
exchange waves, and not magnetodipole or exchange for dipole waves, since such non-reciprocity
is also possible for them [18,19].

Evanescent waves can also appear in problems of classical electrodynamics (waveguides).
However, their appearance there is not associated with the presence of a dedicated direction
and is determined either by the amount of energy relative to the potential at a given point, or
as a characteristic feature of the equation itself (standing waves in the Laplace equation for
a waveguide). The Kroning-Penny model can also be applied to this work, since the effective
"potential"for the ESW arises due to the preservation of its polarization when crossing the
boundaries of the cell interface.
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