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Abstract. Purpose of this work is to use analytical and numerical methods to consider the problem of the
structure and dynamics of coupled localized nonlinear waves in the sine-Gordon model with “impurities” (or spatial
inhomogeneity of the periodic potential). Methods. Using the analytical method of collective coordinates for the
case of the arbitrary number the same point impurities on the same distance each other, differential equation
system was got for localized waves amplitudes as the functions on time. We used the finite difference method
with explicit scheme for the numerical solution of the modified sine-Gordon equation. We used a discrete Fourier
transform to perform a frequency analysis of the oscillations of localized waves calculate numerically. Results. We
found of the differential equation system for three harmonic oscillators with the elastic connection for describe
related oscillations of nonlinear waves localized on the three same impurity. The solutions obtained from this
system of equations for the frequencies of related oscillation well approximate the results of direct numerical
modeling of a nonlinear system. Conclusion. In the article shows that the related oscillation of nonlinear waves
localized on three identical impurities located at the same distance from each other represent the sum of three
harmonic oscillations: in-phase, in-phase-antiphase and antiphase type. The analysis of the influence of system
parameters and initial conditions on the frequency and type of associated oscillations is carried out.
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Introduction

The study of nonlinear wave processes allowed us to make a number of fundamental
discoveries [1-3]. Solutions of nonlinear differential equations have been found that describe
solitary waves that retain their shape and velocity over time, including when interacting with each
other — solitons. One of the intensively studied nonlinear differential equations is the sine-Gordon
equation [2-5]. This equation describes wave processes in a wide variety of fields of natural
science: geology, molecular biology, physics, cosmology. For example, in condensed matter physics,
it is applicable in describing the dynamics of magnetization waves in ferromagnetic crystals,
the movement of dislocations in crystals, processes in Josephson superconducting contacts, the
propagation of charge density waves in one-dimensional organic conductors, the propagation of
electromagnetic waves in a graphene-based superlattice, the dynamics of an ensemble of interacting
dislocations in a linear defect of the electroconvective structure of a liquid crystal [4-8]. The
sine-Gordon equation is a nonlinear partial differential equation and is fully integrable.
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Various exact solutions of the sine-Gordon equation of the kink, soliton, breather type and
some other solutions of the more complex multisoliton type [2-4,9, 10| are found. Finding new
solutions to the sine-Gordon equation and studying their properties and interactions is an urgent
task of the theory of nonlinear waves. Usually, a modification of the sine-Gordon equation is
required for use in real physical models. For example, by adding additional terms. These terms
can describe the external force, dissipation, heterogeneity of the parameters of the medium, etc.
The resulting modified sine-Gordon equation no longer has exact analytical solutions. However, a
number of analytical methods have been developed and widely used (for example, perturbation
theory for solitons or the method of collective coordinates [2,5,11]). Using these methods, a wide
range of different tasks has been investigated. For example, the problem of dynamics of kinks,
solitons and breathers under the action of an external force of various types (depending on time
and spatial variables) [12,13] is investigated.

Many works are devoted to the study of the influence of spatial modulation of the periodic
potential (or impurity) on the dynamics of solitons of the sine-Gordon equation [5,14-30]. The sine-
Gordon model with impurities is applicable to describe the case of a multilayer ferromagnet [31-34].
Spatial modulation of the periodic potential is often modeled as a delta function or in other special
forms. The excitation of an impurity-localized wave (impurity mode) as a result of kink scattering
leads to a significant change in its dynamics [5, 19,20, 24-28|. The structure and properties of
localized nonlinear waves excited on one and two impurities were analyzed in [19,21,25,28,29]. It
was shown that the attracting admixture can be used to excite the multisolitons of the sine-Gordon
equation. for example, when localized impurity waves (four-kink multisolitons) are excited on
two impurities. It is analytically shown that their oscillations can be described by a system of
two harmonic oscillators with elastic coupling. This model qualitatively describes the results of
numerical modeling (for both point and extended impurities). The case of two impurities gives a
wide variety of new multisoliton solutions and dynamic effects compared to the case of a single
impurity. We can expect an even greater variety of solutions and effects in the presence of three
or more impurities in the system. In this paper, we study the coupled dynamics of nonlinear
localized waves on three identical point impurities.

1. Basic equations and results of analytical calculations

Consider the dimensionless sine-Gordon equation in a model with N identical point
impurities located at a distance of d from each other, of the following form:

N
Ut — Ugy —l—sinu—Zeké (x — xp) sinu = 0, (1)
k=1

where ¢, = €, x, = kd for all K = 1..N. In the equation (1) u = u(x,t), the spatial modulation of
the periodic potential of the sine-Gordon equation is taken into account by adding point impurities
of the form £8(x), where & — constant, 8(z) — Dirac delta function. This equation, for example,
can describe the dynamics of magnetization waves in a multilayer uniaxial ferromagnet [5,32,33,35]
with a magnetic anisotropy constant inhomogeneous in coordinate. Then the function u = u(z,t)
determines the double angle between the magnetization vector at a given point at a given time and
the direction of the magnetization vector in the domain, the coordinate x will be normalized to g,
where 9 is the width of the static Bloch domain boundary, and the time ¢ is normalized to &¢/c,
where ¢ is the maximum Walker speed of stationary motion [33,35]. The presence of such magnetic
anisotropy inhomogeneities has a significant impact on the dynamics of domain boundaries and
can lead to the formation of various kinds of localized magnetic inhomogeneities [31-35].
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The Lagrange function corresponding to the equation (1) has the form

7 N
1 1
L= / [21@ - §u§; +cosu—1+ ;6(1‘ —xy)(ex — excosu) | de. (2)
% —

First, let’s consider the analytical solution of the equation (1) describing the amplitude
fluctuations of waves localized on impurities using the method of collective variables [2,5]. The
method is variational, based on the allocation of collective coordinates and the construction of
the averaged Lagrangian [2,5]. When using this method, a transition is made from a continuous
field w = u(x,t) to a finite set of functions f(¢) that depend only on time. In this case, u is
approximated by the paragraph — by the sum of solutions from localized waves containing time
functions characterizing the state of the waves, called collective variables. We will take the ansatz
as the sum of N impurity modes:

N N
—enlz—an]|
Ug = Zun = Z ap(t)e™ 2, (3)
n=1 n=1

where a,,(t) — the amplitudes of the impurity modes at time ¢ on the nth impurity. Within
the framework of the considered approximation, the amplitudes of the impurity modes and
the parameter ¢ will be considered sufficiently small, so that u, < 1. The ansatz (3) is then
substituted into the Lagrangian (2). Within the framework of our approximation, the nonlinear
Lagrangian term (2) in the form of cos u can be decomposed into a Taylor series up to second-order
terms. After taking integrals, similarly to the previously investigated cases with N = 1 and
N = 2 [2,5,28,34], we obtain a new effective Lagrange function, which is a function of the
collective variables a,(t). By substituting the effective Lagrange function into the Lagrange
equations—Euler, after taking the derivatives, one can obtain N differential equations for N
collective variables a,(t) of the following type:

N

. €
Z {[an + an)| Epng + any
n=1

N
£
iElnf - ; enkelk] } =0, (4)

where

—e|l—nld 1— 1 | —nld 1—
e =€ 2 = €|d " By = Epg = (E + |2|) €|d = Ejy_p+, 1=1.N. (5)

Next, we consider possible solutions of the equation (4) for the case of N = 3. From the
equation (4), taking [ = 1,1 =2 and [ = 3, we can obtain three differential equations for three
collective variables aj 2 3(t) of the following type

( (41 +a1)

P (d2 + az)E1q + (i3 + ag)Eay 4+ ¢/2[—a1(1/2 + €3 + e))+

+az(eE1-/2 — 2e4 — €3) + az(eEa— /2 — 3e3)] = 0,
(41 + a1)Ery + (d2 + a2)/e + (i3 + a3) E1g + £/2[a1(eE1— /2 — 2eq — €)— (6)
—az(1/2+ 263) +ag(eE_/2 — 63 —2eq)] =0,
(41 + a1)Eoy + (d2 + a2)E14 + (a3 + as) /e + €/2[a1 (e Ea— /2 — 3e2)+
| +az(eE1-/2 — €3 — 2e4) —az(1/2+ €+ €3)] =0,
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where
—ed

eqg=e2, FEp=(1/c+kd/2)ek. (7)

We will reduce them to a more convenient form for solving, leaving only one acceleration in
each of the equations d(t). To do this, we subtract from the first equation multiplied by [1 —&? E? 4]
(6) multiplied by eE14[1 — eEo4] the second equation (6). Then, in the resulting equation, we
take out and insert the expression [d3 + a3] obtained from the third equation (6). Next, we will
take out and get rid of the expression [d2 + ag], and also regroup the terms. Repeating similar
algebraic transformations for the other two equations (6), we obtain:

a1+ a10} + agkiz + askiz = 0,
do + agws + (a1 + az)ka1 = 0, (8)

as + ag(D% + a1k + askia = 0,

where
©? — 1_i+ e3de? /4 1+62+6d(e§—1)e§/2
L 41— (1+ed+e2d?/2)e? T (1 +ed)e |’
g2 e3d(1 — 63)63/2

wf =1-— 2 72 2
41— (1+ed+e2d?/2)e;

e2[(1 +ed)e? — 1]eq/2

k1o =

12 1— (14 ed+e2d?/2)e?’ (9)
g2e2/2 e2d*(1 — e2)e? /4

ki = 4 d(1+e3)/2+ej—1 L

BT TS (1 +ed+ 2d2/2)e2 [5( Fea)/2he -1t 1—(1+ed)e2 |’

P e2(ede?/2 — 1)(1 — €2)eq/2

TN (I ed+e2d2/2)e

ed :e_ng.

The case of non-interacting impurity modes corresponding to the previously studied case of
a single impurity [5] is obtained by finding the limits of expressions (9) for d — oo:

2

Jim ea=0 Jim of = fim of =1-7, Jim k= Jim ki = fm kn =0, (10

Note that in the previously investigated case of two impurities [21,28], it was possible to
obtain approximate linear dynamic equations for the amplitudes of impurity modes, which are the
equations of an oscillatory system with two degrees of freedom (two coupled oscillators). Similar
linear dynamic equations can be obtained for the case of an arbitrary number of impurities.
Approximate linear dynamic equations for the amplitudes of impurity modes in our case are the
equations of an oscillatory system with three degrees of freedom (or three coupled oscillators).
Their solution is the sum of three harmonic oscillations of the form [36]:

ai (t) = ap1 COS (Qlt + 61) + M12ap2 cos (Qgt + 62) — ap3 COS (Qgt + 63),
ag(t) = 1N21Q01 COS (Qlt + 91) + ag2 Ccos (Qgt + 62), (11)
as(t) = apy cos (Rt + 01) + M12a02 cos (Qat + 02) + aps cos (Qst + 03),
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where ag1, age, agz are constants determined from the initial conditions, and

of + 03 + ki3 F /(07 — 03 + ki3)? + 8kigka

9%2 = 9 )
w3 — o — ki3 — /(0] — 03 + k13)? + 8ki2ka

et = T ! (12)
_ 0] —0f+ kg + /(0] — 0f + ki3)? + 8kioka

N2 = T ,

Q% = (D% — k13.

For d — oo, using (9), we have:

9%23:1—57 M1 = V2, 7112:—i. (13)

1 V2

The first of the formulas (13) describes the frequency of the impurity mode for a single
impurity [5]. In the case under consideration, by introducing the substitution y; = a1 + as, y2 =
a; — ag, the equations (8) are reduced to a system of two coupled oscillators with respect to ag
and y; (previously considered [28,34]) and an unrelated oscillator described by the function ys.
Therefore, the solutions of the resulting system are a combination of the previously considered
solutions of equations for a system with a single local inhomogeneity and a system with two local
inhomogeneities. You can also switch to the normal or main coordinates of [1,36], each of which
oscillates with the same frequency:

ag(t) + aq (t) — 2a9 (t)mg
2(1 = mana1)

2a(t) — (a3(t) + a1(t))n21
2(1 = m2n21)

az(t) — a1 (t)
\ 2

In Fig. 1 the dependencies of Q123 on d are presented, constructed according to the

formulas (12) for the values of € equal to 0.5 and 0.3333. At large distances between impurities,

all frequencies tend to the limit value (13). As the distance between the impurities decreases,
the value of Q decreases. The larger ¢ is, the faster it happens and the smaller Q1 becomes.

= app cos (Rt + 01) = ¢1,

= apg cos (Qot + 02) = b2, (14)

= agp3 cos (Qst + 03) = ¢3.

Q- Q3
1.31 1.3 1
1.21 121
1.11
1.1 1
10—, ——y D
09— 1.0 ‘\'_ﬁ‘k 2 L b
0.8 T T T T T ) 09 : : : . : ,
2 3 4 5 6 7 d 2 3 4 5 6 7 d
a b

Fig. 1. 3aBucumoctn qactor Q12,3 or d (HUKHeASA, BEpXHssl, CPeIHsA JIUHUN). AHamuTuaeckoe pemtenune (12) —
CILTOITHBIE JInHWA, Tucjaennoe pemerue (1) — rouku. € = 0.5 (a); € = 0.3333 (b)

Fig. 1. Dependences of the Qi 2 3 frequency on the d value (lower, upper, middle lines). The analytical solution
(12) — solid lines, the numerical solution (1) — points. € = 0.5 (a); ¢ = 0.3333 (b)
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The frequencies of €29 3 increase with decreasing d, tending to infinity. Moreover, Q5 increases
faster, and the difference in its behavior at different € is not very noticeable. Q3 increases more
slowly and its graph is located between the graphs Q; and Qo, and the dependence on ¢ is more
pronounced than at €.
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Fig. 2. BaBucumoctn amnTys a1,2,3(t) (Bepxuuit, cpeanuit, HukHUA rpadukn) or BpeMenu npu £ = 0.3333, d = 3.
a1(0) = 0.1, a2(0) = 0.2098, a3(0) = 0.1 (a); a1(0) = —0.1075, a2(0) = 0.2, a3(0) = —0.1075 (b); a1(0) = —0.2,
az O) = 0, a3(0) =0.2 (C)

—

(
ig. 2. Dependences of the a1,2,3 amplitudes (upper, middle, lower figures) on time at £ = 0.3333, d = 3. a1(0) = 0.1,
(0) = 0.2098, a3(0) = 0.1 (a); a1(0) = —0.1075, az(0) = 0.2, a3(0) = —0.1075 (b); a1(0) = —0.2, a2(0) = 0,
(

a>(0
0) =0.2 (¢)

2
as

The initial phases of the oscillations will then be considered zero for simplicity 01 = 05 =
03 = 0. By setting different ratios of the initial amplitudes of localized waves, it is possible
to obtain different types of oscillations with a given set of parameters € and d. Consider for
example the case of ¢ = 0.3333, d = 3. The dependences of the amplitudes a2 3(¢) on time when
only one harmonic oscillation is excited are shown in Fig. 2. In this case, all impurity modes
oscillate with the same frequency. The first type of oscillation is in-phase — all impurity modes
oscillate in the same phase (Fig. 2, a). It is characteristic that the frequency of Qq of this type of
oscillation decreases with a decrease in the parameter d (Fig. 1). The second type of oscillations
— in-phase-antiphase — the first and third impurity modes oscillate in the same phase, and the
second between them — in the opposite to them (Fig. 2, b). Its frequency Qo increases as the
distance d decreases. The third type of oscillations is antiphase — the first and third impurity
modes oscillate in opposite phases, and the second one is not excited between them (Fig. 2, ¢).
Its frequency Qs does not increase as fast as Qo when d decreases. In this case, the oscillation
amplitudes of the first and third impurity modes are the same in all cases.

Varying the initial conditions, we consider possible more complex cases of coupled oscillations
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of impurity modes. If age = 0, then the expressions (11) can be written as

Qi+ Q Q1 —Q -0
ai(t) = 2ap; cos(( 1t 3)t+61+63> cos(( ! 3)t + 01 3

) — (ap3+ ao1) cos (Rst + 03),

2 2
ag(t) = M21Q01 COS (Qlt + 61), (15)
Q Q3)t+ 0 0 Q1 —Q3)t+6,—10
as(t) = 2a01cos<( Lt 3)2+ 1+ 3> cos<( ! 3)2+ ! 3)+(a03—a01)cos(93t—|—93)7

that is, the oscillations on the first and third impurities have the form of beats with a beat
frequency equal to |Q; — Q3|, and amplitudes varying from |ag; — ag3| to |ap1 + aps|, by the second
impurity vibrations are harmonic. Assuming the initial phases are still zero 6; = 63 = 63 = 0,
let’s take the initial conditions under which the amplitude of the beats decreases to zero. For
example, if ag2 = 0, take apgs = ag1, then the initial conditions will be a;(0) = ag; — aps = 0,
a2(0) = n21a01 =~ 2.098ap1, a3(0) = ag1 +ap3 = 2ap1. The amplitudes will vary from |ag; —agp3| = 0
to |ap1 + ap3| = 2|ap1| on the first and third impurities, and |n21a01| =~ 2.098|ap1| on the second
impurity (fig. 3, a).

)
“, e
' 0.1
o Sl
-0.1 4
027
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a(t). a(t) a(t).
021 027 02

0.1 0.1+ 0.1
0 0 0-
0.1 014 0.1
024 024 0.2
0 50 100 150 200 ¢ 0 50 100 150 200 ¢ 0 50 100 150 200 ¢
a(t) a) a),
0213 021 027
0.1 '

O o

0.1 0.1
b
-0.1 -0.1

-0.1 3
027 -0.2 % -0.2 7

0 S50 100 150 200 ¢ 0 50 100 150 200 ¢ 0 50 100 150 200
a b c

Fig. 3. BaBucumoctu aMIuTys a1,2,3(t) (Bepxunii, cpeauuil, HukHuii rpadukn) or sBpemenu upu € = 0.3333, d = 3.
Buavenns ammumrys npu t = 0: a1(0) = 0, a2(0) = 0.2098, a3(0) = 0.2 (a); a1(0) = 0.1075, a2(0) = 0.01277,
a3(0) = 0.1075 (b); a1(0) = 0, a2(0) = —0.186, a3(0) = 0.2 (c)

Fig. 3. Dependences of the a1, 2,3 amplitudes (upper, middle, lower figures) on time at ¢ = 0.3333, d = 3. Amplitude
values at t = 0: a1(0) = 0, a2(0) = 0.2098, a3(0) = 0.2 (a); a1(0) = 0.1075, a2(0) = 0.01277, a3(0) = 0.1075 (b);
a1(0) = 0, az(0) = —0.186, a3(0) = 0.2 (c)
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If aps = 0, then the expressions (11) can be written as:

Q1 +Q2)t+0,4+0 Q — Q) +01—0
a1(t)=a3(t)=2a01cos<( 1+ D)t 401+ 2)cos<( 1 2)t + 01 2)+

2 2
+ (M12a02 — ao1) cos (Qat + 02),

(16)
(Ql+92)t+91+92) ((Ql—Qg)t—i-el—ez)
cos +

2 2
+ (M21@01 — aoz) cos (1t + 01),

as(t) = 2apz cos <

that is, the oscillations have the form of beats with a beat frequency equal to |Q; — Qs|, and
amplitudes varying from |ag; —Ni2ao2| to |ap1 +M12a0z2| on the first and third impurities and from
’aog — n21a01| to |a02 + n21a01| on the second impurity. For example, if aps = 0, take ag1 = ni2a02,
then the initial conditions will be a1(0) = a3(0) = ap1 + Ni2a02 = 2N12a02 ~ —1.075a02, a2(0) =
ap2 + N21a01 = (1+m21M12)ap2 =~ —0.1277ap2. The amplitudes will vary from |ag; —N12a02| = 0 to
lap1 + M12a02| = 2|N12a02| = 1.075]apz| on the first and third impurities and from |ags — N21a01| =
|(1 — n21mi2)aoz| =~ 2.128|apz| to |agz + M21a01| = |(1 4+ N21Mi2)aoz| =~ 0.1277|apz| on the second
impurity (puc. 3, b).

7).
oé.lé’?; 3(2)?
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_0.23 02 _
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02 - 02 02 1
0.1 0.1° 0.1
0- 0 0
-0.1 0.1+ 0.1
02 - 02 02
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a(t), a(t) a(t)
02 - 02- 02"
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02 029 025
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a C

Fig. 4. 3aBucumoctn ammmTyn ai,2,3(t) (Bepxuuii, cpepnmit, HuKHUi rpacdukn) or Bpemenn npu € = 0.3333, d = 3
n 3HadYeHusix ammmTyd npu ¢t = 0: a1(0) = —0.03225, a2(0) = 0.18588, a3(0) = 0.08775 (a); a1(0) = 0.05375,
a2(0) = 0.01277, a3(0) = 0.16125 (b); a1(0) = 0.05375, az(0) = 0.21277, a3(0) = —0.05375 (c)

Fig. 4. Dependences of the a1,2,3 amplitudes (upper, middle, lower figures) on time at £ = 0.3333, d = 3. Amplitude
values at t = 0: a1(0) = —0.03225, a2(0) = 0.18588, a3(0) = 0.08775 (a); a1(0) = 0.05375, a2(0) = 0.01277,
a3(0) = 0.16125 (b); a1(0) = 0.05375, a2(0) = 0.21277, a3(0) = —0.05375 (c)
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If ag; = 0, then the expression (11) can be written as

a1(t) = (ao3 +M12a02) cos (Qat + 02)—

9 <(§22+§23)t+92+93> <(QQ—93)7§+92—63>
— 2ap3 COS 5 cos 5 ,

as(t) = agz cos (Qat + 02), (17)

az(t) = (N12a02 — ap3) cos (ot + 02)+

(QQ —i—Qg)t—i—Gg —|-63> cos ((QQ — Qg)t—i—@g — 63)
2 2 ’

+ 2ap3 cos <

that is, the oscillations on the first and third impurities have the form of beats with a frequency of
|Q3 — Qs| and amplitudes varying from |ags — M12a02| to |ags +M12ag2|, on the second impurity the
oscillations are harmonic. For example, if ag; = 0, take aga = ag3/M12, then the initial conditions
will be al(O) = MN12a02 — a3 = 0, CLQ(O) = ap — a03/n12 ~ —1.860a03, ag(O) = n12a02+a03 = 2(103.
The amplitudes will vary from |ags — N12a02| = 0 to |aps + Mi2a02| = 2|aps| on the first and third
impurities, and |ap2| = |ao3/N12| = .860]aps| on the second impurity (Fig. 3, ¢). The oscillations
in these cases are similar to the oscillations on two identical impurities considered earlier [28].
Let us further consider the case of coupled oscillations of impurity modes in the presence of
all three harmonics (Fig. 4). Fluctuations of the second impurity mode for the considered case
€=0.3333, d=3 retain their character as in Fig. 3, b, since they involve only two harmonics. The
oscillation form of the first and third impurity modes becomes more complicated due to the addition
of the third harmonic.

2. Results of numerical calculations

In order to analyze to what extent the analytical solution obtained using perturbation
theory is applicable to describe solutions of a nonlinear differential equation (1), it is necessary to
solve it using numerical methods. Currently, a large number of methods have been developed for
the numerical solution of such equations [3,4,11,25,27|. Let’s use the finite difference method. Let’s
choose a three-layer explicit solution scheme, with approximation of derivatives on a five-point
pattern of the "cross"type, which was used earlier for simpler modifications of the sine-Gordon
equation (see, for example, [19,21]). This second-order numerical scheme approximates Az and T,
where Az is a coordinate step, t is a time step. It has conditional stability (t/Az) < 1. In our
case, the scheme is a "one-step" [21,27,37], uses a relatively small number of memory accesses
and has the potential to optimize the computational algorithm.

Frequency analysis of localized wave oscillations, which are calculated numerically, is
performed using a discrete Fourier transform. The fast Fourier transform algorithm is used to
calculate it. This algorithm has good performance. However, the most optimized implementations
of the fast Fourier transform algorithm impose certain restrictions on the original series. To
prepare the data, the original discrete dependence is interpolated by a cubic spline with natural
boundary conditions, from which a new discrete dependence is constructed on a uniform grid
with an increased number of approximation points. The frequency spectrum is calculated from
the new discrete dependence using the fast Fourier transform algorithm. To increase the accuracy
of frequency determination, the points of the maxima of the frequency spectrum are refined using
the interpolation by the Akim spline.

The numerical experiment is performed as follows. At the initial moment of time, at some
distance from the impurities, there is a kink moving at a constant speed. When the kink passes
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through the region of point impurities, localized breeze-type waves are excited on them. The
amplitude and type of localized waves depend on the initial velocity of the kink, the parameters
€ and d. Since localized impurity waves are excited as a result of the passage of a kink, its initial
velocity determines their initial phase difference, as for the case of an analytical solution. As a
result, it is not possible to excite the entire spectrum of possible associated oscillations of localized
waves.

In Fig. 5 and fig. 6 the dependences of the amplitude of localized waves on time at the
impurity location at € = 0.3333 and € = 0.5 are given for three different cases corresponding
to different values of the parameter d. By the nature of the frequency spectra A(w) they can
be attributed to different modes of oscillation. It can be seen from the figures that at small
distances between the impurities, the connection between the waves is very strong. Under any
initial conditions, they begin to oscillate in phase at a single frequency after a certain period of
time. Similar behavior is typical for the case of two point impurities [28].

From fig. 5 and fig. 6 for the case of a small and large distance between impurities, it can be
seen that there are associated oscillations of localized breeze-type waves with characteristic strong
beats. Let’s compare the harmonics obtained using Fourier decomposition with the frequencies
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Fig. 5. Dependences of the a1,2,3 amplitudes on time for ¢ = 0.5 at different the d values calculated numerically
from the equation (1) and corresponding discrete Fourier expansion A(w). d =1 (a); d =3 (b); d =6 (c¢)
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€2 2 3 obtained analytically earlier. On fig. 1 solid lines are the analytically calculated frequencies
Q1, Q9 and Qg, and the points are the numerically obtained frequencies. From fig. 1 it can
be seen that there is a good coincidence of numerical and analytical results. The numerically
obtained harmonic values for the considered cases with an accuracy of 1-2% coincide with the
corresponding values of Q1 2 3. For example, for Q; and Q3 with ¢ = 0.3333 and d = 4, the values
obtained analytically are 0.968 and 1.000, and the values obtained numerically are 0.956 and
0.996, respectively. The value of Qs for € = 0.3333 and d = 6 for the analytical solution is 1.034,
for the numerical — 1.036.

From the comparison of numerical and analytical results, it follows that the analytical
results obtained using the equations for collective coordinates remain relatively reliable and are
close to the results of direct numerical calculation for d greater than or equal to one, € less than
one, and the amplitudes of impurity modes of the order of 0.3 or less. Localized waves containing
frequencies Q1 and Q3, are excited numerically starting from small distances between impurities.
Localized waves containing the frequency Qg are excited numerically only for large distances
between impurities (in this case starting from d = 6), when the "binding force"between them is
greatly reduced. Moreover, for the case of localized waves with one frequency, Q; is excited, for
the case of oscillations with two frequencies — Qq mand Qg.
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Fig. 6. Dependences of the a1,2,3 amplitudes on time for € = 0.3333 at different the d values calculated numerically
from the equation (1) and corresponding discrete Fourier expansion A(w). d =1 (a); d =3 (b); d =6 (¢)
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Conclusion

In the article, for the sine-Gordon model with an arbitrary number of identical point
impurities located at the same distance from each other, using the method of collective variables,
a system of equations describing the oscillations of waves localized on impurities is obtained. The
obtained differential equations for the case of three impurities are the equations of an oscillatory
system with three degrees of freedom or three coupled harmonic oscillators. The oscillations of
the system are the sum of three types of harmonic oscillations: in-phase, in-phase-antiphase and
antiphase. Approximate analytical solutions for frequencies are obtained that well approximate
the results of direct numerical simulation of a nonlinear system. It is shown that when the distance
between the impurities decreases, the frequency of common-mode oscillations decreases, the
frequency of common-mode-antiphase oscillations increases, the frequency of antiphase oscillations
does not increase as fast as common-mode-antiphase. When two frequencies are excited, beats
occur, vibrations are similar to vibrations in the case of two identical impurities. When three
frequencies are excited, the oscillation form becomes more complicated.
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