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Abstract. The purpose of our work is to investigate asymptotic stationary states of an open disordered many-body quantum
model which is characterized by an ergodic — many-body localization (MBL) phase transition. To find these states, we use
the neural-network ansatz, a new method of modeling complex many-body quantum states discussed in the recent literature.
Our main result is that that the ergodic phase — MBL transition is detectable in the performance of the neural network that
is trained to reproduce the asymptotic states of the model. While the network is able to reproduce, with a relatively high
accuracy, ergodic states, it fails to do so when the model system enter the MBL phase. We conclude that MBL features of the
model translate into the cost function landscape which becomes corrugated and acquires many local minima.

Keywords: many-body localization, open quantum systems, neural networks.

Acknowledgements. This work was supported by Russian Foundation for Basic Research and the Government of the Nizhni
Novgorod region of the Russian Federation, grant No. 18-41-520004.

For citation: Yusipov 11, Kozinov EA, Laptyeva TV. Transition from ergodic to many-body localization regimes in open
quantum systems in terms of the neural-network ansatz. [zvestiya VUZ. Applied Nonlinear Dynamics. 2022;30(3):268-275.
DOI: 10.18500/0869-6632-2022-30-3-268-275

This is an open access article distributed under the terms of Creative Commons Attribution License (CC-BY 4.0).

© FOcunos U. 1., Kosunos E. A., Jlanmesa T. B., 2022


https://doi.org/10.18500/0869-6632-2022-30-3-268-275
https://doi.org/10.18500/0869-6632-2022-30-3-268-275

Kparkoe cooOiieHne
VK 530.182
DOLI: 10.18500/0869-6632-2022-30-3-268-275

Ilepexon oT 3proauyecKux pe;KMMOB
K pe:KHMaM MHOTO4acTHYHON JIOKAJIN3AINN B OTKPBITHIX
KBAHTOBBIX CHCTEMAaX ¢ TOYKH 3PEeHUs] HelipoCeTeBOro NnpeacTaBjaeHus

U U. FOcunos®™ E. A. Kosunos, T. B. Jlanmeea

Hanmonanbheiil uccnenoBarenbekuit Huxkeropoackuit rocyapcTBEeHHbIH YHUBEPCUTET
nmenn H. U. Jlobauesckoro, Poccus
E-mail: X} yusipov.igor@gmail.com, evgeny.kozinov@itmm.unn.ru, tatyana.lapteva@itmm.unn.ru
IHocmynuna 6 pedaxyuio 28.10.2021, npunama k nybauxayuu 23.12.2021, onyonuxosana 31.05.2022

Annomayusn. [Jenvio Hamelt pabOTHI SIBISETCS HCCIEAOBAaHHE ACHMITOTHYECKUX CTAIIMOHAPHEIX COCTOSIHHH OTKPBITON HEyops-
JIOYCHHOW MHOTOYaCTHYHOI KBaHTOBOW MOJEIH, KOTOPasi XapaKTepU3yeTcs: IIEPexXoa0oM 3proauyeckas aza — MHOrogacTu4Has
noxanu3arms (MYJI). UtoOsl HAWTH 3TH COCTOSIHUS, MBI UCIIONIB3yeM HEHpOCETEBOM aH3all, HOBBIH Memo0 MOACTHPOBAHIS
CIIOXKHBIX KBAaHTOBBIX COCTOSTHHH MHOTHX TeJ, MPEAJIOKESHHBIH N 00CYy)KIaeMblil B HelaBHUX ITyOnukanusx. Ham rmaBHbII
pe3ynbmam COCTOUT B TOM, YTO IEPEXof dpropuueckas (aza—MHOro4aCTHYHAS JIOKaJIM3alMs OOHApyxHBaeTcs B pabore
HEHPOHHOH CceTH, KoTopas 00yueHa BOCIIPOU3BOAUTH ACUMIITOTHYECKHE COCTOSHHS MOJETH. XOTA CETh CIIOCOOHA BOCIIPO-
H3BOAUTH C OTHOCUTEIBHO BEICOKOH TOUYHOCTBIO IPTOJMYIECKHE COCTOSHUS, OHA HE MOXET 3TOTO CJelaTh, KOTJa MOJeTbHas
cucrema Bxoaut B MUJI-¢azy. Ml 3axniouaem, uto ocodbennoctn MUJI-pexnma tpanchopmupyroTes B nanmmadT GpyHKIUN
CTOMMOCTH, KOTOPBIIf CTAHOBUTCS CHIJIBHO HEPABHOMEPHBIM H ITPUOOPETAET MHOKECTBO JTOKATbHBIX MHHHUMYMOB.
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Introduction

The computational many-body quantum physics is one of the research fields that is severely
subjected to the “Curse of Dimensionality” [1]. The complexity of the description of a state of a
many-body system grows exponentially with the number N of system’s components, e.g., spin or qubits,
so that the corresponding model becomes intractable already for relatively small values of N. The
development of the computational many-body physics is the story of a constant search for new methods
to compactify the description of quantum states at the price of restricting them to a subset which is
constrained by some conditions [2], f.e., by area laws [3,4].

The rise of machine learning (ML) techniques has inspired physicists to design new methods of
modeling complex quantum states. One of the recent breakthroughs is the idea to use neural networks to
encode many-body states, in order to benefit from the ability of the networks to compactify descriptions
of complex objects and sets; see, e.g., Refs. [5, 6]. In particular, the so-called Neural Network States
(NNS) [5], based on the restricted Boltzmann machines (RBMs) [7], turned out to be able to reproduce
the ground states of large quantum many-body Hamiltonians [5, 8], even in the case when these ground
states are characterized by long-range entanglement [9].

Open many-body open quantum systems are especially challenging to deal with computationally.
Due to the growth of the number of parameters (needed to describe the state of an open system) as the
square of the corresponding Hilbert space dimension, description of open quantum states by density
matrices requires substantially more computational resource as compared to the states of Hamiltonian
systems [2].
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Numerical solution of the Lindblad master equation [10], commonly used to model evolution
of open quantum systems, becomes a challenge already for N = 10 spins/qubits. Equally, the exact
diagonalization of the Lindblad equation in order to find its stationary state — and thus to compute the
asymptotic state of the corresponding model — becomes a problem starting N = 8 spins (if no further
constraints are imposed so that the dimension of the Hilbert space can be reduced) [2]. It therefore would
be beneficial to implement the machine learning techniques to model open quantum many-body states.

A progress in this direction has been made very recently [11, 12]. In particular, the fact that
any mixed quantum states can be purified by using ancillary degrees of freedom, was used in the
recent work by Vicentini et al. [11]. By performing the purification, mixed states can be expressed
as an NNS in the extended Hilbert space [13]. The asymptotic states of the model Lindbladian can
then be found by performing variational minimization of a cost function associated to the master
equation. It was demonstrated that by using Markov chain Monte Carlo sampling of the gradient, it is
possible to approximate the asymptotic state of the dissipative quantum transverse Ising model with
high accuracy [11].

From another perspective, asymptotic states of disordered open many body-system models
can be continuously tuned from the ergodic phase, characterized by long-range entanglement (and
therefore similar to the state addressed in Ref. [11, 14]) to MBL states, characterized short-ranged
entanglement [15]. It is interesting to study the validity of the variational neural-network ansatz for the
two types of states as well as to explore the transition between these types through the prism of neural
network training. This is the main motivation of our work.

1. Model

We use an open disordered many-body model proposed in Ref. [15]. It was shown that, by tuning
the strength of the disorder, it is possible to change the asymptotic states of the model from ergodic to
the ones bearing the footprints of MBL. Below he briefly outline the model.

We consider an open-ended chain of NV (an even number) sites occupied by N /2 spinless fermions.
The fermions interact only when occupying neighboring sites and are additionally subjected to random

on-site potentials h;, [ = 1, ..., L. The model Hamiltonian is
L L L
H = —JZ (C}LC[_H + C;+1Cl) + UanlH + Z hin;, (1)
=1 =1 =1

where clT (c7) creates (annihilates) a fermion at site [, and n; = c;cl is the local particle number operator.
Values h; are drawn from an uncorrelated uniform distribution on the interval [—h, h]. For J =U =1
(our choice here) this system undergoes a many-body localization transition when A > hypr, 2 3.6 [16].
By using the Jordan—Wigner transformation, the system can be mapped onto a model of L spins
confined to the manifold S* = Zsz 1 5 = 0. This relation allows us to implement the time-evolving
block decimation (TEBD) scheme generalized to matrix product operators [4] and propagate the model
system to its steady state. As the initial state we use 0(0) = |\o) (Yol, |WPo) = |1010...10).
The dissipation is captured with the Lindblad master equation,

L
0lt) = Lolt) = =i [H,o(t] + 3 1. [Awa(t)4] - (Al A..0)]
s=1

where Q(t) is the system density operator, and A; is the jump operator mimicking the s-th dissipative
channel of the environment, with rate v,. The non-local dissipative operators act on a pair of neighboring
sites,

A=+, e —am), Y= (2)
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In Ref. [15] it was demonstrated that, by increasing disorder strength s, we can detect ergodic —
MBL transition at h ~ 7. This transition can be detected by using several quantifiers, including the
spectral statistics and structure of the density matrices describing to the asymptotic states. We will use
this type of quantifiers here.

2. Neural-network ansatz

Here we briefly outline the idea of the ansatz presented in Ref. [11].
By using some basis in the system’s Hilbert space, {|6) = |01, 02,...,0x)} (which is the Fock
basis in the case of our model), the density operator can be represented as matrix p, (o, 6’),

p(v) =Y pu(o.0")|0) (0] 3)

0,0’

In order to use the NNS representation, this density matrix has to represented at as a partial
trace over a pure state living in a higher dimensional Hilbert space, H = Hg ® H 4 where Hg 4 are
the system and ancillary Hilbert spaces, respectively. The extended space is spanned by basis {|o, a)}
where a = (ay, ag, ...,an,) labels the ancillary degrees of freedom. The density matrix of the original
system S is obtained by tracing out the ancillary degrees freedom [13],

pu(0,0') = Wu(0, @)y} (0, a). )

State 1, (6, a) can be encoded via a neural network ansatz [13],

Yo (0, @) = \/Po, (0, a) exp[—1/210g(Py, (0, a))]. (5)

Amplitude 7, , (0, a) and phase function Py, (6, a) are given by Py (0, a) =) ,exp|—FE\(0, a, h)]
(with v € {v4,vp}), where the energy functional is defined as

Ey(6,a,h) =0 - bS“) +a- bS“) +h- bgh) + 6 Wyh + ¢' Uya. (6)

The ansatz parameters are v = (v 4, vg) where vy, = (b\(,o), b\(,a) , bgh), W,, U,). The rectangular matrix

W, weighs the connections between the system variables (visible layer) to the auxiliary variables
(hidden layer), while the weight matrix U, quantifies the connection between the system variables and
the ancillary ones (ancillary layer). Such neural-network ansatz is represented by a tri-partite Restricted
Boltzmann Machine depicted in Fig. 1. In other words, there are two independent artificial neural
networks, one for the amplitude (v = A) and one for the phase (v = 0).

By substituting above expressions into Eq. (4) and performing tracing over the ancillary degrees
of freedom, we obtain the expressions for the elements of the density matrix*:

pv(0,0') = exp[[, (0,6") + T} (0,06') + y(0,0')]. (7)

The descriptive power of the neural-network ansatz can be improved by increasing the density of the
hidden (oo = N, /N) and ancillary (§ = N,/N) layers.
The search for the asymptotic state can be recast into a minimization problem for a cost function,

R ATt e
dpoydrl Tx[pbL1L00]

C(U) - ~ - ) (8)
9ol Tr[plpo]

*The expression of '/~ and IT can be found in the Supplemental Material of [11].
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Fig. 1. The neural network used for the ansatz. The vector ¢ = (01, 02, ..., O ) contains the variables of the system (visible
layer, in red on the plot). The vector @ = (a1, az, ..., 0N, ) contains the ancillary degrees of freedom of the extended Hilbert
space (ancilla layer, green). The vector h = (hi, ho, ..., h, ) contains variables of auxiliary nodes (hidden layer, grey).

The network is specified wit the set of parameters vy = (by (@) b(a) b , W, Uy). Local biases, bl" Wv, U,, acts on the
neurons of the hidden, visible, and auxiliary layers, respectlvely. Another network, with the same structure is used to represent
the phase (v = wvp), Eq. (5) (color online)

It is known that, because the absence of the normalization in density matrices obtained using the
purification technique [13], it is not possible to base the optimization procedure on the elements of the
density matrices encoded in the network. It was propose to use Markov Chain Monte Carlo [17] with
Metropolis update rules, and, at every sampling step, a new configuration (¢, 6) — (¢’,6’) is created by
switching a random number of spins and it is accepted with probability min(exp [py (6, 6)/py(0’, )], 1).

Finally, on every step of the optimization procedure, physical observables of interest are sampled
through another Markov chain,

<é> _ [f)[ 6] Zpobs Z po(0 pv o 0] )’ 9)

3. Results

In order to approximate the asymptotic states of the model (1)—(2), we use the NetKet [18]
package developed by the authors of Ref. [11]. We have modified the original code in order to take
the symmetry of the model system into account and thus to reduce the dimension of the Fock space to
N = ( L]72), where L is the number of the lattice sites. Finally, we keep fixed the density of neurons in
the hidden o = Ny /N, and ancillary layer, § = N, /N, fixed, o = p = 2.

In order to measure the distance between the density matriX Qexact, Obtained with the exact
diagonalization of £, Eq. (2), and the density matrix obtained with the neural-network ansatz, onNA,
we use the standard fidelity measure, d(Qexact; ONNA) = 1 — F'(Qexact; ONNA ), Where F(p,0) =

2
= (trv/v/povp)~.

The results for the two extreme cases, h = 0 and h = 10, corresponding to the ergodic and
deep MBL phases, respectively, are presented in Fig. 2. While in the first case the distance drops to
relatively low value and then slowly tends to zero upon the increase of the number of iterations, in the
second case the distance drops to a value which more or less corresponds to a distance between two
randomly-chosen states and does not decrease further.
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Fig. 2. Distance between the density matrices describing the asymptotic states of the model (1)-(3), 1 — F'(Qexact, ONNA) @S @
function of the number of iterations, for h = 0 (left panel) and one particular realization of the disorder, h = 10 (right panel).
Qexact 1S obtained with the diagonalization of the Lindblad superoperator £, while onna is obtained with neural-network
ansatz (see text for more details). Inset: The distance between the density matrices averaged over 10" realizations of disorder
as a function of the disorder strength. The number of iterations in all cases was 10°. Parameters of the model are y = 0.1,
U=J=1,and L =38

We inspect structures of the density matrices corresponding to the asymptotic states of two
particular realizations of the disorder in the ergodic phase, h = 0 and h = 1. Following the ideas of
Ref. [15], we plot the absolute value of the matrix elements. We find a good agreement between the
patterns produced by Qexact and onna; see Fig. 3. Namely, both density matrices, exact and NNA ones,
when expressed in the standard lexicographically ordered Fock, exhibit similar fine-structured pattern
typical to ergodic states found in Ref. [15].

In the case of MBL regimes, the difference between the structures is distinctive. However, it is
not random: While the pattern produced by Qexact 1 dominantly diagonal, with several "hot spots’ along

G’ ‘Qa.n"
h=0 h=1 h=20
60 0.06 ¢ 0.07 60 . 0.10
50 3 0.05 50 ‘ - 0.06 50 0.08
i 0.05 .
40 i B 0.04 40 0'04 40 0.06
30 0.03 30 H : 30 - .
i 0.03 0.04
20 : ; 0.02 20 gt 0.02 20 . :
10 0.01 10 0.01 10 0.02
0 0 0 0 0 0
0 10 20 30 40 50 60 0 10 20 30 40 50 60 0 10 20 30 40 50 60
Gl
60 0.06 60 0.07 60 g.g
50 = 0.05 50 ; 0.06 5 :
=N 0.05 0.6
40 . - 0.04 40 ) 40 0.5
0.04 . 0.4
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, 0.03 03
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Fig. 3. Absolute values of the elements of the asymptotic density matrix for a single disorder realization and three different
values of h. Upper panel: Density matrices Qexact Obtained with the diagonalization of the Lindblad superoperator £. Lower
panel: Density matrices onna obtained with the neural-network ansatz. Other parameters are the same as in Fig. 2
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the main diagonal (this pattern is typical to the MBL states [15]), onna is able to reproduce only one
of these spots. By launching the neural network from a randomly chosen initial configuration, we can
obtain another density matrix, which reproduces another hot spot.

Conclusions

By using the variations neural-network ansatz proposed in Ref. [11], we analyzed the asymptotic
states of the model exhibiting transition between the many-body ergodic and MBL phases.

We found that the performance of the neural network is very different in the two phases. Our
conclusion is that many-body localization is somehow imprinted in the cost function landscape which
becomes rough upon the increase of the disorder strength and acquires many local minima. Each local
minimum corresponds to a single localization hot spot, that is a very localized probability distribution
concentrated around single Fock state. The overall MBL density matrix can be represented as a weakly
entangled combination of single-hot-spot density matrices. We guess that deep in the MBL state, the
exact density matrix can be represented, as a convex combination of single-hot-spot density matrices,
Qexact ~ Zsj‘il DPsOXna»> Where M is the number of localization spots in the Fock basis. Probabilities
ps can be estimated by performing statistical sampling and launching the network from random initial
configurations. We plan to move further in this direction; in case this hypothesis is collaborated with
numerical results, the link between a genuine quantum phenomena, MBL, and a famous problem of
machine learning such as corrugated cot landscape with many local minima, will be established.
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