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is a simpler mathematical procedure. Results of the analytical solution of the Schröder equation for 12 chaotic
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of formulating and solving the Schröder equations by the study of the dynamics of one-dimensional chaotic
mappings.
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Introduction

In 1870–1871 the German mathematician Friedrich Wilhelm Karl Ernst Schröder (1841–
1902) published in the journal «Mathematische Annalen» two interrelated pioneer articles containing
studies of iterations of rational functions on the complex plane in application to finding the roots
of nonlinear equations [1, 2].

In the article «Über unendlich viele Algorithmen zur Auflösung der Gleichungen» [1], he
demonstrated the application of Newton’s algorithm to solving the quadratic equation 𝑓(𝑧) =
𝑧2 − 1 = 0, that is, he considered a difference iterative scheme

𝑧𝑛+1 = 𝑔(𝑧𝑛) = 𝑧𝑛 − 𝑧2𝑛 − 1

2𝑧𝑛
=

𝑧2𝑛 + 1

2𝑧𝑛
, 𝑛 = 0, 1, 2, ...
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E. Schröder established the convergence regions to the two available solutions of the equation
under consideration: at the initial value of 𝑧0 with a positive real part (Re 𝑧0 > 0), the iterations
of 𝑧𝑛 converge to the positive root of 𝑧*1 = 1, at the initial value of 𝑧0 with a negative real part
(Re 𝑧0 < 0) the attracting point is the negative value of the root 𝑧*2 = −1. In the case of a purely
imaginary initial value (Re 𝑧0 = 0), there is no convergence. Many years later, this Schröder’s
result was condescendingly called «simple» [3, p. 55].

Note that a few years after the publication of Schröder’s article, in 1879 , the Englishman
Arthur Cayley (1821–1895) considered in the complex plane the problem of convergence of
iterations to the values of the roots of the cubic equation 𝑧3 − 1 = 0 (one real root and two
complex conjugate), also using Newton ’s algorithm:

𝑧𝑛+1 = 𝑧𝑛 − 𝑧3𝑛 − 1

3𝑧2𝑛
=

2𝑧3𝑛 + 1

3𝑧2𝑛
, 𝑛 = 0, 1, 2, ...

Against the background of the results of solving this problem (Cayley’s problem), Schröder’s
result for a second-order equation looked «simple». The areas of attraction of all three roots of
the cubic equation are closely and intricately intertwined. Their boundaries are fractals [4–6].
The Cayley problem played the role of a «start» for Pierre Joseph Louis Fatou (1878-1929) and
Gaston Maurice Julia (1893-1978) in constructing the theory of iterated holomorphic maps, the
theory of sets of Fatou and Julia [7, 8]. A E. Schröder took the first place in the chronological
list of creators of holomorphic dynamics.

In the following work «Über iterirte Funktionen» [2] E. Schröder proposed a special
methodological toolkit for investigating the convergence problem of iterative procedures based
on the solution of the functional equation constructed by him. Now it bears his name and
contains some unknown function, the finding of which allows us to further explicitly investigate
the asymptotic behavior of the iterative process [9, 10].

Initially, mathematicians focused on analytical solutions of the Schröder equation on the
complex plane. Works in this direction were devoted to proving the existence of Schröder functions,
their analytical representation, establishing general conditions (theorems) for the convergence of
iterative procedures, establishing connections of the Schröder equation with other functional
equations and investigating the features of the latter’s application in the analysis of iterative
processes, studying the spectral properties of the so-called composite operator distinguished in
the Schröder equation and other related problems. As a result, the Schröder equation gained the
status of one of the most important equations of functional analysis [10,11].

For the theory of deterministic chaos, the main topic of research is not the problems
of convergence of iterations in complex or real domains to certain limits, but, «divergence», the
implementation of chaotic regimes in dynamical systems. The Schröder equation is also applicable
to the analysis of similar problems. Moreover, exact finite solutions of Schröder equations for this
class of «chaotic» problems can be given much more than exact finite (not representable by
infinite series) solutions for describing converging processes! From a historical point of view, it is
also interesting that in the article [2] (it was written in 1869 ), Schröder gave an exact trajectory
solution of his equation for the logistic mapping, written in complex variables as

𝑧𝑛+1 = 4𝑧𝑛(1− 𝑧𝑛), |𝑧𝑛| < 1, 𝑛 = 0, 1, 2, ...

This publication illustrates the applied significance of the functional Schröder equation in
establishing exact expressions for the points of orbits of one-dimensional chaotic maps defined
on a real numerical line as functions of the initial value 𝑥0 and the number 𝑛 of the iteration step
𝑥𝑛 = 𝑥𝑛(𝑥0, 𝑛). Knowledge of exact solutions allows us to analytically calculate the invariant
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density of the mapping, the corresponding Lyapunov exponent and the autocorrelation function of
its trajectories. The review is conducted on the examples of test chaotic maps and new synthesized
chaotic maps with invariant density in the form of classical probability distributions. Trajectory
solutions are obtained in the context of constructing an additional chaotic mapping, topologically
conjugate with the one under consideration, but more convenient when calculating trajectory
and probabilistic characteristics. A similar «convenience» occurs if the conjugating function has
specific (periodic) properties.

1. Schröder equation: formulation

Consider a mapping given by a real function of a real argument on some interval of the
numeric axis (𝑎, 𝑏):

𝑥𝑛 = 𝑔(𝑥𝑛−1), 𝑥𝑛 ∈ (𝑎, 𝑏), 𝑛 = 0, 1, 2, ... (1)

The Schröder functional equation is understood as the equation

ω(𝑔(𝑥)) = λω(𝑥), (2)

where ω(𝑥) and λ are the real function and number to be found. From function ω(𝑥) requires
one-to-one reversibility and differentiability of the inverse function:

𝑢 = ω(𝑥), 𝑥 = ω−1(𝑢) = Ω(𝑢), (3)

where ω−1 = Ω(𝑢) denotes the inverse function for ω(𝑥):

Ω
(︀
ω(𝑥)

)︀
≡ 𝑥, ω

(︀
Ω(𝑢)

)︀
≡ 𝑢.

Using the reversibility property (3) of the function ω(𝑥), we obtain from the equation (2)

𝑔(𝑥) = Ω
(︀
λω(𝑥)

)︀
. (4)

Using (4), it is possible to express all the members of the sequence 𝑥𝑛 generated by (1) in terms
of the initial value 𝑥0 and the number of iterations 𝑛. Based on the starting point 𝑥0, we get the
trajectory «continuation» 𝑥1:

𝑥1 = 𝑔(𝑥0) = Ω
(︀
λω(𝑥0)

)︀
. (5)

If we substitute the value 𝑥1b in the right part of (4), then based on (5) we get the following
representation for 𝑥2:

𝑥2 = 𝑔(𝑥1) = Ω
(︀
λω(𝑥1)

)︀
= Ω

(︀
λω

(︀
Ω(λω(𝑥0))

)︀)︀
= Ω

(︀
λ2ω(𝑥0)

)︀
. (6)

Let’s assume that for the 𝑛th iteration step, the relation is valid

𝑥𝑛 = Ω
(︀
λ𝑛ω(𝑥0)

)︀
. (7)

Then, using the actions applied at the first step of iterations, we get

𝑥𝑛+1 = 𝑔(𝑥𝑛) = Ω
(︀
λ𝑛+1ω(𝑥0)

)︀
. (8)

Taken together, relations (5)–(8) constitute a simple proof of exact expression (7) for the 𝑛
iteration by mathematical induction. In addition to the initial value 𝑥0 and the number of

130
Anikin V.M.

Izvestiya Vysshikh Uchebnykh Zavedeniy. Applied Nonlinear Dynamics. 2023;31(2)



iterations 𝑛, the expression (7) contains a numeric parameter λ, the value of which is determined
for a specific mapping as a result of solving the functional equation (2), that is, in the process
of finding the functions ω(𝑥) and Ω(𝑥). The relation (7) is hereinafter referred to as a trajectory
solution in the Schröder form.

2. Schröder equation: Genesis

Schröder formulated equation (2) in the context of generalizing the results he obtained for
the trajectories of various iterative processes. Consider described by Newton ’s formula,

𝑥𝑛−1 = 𝑥𝑛 − 𝑓(𝑥𝑛)

𝑓 ′(𝑥𝑛)
, 𝑛 = 0, 1, 2, ..., (9)

convergent process to the value of the root of the equation given by the function of the real
argument,

𝑓(𝑥) = 𝑥2 − 𝑎 = 0, 𝑎 > 0,

starting from some value 𝑥0, that is, we write down a numerical algorithm for extracting the
square root from some positive number 𝑎. The ratio (9) will take the form

𝑥𝑛+1 = 𝑥𝑛 − 𝑥2𝑛 − 𝑎

2𝑥𝑛
=

1

2

(︂
𝑥𝑛 +

𝑎

𝑥𝑛

)︂
, 𝑛 = 0, 1, 2, ... (10)

This iterative procedure for extracting the square root was known to mathematicians of the
Ancient World. One of its names is the iterative formula of Heron of Alexandria (he cited it in
his work «Metrica», about the 60s A.D.). There are also references to the use of this algorithm
by the Babylonians.

Let’s denote the iterated function in (10) as

𝑔(𝑥) =
1

2

(︁
𝑥+

𝑎

𝑥

)︁
=

√
𝑎

2

(︂
𝑥√
𝑎
+

√
𝑎

𝑥

)︂
, 𝑎 > 0. (11)

Let’s introduce into (11) a monotone (reversible) replacement of variables using hyperbolic functions

𝑥√
𝑎
= cth(𝑢), 𝑢 = cth−1 𝑥√

𝑎
, (12)

where cth(𝑢) is a hyperbolic cotangent, ctg−1(𝑡) is a hyperbolic areacotangent (inverse function).
Substituting (12) into (11) leads to a beautiful result:

𝑔(𝑢) =

√
𝑎

2

(︂
cth(𝑢) +

1

cth(𝑢)

)︂
=

√
𝑎 cth(2𝑢), (13)

since the relation is valid for the hyperbolic cotangent of a double argument (for example, [12,
c. 18]):

cth(2𝑢) =
1

2

(︂
cth(𝑢) +

1

cth(𝑢)

)︂
=

cth2(𝑢) + 1

2 cth(𝑢)
.

Accordingly, a single iteration for (11) based on (13) will be written as

𝑥1 = 𝑔(𝑥0) =
√
𝑎 cth

(︂
2 cth−1 𝑥0√

𝑎

)︂
. (14)
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To clarify the structure of the solution, we write an expression for the second iteration using
(14):

𝑥2 = 𝑔(𝑥1) = 𝑔2(𝑥0) =
√
𝑎 cth

(︂
2
√
𝑎 cth−1 𝑥1√

𝑎

)︂
=

=
√
𝑎 cth

(︂
2
√
𝑎 cth−1

√
𝑎 cth(2 cth−1(𝑥0/

√
𝑎)√

𝑎

)︂
=

√
𝑎 cth

(︂
22 cth−1 𝑥0√

𝑎

)︂
. (15)

When writing (15), the composition property of the forward and inverse functions is taken into
account: cth(cth−1(𝑡)) ≡ 𝑡. From the form (14) and (15), we can assume that for the 𝑛 iteration
of the function (11), 𝑥𝑛 = 𝑔𝑛(𝑥0), the relation is valid

𝑥𝑛 = 𝑔𝑛(𝑥0) =
√
𝑎 cth

(︂
2𝑛 cth−1 𝑥0√

𝑎

)︂
. (16)

To complete the proof of this assumption by mathematical induction, it should be shown that
the structure (16) is also valid for (n+1) iteration of the function g(x). Using (16) and the result
for a single iteration of (14), we will arrive at the desired result:

𝑥𝑛+1 = 𝑔(𝑥𝑛) = 𝑔𝑛+1(𝑥0) =
√
𝑎 cth

(︂
2
√
𝑎 cth−1 𝑥𝑛√

𝑎

)︂
=

=
√
𝑎 cth

(︂
2
√
𝑎 cth−1

√
𝑎 cth(2𝑛 cth−1(𝑥0/

√
𝑎)√

𝑎

)︂
=

√
𝑎 cth

(︂
2𝑛+1 cth−1 𝑥0√

𝑎

)︂
. (17)

The resulting exact expression for the 𝑛 iteration of (17) of the function in question (11)
allows:
a). directly establish the convergence of the iterative process (16) to the value of

√
𝑎;

b). set the correspondence of the representation (16) with the form of the solution of the
Schröder equation.
Calculating the limit of the function (16) taking into account the limitation of the hyperbolic

tangent and the monotonic tendency of its value to 1 with the growth of the argument, we see:

lim
𝑛→∞

𝑥𝑛 =
√
𝑎 lim
𝑛→∞

cth

(︂
2𝑛 cth−1 𝑥0√

𝑎

)︂
=

√
𝑎.

If you enter the Schröder notation,

𝑢 = ω(�̃�) = cth−1(�̃�), �̃� = Ω(𝑢) = cth(𝑢), λ = 2, �̃� = 𝑥/
√
𝑎,

then the solution (16) will take the form of a solution to the Schröder equation (7) for λ =
2 > 1. In the theory of the functional Schröder equation, the value of λ < 1 is correlated with
the convergence of the iterative process [10, 11]. The result obtained with λ = 2 is a kind of
«counterexample», due to the asymptotic properties of the conjugating hyperbolic function with
the simultaneous existence of an argument doubling formula for it.

3. Schröder equation: solution method

The Schröder method in solving the functional equation (2),which leads to finding unknown
characteristics in (7), is based on the search (construction) of a transformation topologically
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conjugate to the map in question. Let 𝑇 and 𝑇 be transformations on the real axis. The
transformations 𝑇 : 𝑋 → 𝑋 and 𝑇 : �̃� → �̃� are called conjugate (topologically equivalent,
isomorphic) [13,14] if there exists a mapping ℎ : 𝑋 → �̃�, having the following properties::
a). ℎ is a one-to-one (monotone, reversible) transformation (there is a single inverse differentiable

map ℎ−1 : �̃�→𝑋);
b). for specific points, the compositional relations ℎ∘𝑇𝑥=𝑇∘ℎ(𝑥) or 𝑇𝑥=ℎ−1∘𝑇∘ℎ(𝑥) are executed

for all 𝑥 ∈ 𝑋.
The first condition means preserving the structure of conjugate numeric spaces. The second

condition requires that ℎ uniquely translates the elements of 𝑇 in 𝑇 regardless of the «path» of
the transition.

The transformation conjugate to the mapping 𝑇 : 𝑋 → �̃� will therefore have the form:

𝑇 �̃� = ℎ ∘ 𝑇 ∘ ℎ−1(�̃�).

The meaning of the replacements of variables in the original transformation and the
resulting relation (7) is to find such a conjugating function ℎ(𝑥) (in Schröder notation ω(𝑥)),
which would provide an analytical expression representing the formula of dependence 𝑥𝑛 on the
initial value of 𝑥0 and the number of iterations of 𝑛. The solution of the functional Schröder
equation (2) is focused on finding specific functions ω(𝑥) and Ω(𝑢) = ω−1(𝑢), which should be
interpreted as functions specifying a suitable replacement of variables (conjugation of discrete
dynamical systems) in order to fulfill the relation (7).

In the case of chaotic conjugate maps with a known invariant density of one of them (we
denote it by ρ1(𝑥)) the invariant density of the second mapping ρ2(𝑦) when trajectories of maps
are connected via the function 𝑦 = ℎ(𝑥) is calculated (for example, [14]) as

ρ2(𝑦) =

∞∫︁
−∞

ρ1(𝑥)δ(𝑦 − ℎ(𝑥))𝑑𝑥 =

=

∞∫︁
−∞

ρ1(ℎ−1(𝑢))δ(𝑦 − 𝑢)𝑑ℎ−1(𝑢) = ρ1(ℎ−1(𝑦))|𝑑ℎ−1(𝑦)/𝑑𝑦|. (18)

The expression (18) is significantly simplified if ρ1(𝑥) describes the uniform distribution.
For conjugate maps, the Lyapunov exponents and the eigenvalues of the Perron–Frobenius
operators associated with the maps are numerical invariants [14].

An important problem of mathematical analysis in the book by S. Ulam «Unsolved mathematical
Problems» is to find out the possibility of conjugating arbitrary functions (in particular, polynomials)
that map a segment into itself with piecewise linear maps. As noted in [15, p. 84], «a positive
answer to this question would reduce the study of iterations to a purely combinatorial study of
the properties of piecewise linear functions».

Test example. Schröder’s article [2] is one of the first articles in the mathematical
literature, where a classical example of a mapping with chaotic properties is given, namely,
the logistic mapping with simultaneous recording of an exact trajectory solution. In 1947.
J. von Neumann and S. Ulam first applied this mapping as a pseudorandom number sensor
[16, 17]. This was the reason to call it (in the context of the problem of machine generation
of pseudorandom number sequences) the Ulam-von Neumann map [14].

Starting from the map

𝑥𝑛+1 = 4𝑥𝑛(1− 𝑥𝑛), 𝑥𝑛 ∈ (0, 1), 𝑛 = 0, 1, 2, ..., (19)
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by replacing the variables

𝑥 = ℎ(𝑡) = sin2
π𝑡
2
, 𝑡 = ℎ−1(𝑥) =

2

π
arcsin

√
𝑥, 𝑡 ∈ (0, 1),

we come to the relation:

𝑥𝑛+1 = sin2
π𝑡𝑛
2

= 4 sin2
π𝑡𝑛
2

(︂
1− sin2

π𝑡𝑛
2

)︂
= sin2 π𝑡𝑛 = sin2 (2 arcsin

√
𝑥𝑛) .

On the way to the formula of the new mapping, the double angle formula for the sine plays a key
role. This makes it possible to obtain in parallel, in a compact form, an exact representation for
the coordinates of the points of the trajectory of the original mapping through the initial value
𝑥0 and the number of iterations is 𝑛:

𝑥𝑛 = sin2 (2𝑛 arcsin
√
𝑥𝑛) . (20)

The conjugate for the logistic mapping (19) is the pyramidal mapping (tent map)

𝑡𝑛+1 = 1− |2𝑡𝑛 − 1|, 𝑛 = 0, 1, 2, ...,

having an exact trajectory solution [14]

𝑡𝑛 = 1− 2
{︀
2𝑛−1𝑡0

}︀
(curly brackets denote the operation of allocating the fractional part of a number).

Invariant density. The presence of an exact trajectory solution (formula(20)) allows us
to calculate analytically the invariant density of the chaotic mapping, which is the fixed point of
the associated Perron-Frobenius operator. The invariant density on the unit interval is defined
as follows [18, p. 36]:

ρ(𝑥) = lim
𝑛→∞

1

𝑛

𝑛∑︁
𝑘=1

δ
(︁
𝑥− 𝑔𝑘(𝑥0)

)︁
= lim

𝑛→∞

1

𝑛

𝑛∑︁
𝑘=1

δ(𝑥− 𝑥𝑘). (21)

Here 𝑔𝑘(𝑥0) = 𝑥𝑘 is the 𝑘-th composition of the map. For the logistic mapping (19), we use the
expression for the exact trajectory solution (20). From (21) we get

ρ(𝑥) = lim
𝑛→∞

1

𝑛

𝑛∑︁
𝑘=1

δ(𝑥− 𝑥𝑘) = lim
𝑛→∞

1

𝑛

𝑛∑︁
𝑘=1

δ
(︁
𝑥− sin2

(︀
2𝑘 arcsin

√
𝑥0

)︀)︁
. (22)

Let’s convert the argument of the trigonometric function in (22):

sin2
(︁
2𝑘 arcsin

√
𝑥0

)︁
= sin2

(︂
π · 2𝑘 · 1

π
arcsin

√
𝑥0

)︂
= sin2 (πα𝑘) ,

where

α𝑘 = 2𝑘
1

π
arcsin

√
𝑥0 =

[︂
2𝑘

1

π
arcsin

√
𝑥0

]︂
+

{︂
2𝑘

1

π
arcsin

√
𝑥0

}︂
= [α𝑘] + {α𝑘}

(square and curly brackets denote the operations of selecting the integer part and the fractional
part of the number α𝑘). Then (22) will take the form:
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ρ(𝑥) = lim
𝑛→∞

1

𝑛

𝑛∑︁
𝑘=1

δ
(︀
𝑥− sin2(πα𝑘)

)︀
= lim

𝑛→∞

1

𝑛

𝑛∑︁
𝑘=1

δ
(︀
𝑥− sin2(π{α𝑘})

)︀
. (23)

The irrational value α0 = 1
π arcsin

√
𝑥0 takes values from the interval (0, 1). According to

the criterion of H.Weyl [19,20] on the uniform distribution of fractional fractions of real numbers
in the unit interval sequence

{α𝑘} =

{︂
2𝑘

1

π
arcsin

√
𝑥0

}︂
, 𝑘 = 1, 2, ...

will be evenly distributed in the area of (0, 1). This means that (23) can be represented by a
Riemann integral on a unit interval with an integral function δ(𝑥− sin2(πα))

ρ(𝑥) = lim
𝑛→∞

1

𝑛

𝑛∑︁
𝑘=1

δ
(︀
𝑥− sin2 (π{α𝑘})

)︀
=

1∫︁
0

δ
(︀
𝑥− sin2(πα)

)︀
𝑑α =

=
2

π

π/2∫︁
0

δ
(︀
𝑥− sin2(α)

)︀
𝑑α =

2

π

1∫︁
0

δ(𝑥− ξ) 𝑑ξ

2
√︀
ξ(1− ξ)

=
1

π
√︀

𝑥(1− 𝑥)
, 𝑥 ∈ (0, 1).

Thus, the calculation of the density of the invariant Ulam–von Neumann distribution based on
the exact solution for iterations leads to the result

ρ(𝑥) =
1

π
√︀
𝑥(1− 𝑥)

, 𝑥 ∈ (0, 1),

The correctness of the calculation can be confirmed by differentiating the function ℎ−1(𝑥) =
2
π arcsin

√
𝑥.

Lyapunov exponent. Lyapunov exponent Λ(𝑥0) for logistic mapping as a characteristic
of the degree of sensitivity to initial conditions when iterating the function (19) can be calculated
based on the exact solution 𝑥𝑛 = 𝑥𝑛(𝑥0, 𝑛):

Λ(𝑥0) = lim
𝑛→∞

1

𝑛
ln

⃒⃒⃒⃒
𝑑𝑔𝑛(𝑥0)

𝑑𝑥0

⃒⃒⃒⃒
.

We get according to (16):

Λ(𝑥0) = lim
𝑛→∞

1

𝑛
ln

𝑑

𝑑𝑥0

(︀
sin2 (2𝑛 arcsin

√
𝑥0)

)︀
= ln 2.

Autocorrelation function. For a known invariant density , the expression for the autocorrelation
function of the trajectories of the chaotic map is represented by an integral [14, 18]:

𝑅(𝑚) =

1∫︁
0

𝑥𝑔𝑚(𝑥)ρ(𝑥)𝑑𝑥−

⎛⎝ 1∫︁
0

𝑥ρ(𝑥)𝑑𝑥

⎞⎠2

(averaging is carried out according to the invariant density of the mapping). In the case of the
Ulam-von Neumann logistic mapping we have [14]:

𝑅(𝑚) =

{︂
1/8, 𝑚 = 0,
0, 𝑚 ⩾ 0.

The lack of correlation between the cross sections of the process correlates with the concept
of discrete white noise. This circumstance fuels a special interest in the Ulam–von Neumann
mapping.
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4. Schröder equation: Chaos in Newton’s scheme

Let’s change the sign in the algorithm for extracting the square root according to the
Newton algorithm (10), counting 𝑎 > 0, that is, we present the difference equation as:

𝑥𝑛+1 =
1

2

(︂
𝑥𝑛 − 𝑎

𝑥𝑛

)︂
=

√
𝑎

2

(︂
𝑥𝑛√
𝑎
−

√
𝑎

𝑥𝑛

)︂
, 𝑛 = 0, 1, 2, ...; 𝑥𝑛∈(−∞,+∞). (24)

The iterative scheme (24) demonstrates chaotic behavior, i.e. trajectory is wandering along the
entire (!) numeric axis. To find the exact expression for the trajectories of the mapping (24) we
introduce a continuous monotonic replacement of variables based on trigonometric functions:

𝑥𝑛 =
√
𝑎 · ctg(πν𝑛), ν𝑛 =

1

π
arcctg

𝑥𝑛√
𝑎
, ν𝑛 ∈ (0, 1). (25)

When setting (25) to (24), a situation arises related to the application of the double angle
cotangent formula

ctg(2𝑢) =
ctg2 𝑢− 1

2 ctg 𝑢
=

1

2

(︂
ctg 𝑢− 1

ctg 𝑢

)︂
.

This allows us to obtain from (24), taking into account the periodicity of the cotangent, the
equation

ctg(πν𝑛+1) = ctg (π · 2ν𝑛) = ctg (π[2ν𝑛] + π{2ν𝑛}) ≡ ctg (π{2ν𝑛}) .
Hence follows the difference equation for the variable ν𝑛

ν𝑛+1 = {2ν𝑛} = 2ν𝑛 mod1, 𝑛 = 0, 1, ..., ν𝑛 ∈ (0, 1) (26)

(curly brackets denote the operation of allocating the fractional part of a number). The transformation (26)
represents a chaotic piecewise linear mapping called the Bernoulli shift. The trajectory solution
for it has the form

ν𝑛 = 2𝑛ν0 mod1, 𝑛 = 0, 1, ...

When using induction, the exact solution for the mapping trajectories (24) can be represented
as

𝑥𝑛 =
√
𝑎 ctg

(︂
2𝑛 arcctg

𝑥0√
𝑎

)︂
. (27)

Due to the topological conjugation with chaotic Bernoulli shift, the map (24) also has
chaotic properties. The Lyapunov exponent, being an invariant for conjugate maps, is positive in
this case and is equal to Λ = ln 2. Establishing the conjugacy of the maps (24) and (26) allows
us to determine the type of invariant density of the mapping (24) by simply differentiating the
inverse function in (25):

ρ(𝑥) =

⃒⃒⃒⃒
𝑑

𝑑𝑥

1

π

(︂
arcctg

𝑥√
𝑎

)︂⃒⃒⃒⃒
=

1

π
·

√
𝑎

𝑎+ 𝑥2
, 𝑥∈(−∞,+∞). (28)

The law (28) defines the Cauchy distribution on the entire real numerical axis. It belongs to
the number of «pathological» distributions for which the mathematical expectation and initial
moments are not defined. The appearance of chaos in the (24) scheme can be interpreted as the
result of the formal application of Newton’s difference scheme to calculate the square root of a
negative number in the framework of arithmetic of real numbers.
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5. Representation of chaotic trajectory equations in the Schröder form

Examples of chaotic mappings whose trajectory solutions are reduced to the Schröder
form are presented in the Table. The difference equations for 12 mappings demonstrating chaotic
behavior are written in the first column of the Table. They are obtained by topological conjugation
with piecewise linear chaotic maps. The type of conjugating functions «is read» in expressions for
invariant densities (second column) and exact trajectory solutions (third column) corresponding
to the mappings from the first column.

Chaotic mappings in the Table are divided into four groups.
The first group contains the maps on the unit interval. The logistic mapping «heads» this

group. Two other examples show inventive possibilities in the synthesis of new mappings based
on trigonometric functions.

The second group of chaotic transformations is maps in the form of Chebyshev polynomials
of the first kind on the interval (−1, 1). All Chebyshev polynomials of the first kind can serve
as chaos generators (but with the same invariant distribution!), since they are conjugated with
chaotic piecewise linear maps. In the first mapping from this group «veiled» the formula of the
sine of a double angle, in the second — the formula of the sine of a triple angle, in the third
— the formula for calculating the sine of a fivefold increased angle. The values of the Lyapunov
exponent for these maps are respectively ln 2, ln 3, ln 5.

The third block of the Table presents chaotic mappings, the scope of which extends
to infinite intervals (subintervals). The conjugating functions are chosen in a special way so
that the invariant densities coincide with the known probabilistic distribution laws (Cauchy, 𝐹 -
distributions, 𝑍-distributions), which are widely used in various problems of physics, biophysics,
reliability theory [21]. Obtaining a mapping with an invariant distribution in the form of Cauchy’s
law was discussed in detail above. Other mappings from this block are based on the formula (18).

In the final block of the Table, mappings are presented that include dependence on the
parameter and demonstrate chaotic behavior for the area of its continuous change. These mappings
are constructed on the basis of elliptic Jacobi functions [22].

Recall that the elliptic Jacobi sine sn(𝑢, 𝑘) is defined as the inversion of an elliptic integral
of the first kind [23, chapter 22]:

𝑢 =

sn(𝑢,𝑘)∫︁
0

𝑑𝑡√︀
(1− 𝑡2)(1− 𝑘2𝑡2)

, sn−1
(︀√

𝑥, 𝑘
)︀
=

√
𝑥∫︁

0

𝑑𝑡√︀
(1− 𝑡2)(1− 𝑘2𝑡2)

(0 < 𝑘 < 1). The elliptic Jacobi cosine cn(𝑢, 𝑘) is the inverse of the integral

𝑢 =

1∫︁
cn(𝑢,𝑘)

𝑑𝑡√︁
(1− 𝑡2)(𝑘′2 + 𝑡2)

, cn−1(𝑥, 𝑘) =

0∫︁
𝑥

𝑑𝑡√︁
(1− 𝑡2)(𝑘′2 + 𝑡2)

(𝑘′2 = 1− 𝑘2). Elliptic function dn(𝑢, 𝑘) is inversion of elliptic integral

𝑢 =

1∫︁
dn(𝑢,𝑘)

𝑑𝑡√︁
(1− 𝑡2)(𝑡2 − 𝑘′2)

, dn−1(𝑥, 𝑘′) =

1∫︁
𝑥

𝑑𝑡√︁
(1− 𝑡2)(𝑡2 − 𝑘′2)

.

A complete elliptic integral of the first kind:

𝐾 =

1∫︁
0

𝑑𝑡√︀
(1− 𝑡2)(1− 𝑘2𝑡2)

.
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Table. Characteristics of chaotic mappings with an exact trajectory solution in the Schröder form

Display Invariant density Exact trajectory solution

Displays on a unit interval

𝑥𝑛+1 = 4𝑥𝑛(1− 𝑥𝑛), 𝑥𝑛∈(0, 1),
𝑛 = 0, 1, 2, ...

ρ(𝑥) =
1

π
√︀
𝑥(1− 𝑥)

𝑥𝑛 = sin2(2𝑛 arcsin
√
𝑥0)

𝑥𝑛+1 = 16
(︀
1−√

𝑥𝑛

)︀2, 𝑥𝑛∈(0, 1) ρ(𝑥) =
1

2π𝑥3/4
√︀
1−

√
𝑥

𝑥𝑛 = sin4(2𝑛 arcsin 4
√
𝑥0)

𝑥𝑛+1 =
√
2(1− 𝑥4

𝑛)
1/4, 𝑥𝑛∈(0, 1) ρ(𝑥) =

4𝑥

π
√
1− 𝑥4

𝑥𝑛 =
√︀

| sin(2𝑛 arcsin𝑥2
0|

Chaotic maps based on Chebyshev polynomials

𝑥𝑛+1 = 2𝑥2
𝑛 − 1, 𝑥𝑛∈(−1, 1) ρ(𝑥) =

1

π
√
1− 𝑥2

𝑥𝑛 = cos(2𝑛 arccos𝑥0)

𝑥𝑛+1 = 4𝑥3
𝑛 − 3𝑥𝑛, 𝑥𝑛∈(−1, 1) ρ(𝑥) =

1

π
√
1− 𝑥2

𝑥𝑛 = − sin(3𝑛 arcsin𝑥0)

𝑥𝑛+1 = 16𝑥5
𝑛 − 20𝑥3

𝑛 + 5𝑥𝑛,
𝑥𝑛∈(−1, 1)

ρ(𝑥) =
1

π
√
1− 𝑥2

𝑥𝑛 = sin(5𝑛 arcsin𝑥0)

Chaotic mappings on infinite (semi-infinite) intervals

𝑥𝑛+1=
1

2

(︂
𝑥𝑛−

|𝑎|
𝑥𝑛

)︂
, 𝑥∈(−∞,+∞)

Cauchy distribution

ρ(𝑥) =
1

π
·

√
𝑎

𝑎2 + 𝑥2

𝑥𝑛 =
√
𝑎 ctg

(︂
2𝑛 arcctg

𝑥0√
𝑎

)︂

𝑥𝑛+1 =
4𝑥𝑛

(1− 𝑥𝑛)2
, 𝑥𝑛∈(0,+∞)

𝐹 -distribution
ρ(𝑥) =

1

π
√
𝑥(1 + 𝑥)

𝑥𝑛 = tg2
(︀
2𝑛 arcctg

√
𝑥0

)︀
𝑥𝑛+1 = − ln | sinh𝑥𝑛|,

𝑥𝑛∈(−∞,+∞)

𝑍-distribution
ρ(𝑥) =

1

π
· 1

cosh(𝑥)

𝑥𝑛 =

− ln |ctg (2𝑛 arcctg(exp(−𝑥0)))|

Mappings that generates chaos in the area of continuous parameter change

𝑥𝑛+1 = 4𝑥𝑛(1− 𝑥𝑛)
1− 𝑘2𝑥𝑛

(1− 𝑘2𝑥2
𝑛)

2
,

0 < 𝑥𝑛 < 1

ρ(𝑥)=
1

2𝐾
√︀
𝑥(1−𝑥)(1−𝑘2𝑥)

𝑥𝑛 = sn2
(︀
2𝑛sn−1

(︀√
𝑥0, 𝑘

)︀
, 𝑘
)︀

𝑥𝑛+1 = 1− 2𝑥2
𝑛

(1− 𝑘2𝑥2
𝑛)

2
,

−1 < 𝑥𝑛 < 1

ρ(𝑥)=
1

2𝐾
√︀
(1−𝑥2)(𝑘′2+𝑘2𝑥2)

𝑥𝑛 = −cn2
(︀
2𝑛cn−1 (𝑥0, 𝑘) , 𝑘

)︀
𝑥𝑛+1 =

𝑘′2 − 2𝑘′2𝑥2
𝑛 + 𝑥4

𝑛

𝑘′2 + 2𝑥2
𝑛 − 𝑥4

𝑛

,

𝑘′ ⩽ 𝑥𝑛 ⩽ 1

ρ(𝑥) =
1

𝐾
√︀
(1− 𝑥2)(𝑥2 − 𝑘′2)

𝑥𝑛 = dn
(︀
2𝑛dn−1 (𝑥0, 𝑘

′) , 𝑘′
)︀
,

𝑘′ ⩽ 𝑥0 ⩽ 1
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The periodicity of Jacobi functions makes it possible to reduce expressions for trajectory solutions
of chaotic maps to the Schröder form.

Conclusion

The representation of expressions for the trajectories of iterative processes in Schröder
form allows analytically to assess the presence or absence of the reducibility of a computational
procedure to the solution of a given equation. The solution of the Schröder equation is connected
with the construction of a mapping topologically conjugate to the original one. The article shows
that the method of constructing topologically conjugate maps is very productive. Theoretical and
applied interest in the idea of isomorphic transformations of basic (piecewise linear) endomorphisms,
for which the features of their chaotic behavior (ergodicity, mixing, accuracy) are revealed, is
stimulated by the following reasons:
a). the prospect of constructing new nonlinear chaotic generators for various applications with

various statistical characteristics (setting areas, given exact invariant densities, smooth or
discontinuous iterative functions, Lyapunov exponents, etc.);

b). the possibility of using invariant properties and characteristics of chaotic mappings, the
results of trajectory, multiple and spectral analysis of known mappings in the study of new
mappings;

c). development of analytical methods for solving difference equations «generating» chaos,
direct and inverse problems for the Frobenius-Perron integral equation with a singular
kernel or the corresponding functional equation linking invariant densities and iterative
functions.
Convergence is as important for mappings exhibiting chaotic behavior as it is for regular

processes of computational mathematics. But this convergence has a thermodynamic connotation:
we are talking about convergence to an equilibrium state determined by the establishment of an
invariant distribution in a dynamical system. And in this case, we can talk about the convergence
of the process to «point». But this point is the fixed point of the linear non-self-adjoint Perron-
Frobenius operator associated with the chaotic mapping [24].
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1. Schröder E. Ueber unendlich viele Algorithmen zur Auflösung der Gleichungen. Mathematische
Annalen. 1870;2(2):317–365 (in German). DOI: 10.1007/BF01444024.

2. Schröder E. Ueber iterirte Functionen. Mathematische Annalen. 18701;3(2):296–322 (in
German). DOI: 10.1007/BF01443992.

3. Milnor J. Dynamics in One Complex Variable: Introductory Lectures. 3rd edition. Princeton:
Princeton University Press; 2006. 320 p.

4. Peitgen H-O, Richter PH. The Beauty of Fractals: Images of Complex Dynamical Systems.
Berlin, Heidelberg, New York: Springer-Verlag; 1986. 202 p. DOI: 10.1007/978-3-642-61717-
1.

5. Crownover RM. Introduction to Fractals and Chaos. Boston, London: Jones and Bartlett
Publishers; 1995. 350 p.

6. Schroeder M. Fractals, Chaos, Power Laws: Minutes from an Infinite Paradise. New York:
Dover Publications; 2009. 448 p.

7. Alexander DS. A History of Complex Dynamics: From Schröder to Fatou and Julia. Vol. E24
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