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Abstract. The purpose is to study the periodic regimes of the dynamics for two non-identical predator–prey
communities coupled by migrations, associated with the partial synchronization of fluctuations in the abundance
of communities. The combination of fluctuations in neighboring sites leads to the regimes that include both fast
bursts (bursting oscillations) and slow oscillations (tonic spiking). These types of activity are characterized by a
different ratio of synchronous and non-synchronous dynamics of communities in certain periods of time. In this
paper, we describe scenarios of the transition between different types of burst activity. These types of dynamics
differ from each other not so much in size, shape, and number of spikes in a burst, but in the order of these
bursts relative to the slow-fast cycle. Methods. To study the proposed model, we use the bifurcation analysis
methods of dynamic systems, as well as geometric methods based on the division of the full system into fast and
slow equations (subsystems). Results. We showed that the dynamics of the first subsystem with a slow-fast limit
cycle directly determines the dynamics of the second one with burst activity through a smooth dependence of
regime on the number of predators and a non-smooth dependence on the number of prey. We constructed the
invariant manifolds on which there are parts of dynamics with tonic (slow manifold) and burst (fast manifold)
activity of the full system. Conclusion. We described the scenario for bursting with different waveforms, which are
determined by the appearance of the fast invariant manifold and the location of its parts relative to the slow-fast
cycle. The transitions between different types of burst are accompanied by a change in the oscillation period, the
degree of synchronization, and, as a result, the dynamics becomes quasi-periodic when both communities are not
synchronous with each other.
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Introduction

The study of population biology models for a long time continues to be one of the actively
developing areas of world and domestic science. Works devoted to the study of the dynamics
of the development of biological systems functioning on the principle of predator-prey, parasite-
host, resource-consumer, etc., are becoming increasingly in demand. [1]. The popularity of these
studies is based on the constant expansion of the scope of their application, which contributes to
obtaining new, increasingly complex and interesting results, despite, and possibly due to the rich
history of research and significant elaboration of the corresponding mathematical apparatus.
Thus, the pandemics hanging over humanity lead to the relevance and put at the peak of
popularity the research of ecological and epidemiological models describing the spread of infections
in populations based on the interaction of healthy and infected individuals functioning on the
principle of predator-prey or parasite-host [2, 3].

The study of dynamic models of biological systems, regardless of their field of application,
is based, as a rule, on the apparatus of ordinary differential equations. When studying models
of several interacting communities, nonlinear phenomena that occur during synchronization of
dynamics in different territories are of particular interest [4–6] and related, for example, to
the mechanisms of formation of spatio-temporal heterogeneity, complex dynamic behavior, etc.
[7–12].

One of the most popular areas of nonlinear dynamics is the study of neural activity, which
is described by fast-slow systems. In such systems, so-called explosive oscillations often occur [13–
16]. Over the past decades, various types of such oscillations have been discovered and described,
as well as the bifurcation mechanisms leading to them have been studied in detail [17–21].

This work is one of such studies and is devoted to the study of the population dynamics of
two adjacent non-identical migrationally related communities, each of which is an auto-oscillatory
subsystem and functions according to the principle of «predator-prey» with a Holling type II
functional response [22, 23]. The system under consideration is a modification of the Bazykin
equations [24,25] — one of the basic models of population biology, referred to in foreign literature
as the model Rosenzweig–MacArthur [26,27].

Our earlier study of the synchronization of regular oscillations occurring in the system
under consideration revealed several features [28–30]. Firstly, in the case of a strong connection,
complete synchronization of cycles in different territories is possible, even with a significant
difference between communities [29]. However, this leads to the only possible type of dynamics
— the limit cycle. Secondly, a decrease in the strength of the connection leads to a very rapid
desynchronization, in which each community experiences fluctuations in numbers with their own
rhythm. As a result, in the case of weak communication, synchronization is possible only for
identical communities, and communities that differ little are unable to fully synchronize. In
general, the listed results are in good agreement with the results of other authors. However,
further research has shown that loosely connected non-identical communities are capable of at
least partial synchronization precisely in the case of a large difference between the values of
predator mortality [28]. In addition, as a result of the study, modes were found that combine
both areas with rapid explosive fluctuations (burst activity) and tonic spiking. The emergence
of such modes occurs when the differences between the communities under consideration change
as a result of their partial synchronization. This leads to the formation of a complex phase
trajectory combining sections of synchronous and non-synchronous dynamics at different time
intervals. The degree of synchronization significantly affects the change in the pattern of dynamic
behavior, which in turn affects the change in the type of bursting activity [30].
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In this paper, in addition to generalizing the results obtained earlier, based on the technique
of dividing the complete system into slow and fast subsystems, a detailed study and description
of scenarios for the formation of different types of burst activity affecting the change in the shape
of the burst is carried out.

1. A model of the dynamics of two non-identical communities coupled by migration

The equations of population dynamics of two neighboring non-identical migrationally
related «predator-prey» communities described by the Bazykin equations [24,25] with a Holling
type II functional response, have the form:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

𝑑𝑋1

𝑑𝑡
= 𝐴1𝑋1

𝐾 −𝑋1

𝐾
− 𝐵𝑋1𝑌1

1 +𝐻𝑋1
,

𝑑𝑌1
𝑑𝑡

= −𝐶𝑌1 +
𝑆𝑋1𝑌1
1 +𝐴𝑋1

+𝑀 (𝑌2 − 𝑌1) ,

𝑑𝑋2

𝑑𝑡
= 𝐴2𝑋2

𝐾 −𝑋2

𝐾
− 𝐵𝑋2𝑌2

1 +𝐻𝑋2
,

𝑑𝑌2
𝑑𝑡

= −𝐶𝑌2 +
𝑆𝑋2𝑌2
1 +𝐻𝑋2

+𝑀 (𝑌1 − 𝑌2) ,

(1)

where 𝑋1 and 𝑋2 — the number of prey populations, 𝑌1 and 𝑌2 — the number of predator
populations in the first and second communities, respectively; 𝐾 — stable equilibrium number of
prey populations in each habitat in the absence of a predator; 𝐵 — specific rate of consumption
by the predator population of the prey population at a unit density of both populations; 𝐶 —
natural mortality of the predator; 𝑆/𝐵 — coefficient of processing the prey biomass consumed
by the predator into its own biomass; 𝐻 — the predator handling time; 𝑀 — predator migration
coefficient. The non-identity of the communities is expressed in a significant difference in the
maximum reproduction rates of the prey populations, designated as 𝐴1 and 𝐴2, respectively
(𝐴1 ̸= 𝐴2). This reflects the situation when two fundamentally different types of preys live in
adjacent territories, but having the same food value for a predator.

After replacing the variables: 𝑋𝑖 = 𝐶𝑥𝑖/𝑠, 𝑌𝑖 = 𝐴𝑖𝑦𝑖/𝑏 (𝑖 = 1, 2), the model (1) is converted
to the following system with five parameters:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

𝑑𝑥1
𝑑𝑡

= 𝑥1(1− 𝑎𝑥1)−
𝑥1𝑦1

1 + ℎ𝑥1
,

𝑑𝑦1
𝑑𝑡

= −𝑐1𝑦1 +
𝑐1𝑥1𝑦1
1 + ℎ𝑥1

+ 𝑐1𝑚

(︂
𝑐1
𝑐2
𝑦2 − 𝑦1

)︂
,

𝑑𝑥2
𝑑𝑡

= 𝑥2(1− 𝑎𝑥2)−
𝑥2𝑦2

1 + ℎ𝑥2
,

𝑑𝑦2
𝑑𝑡

= −𝑐2𝑦2 +
𝑐2𝑥2𝑦2
1 + ℎ𝑥2

+ 𝑐2𝑚

(︂
𝑐2
𝑐1
𝑦1 − 𝑦2

)︂
,

(2)

where 𝑥𝑖 and 𝑦𝑖 are the relative numbers of prey and predator, ℎ = 𝐻𝐶/𝑆 — the predator
handling time, 𝑎 = 𝐶/(𝐾𝑆) — prey self-imitation coefficient, 𝑐𝑖 = 𝐶/𝐴𝑖 — relative rate of
decline (loss) of predator numbers (mortality) and 𝑚𝑐𝑖 = 𝑀/𝐴𝑖 — predator migration coefficient
(𝑖 = 1, 2). The article [28] describes the problem statement in more detail and provides an
analytical study of the system (1).

It should be noted that the substitution of variables used in the system (2) leads to the fact
that two non-identical communities with different birth rate of preys (𝐴1 ̸= 𝐴2) become similar to
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communities in which the mortality of predators is different (𝑐1 ̸= 𝑐2). However, in this case, the
relationship between communities are asymmetric (𝑐1𝑚 ̸= 𝑐2𝑚), that is, the rates of outflow of
individuals leaving one territory (emigrants) and the rates of their influx to another (immigrants)
do not coincide, which can be interpreted as the death of predators during migration. However,
due to the difference in mortality of the predator (𝑐1 ̸= 𝑐2), this death will be different when
moving from the first or second community, which directly indicates the most «advantageous»
direction for emigration: the territory where the mortality of the predator or the birth rate of
preys is higher, which is equivalent, according to the variable substitution used.

For further investigation of the dynamics modes arising in the communities, we will take
the following parameter values:

𝑎 = 0.1, ℎ = 0.5, 𝑐1 = 0.002, 𝑐2 = 0.5, 𝑚 = 0.005,

where the values 𝑎, ℎ give rise to a limit cycle in each of the subsystems corresponding to different
communities. The value of 𝑐1 = 0.002 corresponds to the low mortality of predators in the first
territory, and 𝑐2 = 0.5 — high mortality of predators on the second. According to the above
substitution of variables from (1) to (2), a community with low predator mortality has a high
rate of reproduction of prey, and vice versa, high predator mortality is inherent in a community
with a slow rate of growth in the number of prey. Such a situation is possible when the habitats
of preys haves fundamentally different reproductive potential. For example, the preys are rapidly
reproducing small rodents and slowly reproducing large herbivores that live in different territories
(meadow and forest), and the predator moves between them.

In the course of the study, we will vary 𝑎 and 𝑐1 at fixed ℎ = 0.5, 𝑐2 = 0.5, 𝑚 = 0.005,
monitoring the stability of equilibrium points and studying the type of dynamic behavior.

Analytical research has shown that the system (2) has several equilibriums:
• trivial 𝐴0(0; 0; 0; 0) with zero numbers of all populations;
• semi-trivial 𝐴1(1/𝑎; 0; 0; 0), 𝐴2(0; 0; 1/𝑎; 0), 𝐴3(1/𝑎; 0; 1/𝑎; 0) with zero predators;

• semi-trivial 𝐵1

(︁1 + 2𝑚

β1
;
(1 +𝑚)β2
β21

; 0;
𝑐2𝑚β2
𝑐1β21

)︁
and 𝐵2

(︁
0;

𝑐1𝑚β2
𝑐2β21

;
1 + 2𝑚

β1
;
(1 +𝑚)β2

𝑐1β21

)︁
(β1 = 1 − ℎ +𝑚 − 2ℎ𝑚, β2 = β1 − 𝑎 − 2𝑎𝑚) corresponding to zero numbers of one prey
population in different communities;

• three nontrivial 𝐸𝑖

(︁
�̄�
(𝑖)
1 , 𝑦

(𝑖)
1 , �̄�

(𝑖)
2 , 𝑦

(𝑖)
2

)︁
(𝑖 = 0, 1, 2) with non-zero numbers of all populations.

The coordinates of all points were calculated, the conditions of their existence were inves-
tigated and the simplest bifurcations were described [28, 30]. The construction of bifurcation
diagrams was carried out using the open system for the study of dynamic systems MatCont [31],
as well as its own set of programs. To isolate the area of quasi–periodic dynamics, the Lyapunov
exponent maps method was used, as well as the method of dynamic mode maps constructed for
the corresponding Poincaré mapping. The result of this study is summarized in Fig. 1.

In Fig. 1, a lines mark the main local bifurcations of equilibrium points of the system (1),
and several areas corresponding to different types of dynamics are highlighted in color. The line
𝑇𝐶 corresponds to the transcritical bifurcation between the points 𝐵1 and 𝐸1. Between the
lines 𝐻 and 𝐻− there is a region of existence of asymptotically stable limit cycles (the white
region) arising around the equilibrium points marked in parentheses. When crossing the line
𝐻− cycles lose stability and relaxation limit cycles are formed, also known as fast-slow cycle, or
canard [21,32–34]. In Fig. 1, d–e shows examples of the transition of limit values cycles 𝐿1 and
𝐿2 in fast-slow cycles 𝐶1 and 𝐶2, which differ greatly in the increased range of oscillations, as
well as the structure shown in the second column. The phase portraits show that, in contrast
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Fig. 1. a — Bifurcation diagram of the system (2) and b — its enlarged fragment. Point 𝐵1 or 𝐸1 is stable
above the line 𝐻. The gray domain is the absence of oscillations (the point 𝐴0 is asymptotically stable); white
domain 𝐶 is the region of stable limit cycles; green domain 𝑆 corresponds to burst dynamics; magenta domain 𝑄
is quasi-periodic dynamics. Lines 𝐻, TC and HB are Andronov–Hopf, transcritical and homoclinic bifurcations
respectively; 𝑆𝐵 is the birth of burst dynamics; KB and TB are the emergence of quasi-periodic dynamics. c
— map of dynamic regimes in region II where color coded is the cycle period of the Poincaré mapping. d–f —
examples of limit cycles in system (2) (color online)
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to the limit cycles, 𝐿1 and 𝐿2, cycles 𝐶1 and 𝐶2 «stick» to the marked branch of the parabola
(𝑀𝑆

𝑒𝑞) and one of the coordinate axes (𝑂𝑦2), and also contain sections with fast (two or more
arrows) and slow (one arrow) movement phase points.

When approaching the line HB, relaxation cycles increase their scope, the oscillation period
increases indefinitely and the maximum canard is formed. At the intersection of this line, the
cycle merges with the homoclinic loop, originating from the point 𝐴1 or 𝐴2 (depending on the
value of 𝑐1), and quickly collapses. As a result, there are no fluctuations in the gray area with
small values of the parameter 𝑎, and the number of all communities is slowly falling. With
parameter values from the narrow yellow area in Fig. 1, a a long-period cycle is formed 𝐿(𝐵2)

around the semi-trivial point 𝐵2. An example of such a cycle is shown in Fig. 1, f. This cycle is
characterized by a zero number of prey in the first territory (𝑥1 = 0), as well as strong and short
bursts of numbers after long periods of their extremely low values. Shown in Fig. 1, f the cycle
is close to its maximum size and the phase portrait shows that it passes in the vicinity of the
saddle point 𝐴2, and with a small disturbance merges with the separatrix of the point 𝐴2 and
quickly collapses.

In the green area — the 𝑆 area in Fig. 1, a — a relaxation cycle is implemented, as well as
multi-frequency periodic modes (Fig. 2), combining both slow tonic changes in numbers and fast
burst activity. These modes on population dynamics graphs have diamond-shaped, triangular
(Fig. 2, a), truncated trapezoidal (Fig. 2, b) or more complex shapes (Fig. 2, c), and differ in
the number of turns on the fast burst diversity. The number of turns increases as we approach
the area quasi-periodic dynamics 𝑄 (fig. 2, d–f ).

In the magenta area 𝑄 (see Fig. 1, a) the model trajectory tightly covers such sets as
the torus (at the intersection of the line TB) (see Fig. 2, f ) or the Klein bottle (lines KB) (see
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Fig. 2. Examples of bursting in system (2) from region 𝑆 (fig. 1) which differ in the waveform of burst
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fig. 2, d, e), and periods of fluctuation of communities in different territories are connected by an
irrational ratio. This type of dynamics was previously considered through analysis of Poincare
mapping, [30]. In this case, the trajectory forms closed invariant curves on a specially selected
cutting plane, which, in the case of dynamics on a torus or a Klein bottle, have different mutual
positions. It is found that in the first case the curves are nested into each other, and in the second
— are located far enough from each other.

Further, as 𝑐1 grows, only a quasi-periodic type of dynamics is observed, and only at
𝑐1 → 𝑐2 complete synchronization occurs. Chaotic modes at the accepted parameter values were
not detected in this model.

Based on numerical experiments, it can be argued that the regions of 𝑆 and 𝑄 (see Fig. 1, a)
are heterogeneous. In the first area, there is an alternation of modes that differ in the order of the
fast burst part of the cycle relative to the slow one. In the area of 𝑄 the region of quasi-periodic
dynamics (in Fig. 1, c marked in black) alternate with synchronization tongues (coded by color)
— areas of parameters leading to strictly periodic dynamics. The number on the map dynamic
modes (see fig. 1, c) indicates the number of full cycle revolutions required to return the model
trajectory to the starting point of the phase space. Outside of tongues, this number is infinitely
large.

The rates of change of the variables 𝑦1 and 𝑦2 are determined by the parameters 𝑐1 and
𝑐2, taking into account the selected parameter values 0<𝑐1≪ 𝑐2< 1, therefore, we can assume
that 0<𝑐1≪ 1 — small parameter. This allows us to consider this model as a fast-slow system.
In the sense that the first two equations constitute a slow subsystem in which only a slow cycle
is observed, and the last two are fast, in which fluctuations with a period much longer than that
of the slow subsystem are possible. Let’s use the methodology of studying fast-slow systems to
study the system (2).

In the study of such dynamical systems, geometric methods are often used based on the
separation of the complete system (2) into fast and slow equations (subsystems). In this case,
the variation of the slow variable, which is a bifurcation or scanning parameter, in the extreme
case, makes it possible to simplify the search for bifurcations of equilibrium states leading to
the birth of limit cycles of a fast (two-dimensional) subsystem considered in the limit 𝑐1 = 0.
Also, changing the scanning parameter for small 𝑐1 ̸= 0 makes it possible to construct a slow
critical manifold, being a skeleton for various types of activities in a complete fast-slow model
(2). It is obvious that the fast subsystem of the model (2) has at least two such manifolds: a
rest manifold and a spiking manifold on which fast bursts of numbers occur (spikes) shown in
Fig. 2. Moreover, the synergy of fast and slow interactions can lead to very atypical bifurcation
phenomena, possible only in the full model [17,35,36].

Further, in accordance with the geometric method, we investigate the bifurcations arising
in each of the subsystems and compare them with the modes of the complete system.

2. Bifurcations in the slow and fast subsystem

Consider subsystems, each of which corresponds to a local community independently of
each other. For a deeper study of the processes occurring in the first community, we will assume
that the number of prey and predators of the second community changes quite slowly and has
little effect on the dynamics of the first. In this case, the model (2) is transformed into a system
of the form:
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⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

𝑑𝑥1
𝑑𝑡

= 𝑥1(1− 𝑎𝑥1)−
𝑥1𝑦1

1 + ℎ𝑥1
= 𝑓1(𝑥1, 𝑦1),

𝑑𝑦1
𝑑𝑡

= 𝑐1

(︂
−𝑦1(1 +𝑚) +

𝑥1𝑦1
1 + ℎ𝑥1

+
𝑐1𝑚

𝑐2
𝑦2

)︂
= 𝑐1𝑔1(𝑥1, 𝑦1, 𝑦2),

𝑑𝑥2
𝑑𝑡

=
𝑑𝑦2
𝑑𝑡

= 0.

(3)

In the system (3) there is a small parameter 𝑐1 (0 < 𝑐1 ≪ 𝑐2 < 1), which enters the second
equation twice. The presence of a small 𝑐1 leads to, that the influence of the «frozen» variable
𝑦2 on the system is much weaker than 𝑦1 and 𝑥1.

For the second subsystem, similarly, we can write:⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

𝑑𝑥1
𝑑𝑡

=
𝑑𝑦1
𝑑𝑡

= 0,

𝑑𝑥2
𝑑𝑡

= 𝑥2(1− 𝑎𝑥2)−
𝑥2𝑦2

1 + ℎ𝑥2
= 𝑓2(𝑥2, 𝑦2),

𝑑𝑦2
𝑑𝑡

= −𝑐2𝑦2 +
𝑐2𝑥2𝑦2
1 + ℎ𝑥2

+ 𝑐2𝑚

(︂
𝑐2
𝑐1
𝑦1 − 𝑦2

)︂
= 𝑔2(𝑥2, 𝑦2, 𝑦1).

(4)

The system (4) significantly depends on the parameter 𝑦1, because 𝑐22𝑚/𝑐1 ≫ 𝑐1.
Let’s call the system (3) leading or strong, and (4) — driven or weak. We show that a

strong system (3) determines the dynamics (4), as well as the joint dynamics of the complete
system (2).

To begin with, let’s consider bifurcations in the subsystem (3) when changing the parameter
𝑦2. The equilibrium states of this subsystem lie in the plane (𝑥1, 𝑦1), at the intersection of two
nullcline 𝑓1(𝑥1, 𝑦1) = 0 and 𝑔1(𝑥1, 𝑦1, 𝑦2) = 0, where 𝑦2 is parameter.

As is known [17, 33], for systems of the form (3) in the limiting case 𝑐1=0 equation
𝑓1(𝑥1, 𝑦1)= 0 sets a critical manifold in the phase space or slow curve: 𝑀𝑒𝑞 =

{︀
(𝑥1, 𝑦1) ∈ 𝑅2

⃒⃒
𝑓1(𝑥1, 𝑦1) = 0

}︀
∪

{𝑥1 = 0, 𝑦1 ⩾ 1}. Note that it becomes a surface for the complete system (2). This piecewise curve
contains a stable 𝑀𝑆

𝑒𝑞 (the upper part of the parabola in Fig. 3, a) and unstable 𝑀𝑈
𝑒𝑞 branches

(lower part of the parabola and part of the line 𝑥1 = 0). In Fig. 3, a these branches are shown
by solid and dotted lines, and act as the basis of the relaxation cycle in the leading system (3)
at sufficiently small 𝑐1 ̸= 0. As shown in Fig. 3, a one part of the cycle lies on a stable branch of
the manifold 𝑀𝑆

𝑒𝑞, other on 𝑀𝑈
𝑒𝑞.

The point ⟨z⟩ in Fig. 3, a and fig. 5 corresponds to the center «mass» of the limit cycle
(the average value of the coordinates) and is found from the standard formula [36]:

⟨z⟩ = 1

𝑇

𝑇∫︁
0

φ(𝑡)𝑑𝑡,

where z = φ(𝑡) is an equation describing the change in the coordinates of the limit cycle with a
period of 𝑇 . For the system (3) z = (𝑥1, 𝑦1), for (4) z = (𝑥2, 𝑦2). When calculating this integral,
the numerically obtained coordinates of the points of the limit cycle on one turn are considered,
their coordinates are summed, and the result is divided by the number of points lying on cycle.

Fig. 3, a shows a canard that occurs in the system (3) with a fixed value of the «frozen»
variable 𝑦2. Moreover, this cycle is accurate to small order 𝑂(𝑐1) coincides with the periodic
solution of the complete system (2) at the specified parameter values. The number of arrows in
Fig. 3, a indicates the speed of movement along canard in such a way that in the horizontal
direction the cycle contains slow movement, and in the vertical direction — fast.
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Fig. 3. a — Nullcline of system (3) with a slow-fast limit cycle of system (2) (canard 𝐶1) lying on top of nullcline.
b and c — Bifurcation diagram of system (3) and (4) with variation of the parameter 𝑦2 and 𝑦1, respectively.
The gray bars highlight the range of the limit cycle 𝐶1 falling into different parts of the diagram b and c. d —
Dynamics of the full system (2) corresponding to cycle 𝐶1 (color online)

For a small 𝑐1 ̸= 0, the variation of the parameter 𝑦2 moves the second nullcline defined by
the equation 𝑔1(𝑥1, 𝑦1, 𝑦2) = 0, relative to the equilibrium point, independent of the values of 𝑦2.
Along with it, the equilibrium shifts. When 𝑐1 = 0 the nontrivial point 𝑧 = (�̄�1, 𝑦1) coincides with
the vertex of the parabola 𝑓1(𝑥1, 𝑦1) = 0, and when 𝑐1 > 0 it is shifted inside the loop. Fig. 3, b
shows the dependence of the coordinates (�̄�1) of the equilibriums of the system (3) on 𝑦2. At a
certain value of 𝑦2, a bifurcation occurs in the system (3) Andronov–Hopf (point H), and a stable
limit cycle is born from a stationary point. With the growth of the parameter, it increases its size
(the amplitude of the oscillations). To show this, in Fig. 3, b shows the dependence of the extreme
values of the number of prey (max(𝑥1) and min(𝑥1)) of the slow subsystem (3), as well as the
average value of the coordinates of the cycle ⟨𝑥1⟩ when changing 𝑦2. At the point designated as
«canard explosion», the cycle rapidly increases in size and «sticks» (tends) to the corresponding
branches of the slow curve are 𝑀𝑒𝑞, and the center of the cycle moves significantly away from
the stationary point. As a result, the phase portrait of the subsystem (3) with acceptable values
𝑦2 > 0 represents a canard that practically does not change even with significant variations of
the «frozen» variable 𝑦2.

Unlike a strong community (3), a weak community (4) significantly depends on the parameter
𝑦1. Consider the local bifurcations of the system (4) depending on 𝑦1. The coordinates of the
stationary points �̄�2 and 𝑦2 are easy to calculate as the solution of the system{︃

𝑓2(�̄�2, 𝑦2) = 0,

𝑔2(�̄�2, 𝑦2, 𝑦1) = 0.

Fig. 3, c shows the dependence of stationary points on the parameter 𝑦1. This dependence
is represented by the line 𝑀0

𝑒𝑞 =
{︀
(𝑦1, 𝑦2) ∈ 𝑅2

⃒⃒
𝑦2 = 𝑐2𝑚𝑦1/(𝑐1(1 +𝑚)), 𝑥2 = 0

}︀
and the curve

𝑀1
𝑒𝑞 =

{︀
(𝑦1, 𝑦2) ∈ 𝑅2

⃒⃒
(𝑐2𝑚ℎ𝑦1−𝑐1((1+𝑚)ℎ−1)𝑦2)

2−𝑐1𝑐2𝑚(𝑎+ℎ)𝑦1+𝑐21((1+𝑚)(1+ℎ)−1), 𝑦2 =
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0, 𝑥2 > 0
}︀
. They intersect at the point LP, corresponding transcritical bifurcation, in which the

coordinates of the stationary points coincide and stability is exchanged. To the right of it, the
points are stable, located on a straight line, but with zero stationary number of prey of a weak
community (�̄�2 = 0). On the left, points on a parabola with a nonzero stationary number of prey
are stable (�̄�2 > 0). At the second intersection point, only the numbers of the predator coincide,
but not the prey. Therefore, there are no qualitative changes there. We show that the sets 𝑀0

𝑒𝑞

and 𝑀1
𝑒𝑞, as well as 𝑀𝑒𝑞, can be considered as an approximation of a part of invariant manifolds

of the complete system (2).
From the constructed bifurcation diagrams, it is easy to understand that periodic changes

in the parameter 𝑦1 caused by the fast-slow cycle (canard) in the leading system (3) provoke
fluctuations in the variable 𝑦2 in the driven system (4). As a result, the dynamics of the complete
system (2) is significantly determined by where the fluctuations of 𝑦1 fall on this chart. There
are several possible options for the location of the variation 𝑦1 in this diagram, corresponding to
fundamentally different modes of the system (2).

First, if the variation 𝑦1 lies to the right of the LP point, then the dynamics of the phase
variable 𝑦2 strictly follows all changes 𝑦1 (see Fig. 3, c). As already shown, the leading system
can generate only periodic fluctuations, so the dynamics of predator numbers in both areas is
in-phase (see Fig. 3, d). The number of prey of 𝑥2 in the driven system turns out to be zero in
the asymptotic case. This limit a cycle (canard 𝐶1) is formed around a semi-trivial stationary
point 𝐵1. In Fig. 3, a it is shown that when projected onto a plane (𝑥1, 𝑦1) the cycle tends to the
branches of the manifold 𝑀𝑒𝑞, and when projected onto the plane (𝑦1, 𝑦2) — lies on the section
of the line 𝑀0

𝑒𝑞 (see Fig. 3, c).
Secondly, the parameter 𝑦1 can change so that the phase points are located to the left

of the LP point on the diagram. In this case, the cycle in the leading system provokes anti-
phase fluctuations in the driven system with a non-zero number of prey 𝑥2. An example of such
dynamics is shown in Fig. 4, a, where the attractor of the complete system (2) lies only on the
section of the parabola 𝑀1

𝑒𝑞. The right shows how the values of the phase variables 𝑦1 and 𝑦2
change over time, as well as the location of the phase curve on one of the branches of a slow
surface when projected into a three–dimensional subspace (𝑥1, 𝑥2, 𝑦2). In the complete system
(2), this cycle is formed around a nontrivial point 𝐸1.

Thirdly, the variation 𝑦1 can fall on both the left and right side of the LP point of the
bifurcation diagram. As a result, the cycle of the leading system will generate alternating sections
of in-phase and anti-phase dynamics in the driven system. An example of this behavior is shown
in Fig. 4, d–f. During the period of in-phase dynamics, the phase curve lies on the surface of
the plane 𝑥2 = 0, and during the period of anti-phase — outside this plane (see Fig. 4, d), and
also partially on the slow surface 𝑀𝑆

𝑒𝑞 and on an unknown manifold to be found (see fig. 4, f ).
In this case, obviously, there is a hysteresis loop such that an increase or decrease in the value
of 𝑦1 leads to the movement of phase points along different equilibriums of the driven system
(branches) intersecting at the LP point (see Fig. 4, d). When the value of 𝑦1 decreases, there is
movement along the line 𝑀0

𝑒𝑞, including to the left of the LP point. Then there may be a small
surge in numbers prey and predator on the second site, obviously unrelated to bifurcations in
the driven system, since it is observed far from the point H. In this case, the trajectory goes
to the parabola 𝑀1

𝑒𝑞, and the variable 𝑦1 goes to growth until it reaches the LP point. Then it
goes back to the straight line 𝑀0

𝑒𝑞. In this case, the phase trajectory moves clockwise along the
triangle formed by the two branches of the manifold.

In the last two cases, the dynamics in the anti-phase part of the cycle it changes significantly
(there is a bursting activity) depending on how close the variation 𝑦1 gets to the point H, as well
as on other qualitative changes occurring in the driven system (4). In the examples given above,
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Fig. 4. a, d — Bifurcation diagrams of system (4) with a change in the parameter 𝑦1 on which the phase points
of the periodic solution of system (2) are plotted. b, e — Examples of dynamics for system (2). c, f — Location
of phase points with respect to critical manifolds (color online)

the limit cycle of the driven system (4) is born (disappears) at two points H lying on a stable
branch of stationary states 𝑀1

𝑒𝑞. However, with a sufficiently small 𝑐1, the oscillation span in the
leading system (3) independently, it never reaches this point. Therefore, with sufficiently small
𝑐1 (parameters from the 𝐶 area in Fig. 1, a) bursting activity based on the driven system cycle
can only be part of the transition process if the initial value 𝑦1(0) is located between two points
H of the Andronov–Hopf bifurcation (see Fig. 4, a or d).

When leaving the 𝐶 region, that is, when increasing 𝑐1, the right point H shifts closer to
LP, and so much so that the limit cycle of the leading system captures both the LP point and
H. This limit cycle increases its scope so much that the phase points of the system (4) approach
an unstable equilibrium and remain in its vicinity for quite a long time. This is indicated by the
fact that the middle point of the ⟨𝑦⟩ cycle tends to the saddle point. At this moment, the cycle
merges with separatrices originating from stationary points and is completely destroyed due to
homoclinic bifurcation, marked in Fig. 5 point HB.

In the above diagrams using curves max(𝑦2) and min(𝑦2) (see Fig. 5) it is possible to
trace how the size of the limit cycle of the driven system (4) changes at different values of the
parameters 𝑎 and 𝑐1. This approach forms the basis of the so-called continuation technique by
parameter. The branch of the curve, denoted by ⟨𝑦2⟩ in Fig. 5, shows the dependence of the
average coordinates of the limit cycle. Note that as 𝑦1 decreases, the middle branch of ⟨𝑦2⟩
approaches to the bottom min(𝑦2).

Thus, on the upper branch of the stationary states 𝑀1
𝑒𝑞 of the driven system (4), a limit

cycle is formed, which can be considered as the basis of the bursting dynamics of the complete
system (2). When the value of 𝑦1 changes, the size and location of the limit cycle of the driven
system changes (4). It is easy to understand that in the phase space of the complete system (2),
each of these cycles lies on a smooth surface of a parabolic shape originating from the point H.
This surface can be considered as an approximation parts of the invariant manifold of the system
(2), on which there are rapid bursts of predator and prey numbers (fast manifold). At least, the
part of it on which the damped fast periodic movements lie. Denote it by 𝑀𝑃𝑂. The presence of
this variety makes it possible to immediately explain the mechanism of the birth of triangular
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burst shown in Fig. 5, a. In the case of such burst, first the trajectory slowly moves down along
the line 𝑀0

𝑒𝑞 (the rest manifold). Then, having reached the minimum value of 𝑦1, the trajectory
«jumps» to the fast manifold 𝑀𝑃𝑂 (to the left of the point H). This jump is accompanied
by a rapid growth of the variable 𝑥1. On this manifold, the trajectory makes several turns,
corresponding only to damping fluctuations of phase variables. Let’s denote this part of the
dynamics as 𝑆1. Having reached the point H, the trajectory leaves the fast manifold and ends
up on the rest manifold 𝑀1

𝑒𝑞. When passing through the LP point the trajectory moves to a line
𝑀0

𝑒𝑞, and the cycle closes.
In the second and third examples in Fig. 5, b–c bursts with a truncated diamond-wave

shape arise, which indicates a slightly different mechanism for the formation of fast oscillations
and the existence of another branch of a fast manifold. In addition, the transition from the fast
manifold 𝑀𝑃𝑂 to the rest manifold 𝑀1

𝑒𝑞 occurs significantly to the right of the point H in all
cases. In the second example, on a fast manifold, two sections of the dynamics 𝑆1 и 𝑆2 connected
by the canard 𝐶 (see Fig. 5, b). The section 𝑆1 consists of damped fast fluctuations at maximum
values of 𝑥1 ≫ 0, 𝑆2 consists of divergent fluctuations at minimum values of 𝑥1 ≈ 0 (see Fig. 5, b).
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From this observation, it can be assumed that the birth of rapid explosive oscillations
depends not only on the fact of the growth or fall of the 𝑦1 variable of the strong subsystem
and its absolute values, but also on the values of the variable 𝑥1. So it is immediately clear that
the damped fast fluctuations of 𝑆1 occur only at sufficiently high values of 𝑥1 when the variable
𝑦1 is growing. At low or even close to zero values of 𝑥1, there are no fluctuations or divergent
fluctuations of 𝑆2 are born, and the value of 𝑦1 only decreases (see Fig. 5, b). From this we can
assume that the fast manifold 𝑀𝑃𝑂 is not the only one, or at least it has an additional branch
on which fast divergent oscillations are realized.

This observation was made earlier, in the works [28,30], however, the existence of a second
branch of the fast manifold has not been proved there. To verify this statement, we will allocate
another subsystem in which the value 𝑥1 is a constant value:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

𝑑𝑥1
𝑑𝑡

= 0,

𝑑𝑦1
𝑑𝑡

= 𝑐1

(︂
−𝑦1(1 +𝑚) +

𝑥1𝑦1
1 + ℎ𝑥1

+
𝑐1𝑚

𝑐2
𝑦2

)︂
= 𝑐1𝑔1(𝑥1, 𝑦1, 𝑦2),

𝑑𝑥2
𝑑𝑡

= 𝑥2(1− 𝑎𝑥2)−
𝑥2𝑦2

1 + ℎ𝑥2
= 𝑓2(𝑥2, 𝑦2),

𝑑𝑦2
𝑑𝑡

= −𝑐2𝑦2 +
𝑐2𝑥2𝑦2
1 + ℎ𝑥2

+ 𝑐2𝑚

(︂
𝑐2
𝑐1
𝑦1 − 𝑦2

)︂
= 𝑔2(𝑥2, 𝑦2, 𝑦1).

(5)

In the system (5) there is also a small parameter 𝑐1 (0 < 𝑐1 ≪ 𝑐2 < 1). However, due
to the nonlinear dependence of the derivative 𝑦1 on the value of the «frozen» variable 𝑥1, the
influence of 𝑥1 on the dynamics and bifurcations of the system (5) should differ significantly from
the considered dependencies of the behavior of systems (3) and (4) from the variable 𝑦1.

Let’s follow the typical bifurcations of the system (5) at parameter values corresponding
to the bursting activity in the system (2) with complex waveforme consisting of a truncated
rhombus and a triangle, at 𝑎 = 0.11, 𝑐1 = 0.0035 (the other parameters are similar to those used
above). In this case, in the complete system (2) there are damped oscillations on the manifold
𝑀𝑃𝑂, as well as a series of damped and divergent oscillations on the desired invariant the set
𝑀1

𝑃𝑂.
The system (5) has a single nontrivial equilibrium state 𝐸*(𝑦1, �̄�2, 𝑦2), which can be found

as a solution to a system of equations:⎧⎪⎨⎪⎩
𝑔1(𝑥1, 𝑦1, 𝑦2) = 0,

𝑓2(�̄�2, 𝑦2) = 0,

𝑔2(𝑦1, �̄�2, 𝑦2) = 0.

The nature of the stability of the equilibriums of the system (5) is shown in Fig. 6, a,
where the solid line corresponds to the dependence of the nontrivial stationary number 𝑦1 on
the value of the parameter 𝑥1, and the dotted line — to the trivial state equilibrium (0, 0, 0).
At the point H+ there is a supercritical, and at H−— subcritical bifurcation Andronov–Hopf.
To the left of H+ curve 𝑦1(𝑥1) is approaching to 𝑦1 = 0 on the positive side, to the right of
H− it is approaching 𝑦1 = 0 from the negative region. The has a discontinuity at the point
𝑥*1 =

(︀
ℎ+ 2𝑚ℎ− 1−𝑚

)︀⧸︀(︀
(1− ℎ)(ℎ+ 2𝑚ℎ− 1)

)︀
, which together with the points H+ and H−

can be considered as some threshold values 𝑥1 that determine the type of dynamics. In addition,
the system (5) has a semi-trivial equilibrium state (0, 1/𝑎, 0), the coordinate 𝑦1 = 1/𝑎 of which
lies above these lines and is not shown in Fig. 6, a. Separatrices originating from a trivial and
semi-trivial point generate some regions of attraction of cycles in the system (5).
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Fig. 6. a — Bifurcation diagram at 𝑎 = 0.11, 𝑐1 = 0.0035 and phase portraits sketches of system (5). b — Transient
dynamics of system (5) when moving towards a stable limit cycle 𝐿𝑆 and c — from an unstable limit cycle 𝐿𝑈 .
d — Approximation of fast manifolds of system (2) by dynamics (cycles) of system (5) (color online)

It is easy to show that to the right of the point 𝑥*1 the derivative is 𝑑𝑦1/𝑑𝑡 > 0 for any
𝑥2 > 0 and 𝑦2 > 0, and it does not matter whether they change monotonically or fluctuate. As a
result, if 𝑥1 > 𝑥*1, then the variable 𝑦1(𝑡) can only grow indefinitely at 𝑦1(0) > 0 (or rather, for
the initial conditions above, see Fig. 6, a). But since there is a small parameter 𝑐1 in the system
(5), the values of 𝑦1 change so slowly that, before leaving the neighborhood of the unstable cycle
𝐿𝑈 , the phase the curve makes a large number of turns in its vicinity. The distance between the
turns slowly increases as 𝑦1 grows. With time the trajectory contracts to the beam, and all phase
variables begin to increase indefinitely and monotonically (Fig. 6, c). It can be shown that up
to small order 𝑂(𝑐1) this beam coincides with the slow manifold 𝑀1

𝑒𝑞 or 𝑀0
𝑒𝑞 of the system (4),

since these curves coincide with the slow curves of the system (5) at 𝑐1 = 0 and are obviously
preserved at small disturbance 0 < 𝑐1 ≪ 1.

Fig. 6, c shows the dynamics of the system (5) when 𝑥1 = 3.5, where the arrows show the
directions of the trajectory. It can be seen from the figure that the trajectory is wound on the
surface of the parabolic shape 𝑀𝑃𝑂, the form of which does not depend on the initial conditions.
In this case, it does not matter where to start the integration (outside or inside this figure) or
how far from the 𝐿𝑈 cycle. The trajectory is quickly attracted to this surface, and then slowly
moves along it until it pulls together to the beam 𝑀1

𝑒𝑞.
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For 𝑥1 < 𝑥*1, the derivative is 𝑑𝑦1/𝑑𝑡 < 0 for any 𝑥2 > 0 and 𝑦2 > 0. Therefore, if 𝑥1 < 𝑥*1,
then the variable 𝑦1(𝑡) only drops to its stationary value, determined by the dependency 𝑦1(𝑥1).
To the right of the point H+, a stable limit cycle 𝐿𝑆 is born, and the variables begin to experience
fluctuations. As the value of 𝑦1 decreases slowly enough (due to the small parameter 𝑐1), the
phase trajectory is wound onto a surface that has the shape of a one-sheeted hyperboloid, not
a paraboloid, as one might expect (fig. 6, b). The trajectory transition to this surface occurs as
follows. For small 0 < 𝑥1 < 𝑥*1, there is some critical value of the variable 𝑦*1 such that for 𝑦1 > 𝑦*1,
the variables 𝑦1, 𝑥2 and 𝑦2 fall monotonically enough, and the trajectory of the system (5) moves
along 𝑀0

𝑒𝑞. When this value is reached and overcome, that is, at 𝑦1 < 𝑦*1, the values of 𝑥2 and
𝑦2 jump in the system (5), which leads to fluctuations. As the values of 𝑦1 fall in the system (5),
first there are damped oscillations 𝑥2 and 𝑦2, which under any initial conditions do not reach the
curve 𝑀1

𝑒𝑞, and then they are replaced by divergent ones. Moving towards a stable limit cycle 𝐿𝑆 ,
the trajectory makes a large number of turns along the surface of 𝑀1

𝑃𝑂, the distance between
them decreases as it approaches the 𝐿𝑆 cycle. Moreover, numerical calculations show that part of
the dynamics of the complete system (2), corresponding to damped and divergent oscillations, is
sufficient exactly coincides with the two shown in Fig. 6, d by system solutions (5). For example,
if the starting point of the systems is (5) and (2) lies on the slow manifold 𝑀0

𝑒𝑞 at 𝑦1(0) > 𝑦*1
and 𝑥1 = 0, then their dynamics will coincide up to small in terms of divergent oscillations by
𝑀1

𝑃𝑂 until the transition of the trajectory of the system (2) to the manifold 𝑀𝑃𝑂, while the
trajectory of the system (5) will continue to move towards the 𝐿𝑆 cycle. Similarly for the initial
conditions taken on the manifold 𝑀𝑃𝑂, the dynamics of (5) and (2) coincide up to small even
when switching to branches of a slow manifold 𝑀1

𝑒𝑞 and 𝑀0
𝑒𝑞.

Thus, the invariant manifolds of the system (5) can be considered as a more accurate
approximation of the fast manifold of the system (2) formed by the sections of the trajectory of
the system (5) when moving to the limit cycle 𝐿𝑆 or the movement from the cycle 𝐿𝑈 . They
represent two two-dimensional «intersecting» surfaces: a paraboloid 𝑀𝑃𝑂 and a one-sheeted
hyperboloid 𝑀1

𝑃𝑂.
For an approximate construction of a parabolic surface 𝑀𝑃𝑂 (Fig. 7, b), it is sufficient

to consider several trajectories with starting points from different parts of the unstable cycle
𝐿𝑈 and express the coordinates of the phase points in terms of cylindrical coordinates. Then
sort the obtained coordinates of the phase points by the growth (or fall) of the value 𝑦1 and
interpolate the obtained points, which we will use as a parametrization of the desired surface. In
Fig. 6, c one of the trajectories used is given. Each additional trajectory it will fill in the gaps
in places where the distance between the turns increases. Parameterization of the hyperboloid
𝑀1

𝑃𝑂 (Fig. 7, a) is performed in a similar way. However, the following values are selected as
starting points 𝑦1(0) and 𝑦2(0) on the slow curve 𝑀0

𝑒𝑞 (𝑥2(0) = 0), at which the trajectory of the
system (5) is as close as possible to the slow curve 𝑀1

𝑒𝑞 at the point of transition from damped
oscillations to divergent ones. At the same time with this, it is necessary that the transition from
monotonous dynamics to fluctuations (a jump from the curve 𝑀0

𝑒𝑞 to the surface 𝑀1
𝑃𝑂) occurred

at the maximum possible value of 𝑦1. Thus , the value is estimated 𝑦*1.
Fig. 7, a–c shows the view of the obtained surfaces. It is easy to notice that the paraboloid

𝑀𝑃𝑂 intersects the slow curve 𝑀1
𝑒𝑞 at its vertex (point H). While for the surface 𝑀1

𝑃𝑂 the curve
𝑀1

𝑒𝑞 acts as a kind of axis of «symmetry» and does not intersect with it. At the same time, the
one-sheeted hyperboloid 𝑀1

𝑃𝑂, apparently, concerns the curve 𝑀0
𝑒𝑞 at the point 𝑦*1 corresponding

to the transition from monotonic dynamics to oscillations in the system (5). In addition, in
Fig. 7, a–c it is demonstrated that the sections of the system dynamics (2) lie on these surfaces.
In this case the trajectory of the complete system (2) is divided into two parts. The first part
includes sections of dynamics for which the values of 𝑥1(𝑡) ≈ 0, in the second part — values of
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𝑥1(𝑡) ≫ 0. As a result, the first part of the trajectory lies on 𝑀1
𝑃𝑂 and 𝑀0

𝑒𝑞 (see fig. 7, a). Second
— on 𝑀𝑃𝑂, 𝑀𝑒𝑞 and 𝑀0

𝑒𝑞 (see fig. 7, b).
Note that when projecting into other subspaces, the fast manifolds 𝑀1

𝑃𝑂 and 𝑀𝑃𝑂 do not
intersect as shown in Fig. 7, c, and have a slightly different look. In the subspace (𝑥1, 𝑦1, 𝑦2) 𝑀

1
𝑃𝑂

and 𝑀𝑃𝑂 — two-dimensional curves that lie on a cylindrical surface with a base of 𝑀𝑆
𝑒𝑞 and 𝑀𝑈

𝑒𝑞

(𝑥1 > 0 and 𝑦2 > 0) (fig. 7, e) forming the framework of the fast-slow cycle in the system (3) (see
Fig. 3, a). Accordingly, rapid oscillations also lie on this cylinder. In the subspace (𝑥1, 𝑥2, 𝑦2)
𝑀𝑃𝑂 is a strongly flattened paraboloid, and 𝑀1

𝑃𝑂 completely merges with the plane 𝑥1 = 0
(Fig. 7, f ). In both cases, there is a rest manifold between two fast manifolds, along which the
trajectory makes a slow movement along the surface of the cylinder with the base 𝑀𝑆

𝑒𝑞 and 𝑀𝑈
𝑒𝑞

(see Fig. 7, e).
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Fig. 7. a–c — Two branches of fast manifold 𝑀1
𝑃𝑂 and 𝑀𝑃𝑂 on which lie parts of the trajectory of system (2)

a — with divergent oscillations 𝑆2 (𝑥1 ≈ 0) and b — with damped oscillations 𝑆1 (𝑥1 ≫ 0). d — The example of
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manifolds 𝑀0

𝑒𝑞 and 𝑀𝑒𝑞 (color online)
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3. The scenario of the formation of bursts

The presence of different types of activity in subsystems (3), (4) and (5) (monotonous
increase or decrease in numbers, as well as damped or divergent oscillations) allows us to describe
the scenario of the formation of burst modes of oscillations in the full model (2). This scenario is
based on the analysis of the relative position of fast and slow manifolds, as well as on observations
of the phase trajectory, which is capable of periodically (or irregularly) jumping between different
attractors of the slow and fast subsystem. At first, the phase point moves only along the relaxation
cycle (canard) 𝐶, corresponding to the phase trajectory of the first (slow) subsystem (3). Then
the trajectory is attracted to one of the periodic solutions of the fast subsystem (4) or (5) (for
different 𝑥1). In this case, the solutions of the system (2) at 𝑐1 = 0 converge to the attractor of
the fast subsystem, which is its stable state of equilibrium or limit cycle. When the attractor of a
fast subsystem is exponentially stable, then it depends on smooth from 𝑦1. However, smoothness
is preserved only at 𝑥1 ̸= 𝑥*1. Changing 𝑦1 at some fixed 𝑥1 leads to the formation of a smooth
attracting invariant manifold that consists of a slow and a fast part. Let’s list them.

• Spatial curves 𝑀𝑆
𝑒𝑞 and 𝑀𝑈

𝑒𝑞, collected from the equilibrium states of a strong community
(3), as well as a two-dimensional cylindrical surface based on them.

• Curves formed by the projection of curves 𝑀𝑆
𝑒𝑞 and 𝑀𝑈

𝑒𝑞 onto two-dimensional surfaces 𝑀0
𝑒𝑞

and 𝑀1
𝑒𝑞, which are equilibrium states of a weak community (4) and (5) for 𝑐1 = 0.

• A three-dimensional parabolic surface 𝑀𝑃𝑂 and a one-sheeted hyperboloid 𝑀1
𝑃𝑂 (see

Fig. 5, a and fig. 7), which are formed by cycles of a weak community (5).
The first two parts of the variety correspond to the slow tonic dynamics or rest state of

both communities. As shown above, due to the presence of more than one branch, several location
options are possible such an attractor (canard) in the phase space. For example, a canard can
only lie on the branch 𝑀0

𝑒𝑞 (𝐶1), then the dynamics of predators in both territories will be
synchronous, but with zero number of prey in the second community. Or it can only lie on 𝑀1

𝑒𝑞

(𝐶2), then the dynamics will be anti-phase with a non-zero number of prey. Or the canard can
be alternately (regularly) located on different branches, then the dynamics of communities will
contain periods of synchronous and non-synchronous dynamics that coincide with periods of
near-zero (𝑥1 ≈ 0) and non-zero (𝑥1 ≫ 0) number of prey in the second community (𝐶).

The third part of the variety corresponds to the occurrence of bursting activity or rapid
explosive oscillations (spiking) in the second weak community. However, there is the following
feature here. Depending on the number of prey in the first territory (𝑥1), the trajectory leaves
the resting state, the subsequent nature of predator dynamics in this territory changes (𝑦1). If
the value of 𝑥1 is high enough, then the value of 𝑦1 obviously it is growing, that is, the predator
has enough prey for its development. If 𝑥1 is close to zero, then the value of 𝑦1 can only fall, that
is, the predator it dies out in this territory or emigrates.

In the first case (𝑥1 ≫ 0), if 𝑦1 is below a certain value (to the left of the point H in Fig. 7, b),
the trajectory is thrown to the parabolic surface 𝑀𝑃𝑂, where it makes several turns. Meaningfully,
such dynamic behavior may correspond to the strengthening of competitive relationships between
predators of a weak (local individuals) and a strong community (immigrants). As a result, strong
competition leads to a rapid population growth in a weak community, which manifests itself in
the form of damped fluctuations in the numbers of predators and prey in this territory. These
damping fluctuations continue until the number of predators of a strong community grows to a
certain value (point H in Fig. 7, b). Having reached this value, the trajectory gently returns to
a state of rest.

In the second case, when the number of prey of a strong community 𝑥1 is close to zero
(𝑥1 ≈ 0), the number of predators 𝑦1 falls. If at the same time 𝑦1 reaches a certain value
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𝑦*1, then the trajectory is abruptly thrown to the hyperboloid 𝑀1
𝑃𝑂, on which it is wound.

Similarly to the previous case, the competition of immigrants from a strong community with
local individuals initiates rapid divergent fluctuations in numbers in a weak community. These
fluctuations continue until the minimum possible predator population is reached 𝑦1, in which
there is a rapid recovery of prey in a strong community and a slow recovery of predators. In
the most extreme case, this happens at the «intersection» of the hyperboloid 𝑀1

𝑃𝑂 with the
paraboloid 𝑀𝑃𝑂 in the subspace (𝑦1, 𝑥2, 𝑦2), that is, at 𝑦1 → 0. After that, the trajectory is rigidly
shifted from a hyperboloid to a paraboloid, and the fluctuations are replaced by damped ones
against the background of an increase in the number of the predator 𝑦1 of a strong community.

When the system parameters vary (2), both the size of the fast-slow limit cycle and the
location of bifurcation points in subsystems change (3), (4) and (5), which act as «edges»
of the fast manifold. As a result, different types of bursting activity correspond to different
mutual arrangement of the canard and surfaces 𝑀𝑃𝑂 and 𝑀1

𝑃𝑂. Fig. 8 schematically shows the
mechanism (scenario) of the formation of different waveform of bursts. To do this, two branches
of the fast manifold 𝑀𝑃𝑂 and 𝑀1

𝑃𝑂 they are shown nested in each other and connected by the
limiting fast-slow cycle 𝐶, and the points where they connect are highlighted with an asterisk.

In Fig. 8, a it is shown that if only the fast-slow cycle is asymptotically stable, then the
surfaces 𝑀𝑃𝑂 and 𝑀1

𝑃𝑂 exist, but are located away from it. As a result, for parameters from
the scope 𝐶 in Fig. 1, a, where in the limiting case in the system (2) only a fast-slow cycle is
possible, rapid fluctuations occur under some perturbations of the initial conditions, but as part
of the transition dynamics. For example, if we take the starting point in the neighborhood of a
fast manifold 𝑀𝑃𝑂 or 𝑀1

𝑃𝑂, then at first the trajectory will make several turns on one of these
surfaces, and then it will fall on one of the branches of the slow manifold, where it will make
stable periodic movements. This further proves the existence of a fast manifold.

In the case of a triangular-wave bursting, the canard 𝐶 touches the surface of 𝑀𝑃𝑂, and
the trajectory begins to move along it independently (Fig. 8, b). This happens only after the full
recovery of the number of prey of 𝑥1 in a strong community, that is, at 𝑥1 ≫ 0. In the case of a
rhomboid-wave and truncated rhomboid-wave bursting, the canard additionally concerns 𝑀1
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(Fig. 8, c–d), which happens long before the recovery of the number of prey 𝑥1, that is, at 𝑥1 ≈ 0.
But touching a canard with a hyperboloid 𝑀1

𝑃𝑂 is possible in different places. If the trajectory
«intersects» the paraboloid 𝑀𝑃𝑂, and then reaches the hyperboloid 𝑀1

𝑃𝑂, truncated rhomboid-
wave bursting arise (see Fig. 8, c). If the trajectory goes to the hyperboloid does not intersect the
paraboloid, then a more complex bursting arises, in which the damped oscillations are replaced
by divergent, and then again damped (see Fig. 8, d). Naturally, there is no intersection of the
trajectory and the fast manifold in four-dimensional space. This «intersection» corresponds to
a jump in numbers predators 𝑦1 and prey 𝑥1, which is clearly visible when projected into other
subspaces (see Fig. 7, e и f ).

Between the last two variants of the arrangement of the canard and the branches of the
fast manifold in Fig. 8, c and d there is an intermediate scenario for the formation of pure
diamond-shaped bursting. For example, such as shown in Fig. 5, c. In this case, the points where
the canard connects to the hyperboloid and then to the paraboloid, they turn out to be as close
to each other as possible (the coordinate 𝑦1 coincides). However, being intermediate in location,
it occurs in a wide range of parameters. Moreover, it is in this case that it is more often formed
quasi-periodic dynamics.

It should be noted that the scenario in Fig. 8 describes the case of completely periodic
dynamics, when after each full turn the phase point strictly returns to the same point in the
phase space (where the numbers reach exactly the same values), for example, to the point marked
with an asterisk. In this case, the time between the appearance of bursting of numbers (the
distance between the bursts) turns out to be constant at each full turn of the cycle. In the case
of quasi-periodic dynamics (the region 𝑄 in Fig. 1) the trajectory on each of its turns returns
to a small neighborhood of the starting point. As a result, the connection points of the canard
𝐶 with one of the branches of the fast manifold form a closed invariant curve. It is not difficult
to understand that the surface will be non-orientable, and the trajectory moves along the Klein
bottle if the canard is connected to the «inner» the branch 𝑀1

𝑃𝑂 of the fast manifold (to the left
of the point H). If the canard is connected to the «external» branch 𝑀𝑃𝑂 (to the right of H), then
the surface will be orientable, and the trajectory will lie on the torus. In case the parameters fall
into one from synchronization tongues (in Fig. 1, b), dynamics again it turns out to be periodic,
but the trajectory returns to the starting point only after making several full turns on the torus
or the Klein bottle.

In general, returning strictly to the same point in the phase space means strict equality of
variables at certain intervals. However, for real biological communities, strict equality of numbers
is practically unattainable, since random factors constantly shift the phase trajectory away from
the stable regime. Therefore, it is more likely that in real communities coupled by migration,
functioning according to the described principles and described by the model (2), the time
between burst is likely to be unstable, or the dynamics will be quasi-periodic.

Conclusion

When studying the system of two non-identical predator-prey communities coupled by
migration, it was found that the leading parameter determining the evolution of bursting activity,
and a result, the type of dynamics is the difference in the mortality of predators in different
territories. Other parameters, as a rule, determine the stability of the dynamics modes or the
shape of the bursts.

With a large difference in the mortality of predators, the considered model refers to to the
class of fast-slow systems. The identification of fast and slow variables allowed us to show that the

Kurilova E.V., Kulakov M.P., Frisman E.Ya.
Izvestiya Vysshikh Uchebnykh Zavedeniy. Applied Nonlinear Dynamics. 2023;31(2) 161



dynamics in a strong or leading community (a subsystem with low mortality) are long-period fast-
slow fluctuations that completely determine the behavior of a weak or driven community (with
high mortality). It is shown that, depending on the number of predators of a strong community,
the dynamic mode of the driven community smoothly changes: from the slow tonic mode, the
weak community gently transitions to rapid burst fluctuations in numbers. However, there is a
kind of non-smooth dependence of the dynamics regime of a weak community on the number
of prey of a strong one, when with a low or high number of prey of a strong community, the
scenario of the birth of rapid fluctuations is different, and the transition between them occurs
quite sharply.

Using geometric methods, in the present work it was possible to construct invariant ma-
nifolds on which sections with the burst and tonic activity of the system under consideration
are realized. As a result, the mechanisms of occurrence of burst with different waveforms were
described in detail. The dependence of the shape of fast dynamics on the appearance of an
invariant manifold and the location of its parts relative to the fast-slow cycle is discovered and
described.

As mentioned earlier, the study of fast-slow systems is a popular area of nonlinear dynamics.
In the course of the study of such systems, different dynamics modes are found, the study of
which is based on the allocation, as a rule, of only two typical times — fast and slow [18,
20]. The trajectories in this case are formed on the basis of a single fast and slow fast-slow
cycle (canard). So, for example, it happens in a three-dimensional modification of the model
Rosenzweig-MacArthur, describing the dynamics of systems such as prey-predator-super preda-
tor [9]. Qualitatively, such dynamics correspond to the scenario «Fold/Hopf» [17], which is the
simplest for the system in question (2). In the slow subsystem (weak community), two bifurcations
are observed: saddle-node (fold type) and soft (supercritical) Andronov-Hopf, depending on the
value of the «frozen» variable (the number of predators of a strong community). With these two
bifurcations, the phase of the bursting dynamics begins and ends. But in most cases (in most of
the 𝑆 area in Fig. 1, a) bursting modes are fluctuations of a different type — this is a combination
of divergent and damped modes. These two types of fluctuations occur at different values of an
additional «frozen» variable (the number of prey of a strong community) and are associated
with slow diversity in its different parts. In this case, divergent fluctuations are observed during
the recovery of prey on the second territory and, as a rule, precede the restoration of the prey
of the first strong community. After that, they are replaced by fading fluctuations and the two
communities coexist. In this case, the system obviously has more two typical times. A similar
scenario occurs, for example, in some three-dimensional models of neural activity (the Hindmarsh-
Rose model) [37, 38]. For them, it was necessary to allocate three different time scales, for each
of which its own slow and a fast subsystem, and three layers of slow and fast manifolds nested
in each other are described [34,36,38].

In this paper, it can be assumed that the damped oscillations in the considered model of
coupled communities are the result of soft bifurcation Hopf in a slow-time system, and divergent
— hard (subcritical) Hopf bifurcations in a super-slow-time system. Two these cycles end with
saddle-node bifurcation of limit cycles or homoclinic bifurcation. In general, the described qua-
litative rearrangements fit into the scenarios of the formation of burst activity described by
E.M. Inzhikevich [17]. However, due to the four-dimensional nature the studied model and the
non-smooth dependence on the «frozen» variable (the number of prey of a strong community),
new combinations of these scenarios arise, associated with «impossible» for traditional three-
dimensional systems ways of connecting trajectories on fast and slow manifolds (through the
fourth dimension). In particular, those that «pierce» a fast manifold and generate trajectories on
the Klein bottle, or combinations that allow «intersection» of fast manifolds. Such a feature of
the dynamics of the community under consideration, without a doubt, requires further detailed
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study.
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