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Abstract . Purpose. New algorithms were consider for functional equations solving using the Feigenbaum equation
as an example. This equation is of great interest in the theory of deterministic chaos and is a good illustrative
example in the class of functional equations with superposition. Methods. The article proposes three new effective
methods for solving functional equations — the method of successive approximations, the method of successive
approximations using the fast Fourier transform and the numerical-analytical method using a small parameter.
Results. Three new methods for solving functional equations were presented, considered on the example of the
Feigenbaum equation. For each of them, the features of their application were investigated, as well as the
complexity of the resulting algorithms was estimated. The methods previously used by researchers to solve
functional equations are compared with those described in this article. In the description of the latter, the
numerical-analytical method, several coefficients of expansions of the universal Feigenbaum constants were written
out. Conclusion. The obtained algorithms, based on simple iteration methods, allow solving functional equations
with superposition without the need to reverse the Jacobi matrix. This feature greatly simplifies the use of
computer memory and gives a gain in the operating time of the algorithms in question, compared with previously
used ones. Also, the latter, numerically-analytical method made it possible to obtain sequentially the coefficients
of expansions of the universal Feigenbaum constants, which in fact can be an analytical representation of these
constants.
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1. Known results in solving the Feigenbaum equation

1.1. Introduction. In the theory of deterministic chaos, the system of Feigenbaum’s
functional equations is of particular interest. This system has the following form [1–3]:⎧⎪⎪⎪⎨⎪⎪⎪⎩

𝑔(𝑥) = −α · 𝑔
(︂
𝑔

(︂
− 𝑥

α

)︂)︂
,

δ · ℎ(𝑥) = α · 𝑔′
(︂
𝑔

(︂
𝑥

α

)︂)︂
· ℎ

(︂
𝑥

α

)︂
+ α · ℎ

(︂
𝑔

(︂
𝑥

α

)︂)︂
,

(1)

with additional conditions {︃
𝑔(0) = ℎ(0) = 1,

𝑔′(0) = ℎ′(0) = 0,
(2)

where 𝑔 and ℎ are the desired functions, α and δ are the universal Feigenbaum constants, which
are also unknown in this system of equations.

It is assumed that 𝑔 and ℎ are accounting analytical functions with a quadratic extremum
at zero, defined on the real axis R. It is required to find a pair of functions (𝑔, ℎ) and a pair of
numbers (α, δ). Now there is only an approximate numerical solution of this system:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

𝑔(𝑥) = 1− 1.52763... · 𝑥2 + 0.104815... · 𝑥4+
+ 0.0267057... · 𝑥6 − 0.0035274... · 𝑥8 + ...,

α = 2.502907876..,

ℎ(𝑥) = 1− 0.325651... · 𝑥2 − 0.50554... · 𝑥4+
+ 0.014560... · 𝑥6 − 0.000881... · 𝑥8 − ...,

δ = 4.669201609... .

(3)

For the first time in 1979, M. Feigenbaum in his articles [3, 4] published the first 12 decimal
places of the constant α and 13 decimal places of the constant δ. In 1991, Keith Briggs, using
the same calculation method, obtained the values of these constants with an accuracy of 150
decimal places [5]. Later, in 1999, Simon Plouffe refined Briggs’ results, and calculated 1018
decimal places of constants α and δ [6].

1.2. Discretization. The collocation method. The main method of discretization of
the system (1) used in previous works is the collocation method (MK) [3, 5, 7]. This method is
based on the representation of the desired functions and in the form of a sum of basic functions⎧⎪⎪⎪⎨⎪⎪⎪⎩

𝑔(𝑥) ≈ 𝑔𝑁 (𝑥) = 1 +
𝑁∑︀
𝑖=1

𝑔𝑁𝑖 · φ𝑖(𝑥),

ℎ(𝑥) ≈ ℎ𝑁 (𝑥) = 1 +
𝑁∑︀
𝑖=1

ℎ𝑁𝑖 · φ𝑖(𝑥),
(4)

where 𝑔𝑖, ℎ𝑖 ∈ R, {φ𝑛}∞𝑛=0 is a set of basis functions, and 𝑁 is a fixed integer. Basically, due to
the analyticity of the functions 𝑔 and ℎ [2], this basis takes a sequence of degrees {𝑥𝑛}∞𝑛=0 [3,5,7].
The functions 𝑔 and ℎ, in turn, were represented as power series⎧⎪⎪⎪⎨⎪⎪⎪⎩

𝑔(𝑥) ≈ 𝑔𝑁 (𝑥) = 1 +
𝑁∑︀
𝑖=1

𝑔𝑁𝑖 · 𝑥2·𝑖,

ℎ(𝑥) ≈ ℎ𝑁 (𝑥) = 1 +
𝑁∑︀
𝑖=1

ℎ𝑁𝑖 · 𝑥2·𝑖.
(5)
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Other bases were also used for calculations, for example in the article [8] the decomposition was
carried out by Chebyshev polynomials.

Having fixed some basis of functions, we now choose a set of 𝑁 points {𝑥𝑗}𝑁𝑗=1, evenly
distributed on the half-interval (0, 1]. Substituting into the system (1) the representation of the
functions 𝑔 and ℎ in the form (5) and considering the obtained equalities at the points {𝑥𝑗}𝑁𝑗=1,
we get a system of 2𝑁 nonlinear equations⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

𝑔𝑁 (𝑥𝑗) = −α𝑁 · 𝑔𝑁
(︂
𝑔𝑁

(︂
− 𝑥𝑗
α𝑁

)︂)︂
,

δ𝑁 · ℎ𝑁 (𝑥𝑗) = α𝑁 · 𝑔′𝑁
(︂
𝑔𝑁

(︂
𝑥𝑗
α𝑁

)︂)︂
· ℎ𝑁

(︂
𝑥𝑗
α𝑁

)︂
+ α𝑁 · ℎ𝑁

(︂
𝑔𝑁

(︂
𝑥𝑗
α𝑁

)︂)︂
,

𝑗 = 1, .., 𝑁,

(6)

with respect to the coefficients of 𝑔𝑖, ℎ𝑖 decompositions (5). Adding to the system (6) the following
relations ⎧⎨⎩ α = − 1

𝑔(1)
,

δ = α · (𝑔′(1) + ℎ(1)),

(7)

obtained by considering the equations (1) for 𝑥 = 0, we obtain a closed system of equations with
respect to the coefficients ℎ1, ..., ℎ𝑁 , 𝑔1, ..., 𝑔𝑁 и α𝑁 , δ𝑁 .

Numerically solving the system (6) by Newton’s method, we obtain approximate values
of α𝑁 , δ𝑁 constants α and δ. From computational practice, it is obtained that in the case of
choosing decompositions (5), we observe the convergence of this method [3,5, 7].⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

lim
𝑁→∞

α𝑁 = α,

lim
𝑁→∞

δ𝑁 = δ,

lim
𝑁→∞

𝑔𝑁 (𝑥) = 𝑔(𝑥),

lim
𝑁→∞

ℎ𝑁 (𝑥) = ℎ(𝑥),

(8)

where 𝑥 ∈ [−1, 1].
The solution of the system (6) can be simplified by taking advantage of an important

property of the second equation from the system (1) — the number δ is an eigenvalue of the
operator

[𝐿𝑓 ](𝑥) = −α · 𝑓
(︂
𝑔

(︂
𝑥

α

)︂)︂
− α · 𝑔′

(︂
𝑔

(︂
𝑥

α

)︂)︂
· 𝑓

(︂
𝑥

α

)︂
, (9)

and the function ℎ is an eigenvector. Feigenbaum showed [3] that the constant δ is the largest
modulo eigenvalue of this operator (9) relative to the function 𝑔 obtained from the first equation
of the system (1). Based on this, by calculating the coefficients 𝑔1, ..., 𝑔𝑁 and α𝑁 from the
corresponding equations of the system (6), we can find the number δ𝑁 and the vector h𝑁 =
(ℎ1, ..., ℎ𝑁 )𝑇 as the maximum modulo eigenvalue, and the corresponding eigenvector of the
operator (9), calculating this operator at points {𝑥𝑗}𝑁𝑗=1. Keith Briggs used a power-law method
to solve this problem [5].

1.3. Discretization. The method of uncertain coefficients. Another approach to
the discretization of the system (1) is the method of indefinite coefficients (OLS) [3, 9]. This
method is also based on the representation of the solution in the form of power series (5).
However, unlike the collocation method, we do not calculate the values of functions at specific
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points, but consider a system of equations obtained after substituting the series (5) into the
system (1), and equating the coefficients obtained at the corresponding degrees in the left and
right parts of the equalities. After all the necessary transformations, we obtain the following
system of equations for the coefficients of the decomposition of the function 𝑔:⎧⎪⎨⎪⎩

𝑔𝑁1 = 𝐺1

(︀
𝑔𝑁1 , ..., 𝑔𝑁𝑁 ,α𝑁

)︀
,

....,

𝑔𝑁𝑁 = 𝐺𝑁

(︀
𝑔𝑁1 , ..., 𝑔𝑁𝑁 ,α𝑁

)︀ (10)

and, accordingly, a system of equations for the coefficients of the decomposition of the function
ℎ: ⎧⎪⎨⎪⎩

δ𝑁 · ℎ𝑁1 = 𝐻1

(︀
ℎ𝑁1 , ..., ℎ𝑁𝑁 ,α𝑁 , 𝑔𝑁1 , ..., 𝑔𝑁𝑁

)︀
,

....,

δ𝑁 · ℎ𝑁𝑁 = 𝐻𝑁

(︀
ℎ𝑁1 , ..., ℎ𝑁𝑁 ,α𝑁 , 𝑔𝑁1 , ..., 𝑔𝑁𝑁

)︀
.

(11)

Adding to the systems (10) and (11) the relations (7), we get a closed system with coefficients
ℎ1, ..., ℎ𝑁 , 𝑔1, ..., 𝑔𝑁 and α𝑁 , δ𝑁 . Solving this system by Newton’s method, we, as in the case of the
collocation method, get some approximation of α𝑁 , δ𝑁 to the constants α, δ. Similarly, finding the
number δ and the function ℎ can be simplified by considering the system (11) with calculated
𝑔1, ..., 𝑔𝑁 and α𝑁 as a task to find the maximum modulo eigenvalue and the corresponding
eigenvector.

The main difficulty of this discretization approach is to calculate the functions 𝐺𝑖 and 𝐻𝑖,
where 𝐺𝑖 are polynomials of 𝑔1, ..., 𝑔𝑁 and rational functions of α𝑁 , and 𝐻𝑖 are polynomials
of 𝑔1, ..., 𝑔𝑁 , rational functions of α𝑁 , and linear in ℎ1, ..., ℎ𝑁 . In the case of a large number
of 𝑁 , these functions become cumbersome, and require special approaches to their calculation.
However, the systems (10) and (11), in comparison with the system (6), have closer properties to
the original system (1). We can say that the systems (10) and (11) are a projection onto a finite-
dimensional space of the system (1), where the functions and are replaced by finite-dimensional
vectors g𝑁 = (𝑔1, ..., 𝑔𝑁 )𝑇 and h𝑁 = (ℎ1, ..., ℎ𝑁 )𝑇 .

Due to the fact that the calculation of the second equation of the system (1) with a known
solution of the first one in one or another discretization, is already known by effective methods
of eigenvalue problems, we will consider algorithms on the example of solving the first equation
of the original system.

The discretization method considered in this section can be used for comparison with the
collocation method and their mutual verification.

2. Description of the proposed new calculation methods

All previously known calculations of the first equation from the system (1) were somehow
reduced to the multidimensional Newton method, requiring a complex computational procedure
— inversion of the Jacobi matrix. Let’s now consider the methods proposed in this article to
avoid this expensive operation.

2.1. The method of successive approximations.

2.1.1. Derivation of a system of recurrent equations. Let’s return to the system of
equations (10), which is a discretization of the first equation from the system (1) by the method
of indefinite coefficients. Note that the system (10) is an equation of a fixed point relative to
the vector g𝑁 = (𝑔1, ..., 𝑔𝑁 )𝑇 . Let’s use this by first obtaining the following relations from the
system (1)
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⎧⎪⎨⎪⎩
𝑔(1) = − 1

α
,

𝑔′(1) = −α.
(12)

Based on the chosen power decomposition (5), the conditions (12) can be represented in the final
form ⎧⎪⎪⎪⎨⎪⎪⎪⎩

1 +
𝑁∑︀
𝑖=1

𝑔𝑁𝑖 = − 1

α
,

𝑁∑︀
𝑖=1

(2𝑖) · 𝑔𝑁𝑖 = −α.
(13)

Now, based on the system (10) and the relations (13), we write the following system of recurrent
equations: ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

𝑔
𝑁,(𝑛+1)
1 = −1− 1

α(𝑛)𝑁

−
𝑁∑︀
𝑖=2

𝑔
𝑁,(𝑛)
𝑖 ,

𝑔
𝑁,(𝑛+1)
𝑘 = 𝐺𝑁

𝑘

(︁
𝑔
𝑁,(𝑛)
1 , ..., 𝑔

𝑁,(𝑛)
𝑁 ,α(𝑛)𝑁

)︁
,

𝑘 = 2, .., 𝑁,

α(𝑛+1)
𝑁 = −

𝑁∑︀
𝑖=1

(2𝑖) · 𝑔𝑁,(𝑛+1)
𝑖 ,

(14)

𝑛 ∈ N, where

𝑘! ·𝐺𝑁
𝑘 =

𝑑𝑘

𝑑𝑥𝑘

(︂
− α𝑁 · 𝑔𝑁

(︂
𝑔𝑁

(︂
− 𝑥

α𝑁

)︂)︂)︂⃒⃒⃒⃒
𝑥=0

. (15)

Fixing some initial approximation g𝑁
0 = (𝑔

(0)
1 , ..., 𝑔

(0)
𝑁 )𝑇 and α(0)𝑁 , we can iterate the system

long enough (14) to calculate the approximation g𝑁 = (𝑔1, ..., 𝑔𝑁 )𝑇 and α𝑁 for the given 𝑁 .

2.1.2. Qualitative considerations on the convergence of this method. The equations
in the system (14), where the functions 𝐺𝑁

𝑘 are present, represent the projection of the first
equation from the system (1) onto a finite-dimensional space of dimension 𝑁 with the basis
{𝑥𝑛}𝑁𝑛=0. However, such a projection has a feature of the original functional equation — hyperbolic
divergence. When directly integrating only equations with functions 𝐺𝑁

𝑘 from the system (14),
the iterative process will diverge. This divergence is due to the presence of a one-dimensional
dimension in the functional space of unimodal functions, in the direction of which the first
equation from the system (1) — the equation for a fixed point 𝑔 — is not a compressive, but a
stretching mapping [1, 2, 9].

To stabilize the convergence of iterations, additional equalities are introduced (12) derived
from the functional equation itself (1). With the transformation of these relations (12) into the
form given in the system (14), the iterative process (14) becomes convergent to the desired
unknowns.

It is known from computational practice that if you gradually increase the number of 𝑁
and select each time the initial value obtained from the previous calculation, then a convergent
process is obtained for 𝑛 → ∞ and 𝑁 → ∞ to the desired 𝑔 and α. Numerical calculations show
that the iterative process converges linearly.

2.1.3. Features of function calculations 𝐺𝑁
𝑘 . Formulas in the system (13), where

the functions 𝐺𝑁
𝑘 participate, do not depend on each other and can be calculated in parallel,

however, the calculation of the functions themselves is of some complexity and requires additional
methods. Using symbolic calculations, it is possible to precompute derivatives in functions 𝐺𝑁

𝑘 ,
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obtaining algebraic expressions that can already be used in iterations (14). Another approach
for calculating functions 𝐺𝑁

𝑘 is to use the Faa-di-Bruno [10] formula expressed in terms of Bell
polynomials 𝐵𝑛,𝑘, while calculating the polynomials themselves by recurrent formulas [11].

2.2. The fast Fourier transform method applied to the method of successive
approximations.

2.2.1. Modification of the Sequential Approximation Method (MPP) using
the fast Fourier transform (Fast Fourier Transformation — FFT). Calculating the
functions 𝐺𝑁

𝑘 from the system (13) is a more general problem — calculating the 𝑘th derivative
of the composition of functions. Let’s consider the possibility of using a fast Fourier transform
to solve this problem. Let ’s introduce the notation

𝐹 [𝑎𝑚] := 𝐹𝐹𝑇 [𝑎𝑚], (16)

where 𝐹𝐹𝑇 [𝑎𝑚] — fast Fourier transform of the sequence 𝑎𝑚.
Note that if 𝑓 ∼

∑︀𝑁
𝑛=0 𝑓𝑛·𝑥𝑛, the Fourier transform of the coefficients 𝑓𝑛 can be represented

as
𝐹 [𝑓𝑛] :=

{︂
𝑓

(︂
exp

(︂
− 2π𝑛

𝑁
𝑖

)︂)︂
, 𝑛 = 0, ..., 𝑁 − 1

}︂
. (17)

If 𝑔𝑛 — coefficients of the representation of the function 𝑔 in the form of a power series, then
the first equation from the system (1), considering it at the points

{︀
𝑥𝑛 = exp

(︀
−2π𝑖

𝑁 𝑛
)︀
, 𝑛 = 0, ..., 𝑁 − 1

}︀
and given the decompositions (5), it will be possible to rewrite as follows:

𝐹 [𝑔𝑁𝑛 ] = −α𝑁 · 𝑔𝑁
(︂
𝐹

[︂
𝑔𝑁𝑛
α𝑁

]︂)︂
, (18)

getting from here

𝑔𝑁𝑛 = −α𝑁 · 𝐹−1

[︂
𝑔𝑁

(︂
𝐹

[︂
𝑔𝑁𝑛
α𝑁

]︂)︂]︂
, (19)

which, in fact, is a shorter system entry (10). Based on this, we will rewrite the recurrence
relations (14) in the following form:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

𝑔
𝑁,(𝑛+1)
1 = −1− 1

α(𝑛)𝑁

−
𝑁∑︀
𝑖=2

𝑔
𝑁,(𝑛)
𝑖 ,

𝑔
𝑁,(𝑛+1)
𝑘 = −α(𝑛)𝑁 · 𝐹−1

[︂
𝑔
(𝑛)
𝑁

(︂
𝐹

[︂
𝑔
𝑁,(𝑛)
𝑘

α(𝑛)𝑁

]︂)︂]︂
,

α(𝑛+1)
𝑁 = −

𝑁∑︀
𝑖=1

(2𝑖) · 𝑔𝑁,(𝑛+1)
𝑖 .

(20)

The equations (20) differ from the system (14) only in the way the functions 𝐺𝑘
𝑛 are

calculated; this does not affect the convergence of the iterative process itself. The convergence
rate of this process is similar to the convergence rate of the system (14).

2.2.2. Evaluation of the complexity of the proposed algorithm and comparison
with the method of successive approximations and the Newton method. Based on the
fact that the complexity of the fast Fourier transform algorithm is 𝑂((𝑁) · log(𝑁)) [12], the
main difficulty in this system (20) will consist in calculating the polynomial 𝑔𝑁𝑁 -th degree at
𝑁 points. However, due to the fact that the calculation of the polynomial at different points can
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be carried out in parallel, the complexity of the algorithm represented by the relations (20) can
be estimated as 𝑂(𝑁) · 𝑁/𝑚 for each iteration, where 𝑚 — the number of parallel processes.
Collectively, the complexity of the algorithm will be 𝑂(𝑁) ·𝑁2/𝑚, taking into account the linear
convergence of the method of successive approximations.

In comparison with other methods of calculating functions 𝐺𝑘
𝑛, the use of the fast Fourier

transform is optimal.
In the case of symbolic computation of 𝐺𝑘

𝑛, it is necessary to decompose the composition of
𝑁 -th degree polynomials at each iteration step, which leads to 𝑂(𝑁 !) difficulty. This complexity
is obviously much higher than 𝑂(𝑁2).

In the case of using the Faa-di-Bruno formula [10], expressed in terms of Bell polynomials
𝐵𝑛,𝑘, calculation by recurrent formulas [11], the complexity of calculating the functions 𝐺𝑘

𝑛

becomes 𝑂(𝑁3). This complexity is also noticeably higher compared to using the fast Fourier
transform.

In comparison with Newton’s method, the method of successive approximations using FFT
has two advantages.

Firstly, in the case of parallel calculation, this method can be linearly scaled, its computational
complexity per processor is 𝑂(𝑁2)/𝑚, where 𝑚 is the number of processors in the system. Parallel
scaling in the application of Newton’s method is much more limited by the need to reverse the
Jacobi matrix.

Secondly, the method of successive approximations using FFT requires only the desired
vector of coefficients 𝑔𝑁𝑘 to be stored in memory, and the vector of its Fourier transform 𝐹 [𝑔𝑁𝑘 ],
which requires 𝑂(𝑁) memory loading computer. In Newton’s method, it is necessary to keep the
entire Jacobi matrix in memory, which leads to a memory requirement𝑂(𝑁2).

2.2.3. Application of the method of successive approximations with FFT together
with the Newton method. It is also worth noting that the method of successive approximations
with FFT can effectively work in tandem with the Newton method.

According to Newton’s method, one additional iteration is necessary to refine the resulting
significant digits. Due to the fact that, on average, at each iteration of the Newton method, the
number of significant signs doubles, at the stage of the additional iteration, a large number of
calculated significant signs are lost. The method of successive approximations with FFT would
reduce the loss of a significant number of significant signs, if it is used at the stage of checking
the calculated value by the Newton method.

2.3. Numerical-analytical method for calculating functional equations.

2.3.1. Description of the algorithm. Let us now consider a numerical-analytical
algorithm that allows us to obtain solutions of functional equations when the coefficients of the
decompositions of the desired solutions themselves are represented as series with respect to a
small parameter. Let’s introduce the free parameter β into the system of equations (1) by first
entering the following expansions

⎧⎪⎪⎨⎪⎪⎩
𝑔β(𝑥, β) = 1 + 𝑔1(β) · 𝑥2 +

∞∑︀
𝑛=2

𝑔𝑛(β) · β𝑛−1 · 𝑥2𝑛,

ℎβ(𝑥, β) = 1 + ℎ1(β) · 𝑥2 +
∞∑︀
𝑛=2

ℎ𝑛(β) · β𝑛−1 · 𝑥2𝑛,
(21)
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and ⎧⎪⎪⎨⎪⎪⎩
𝑔(𝑥, β) = 1 + 𝑔1(β) · 𝑥2 +

∞∑︀
𝑛=2

𝑔𝑛(β) · 𝑥2𝑛,

ℎ(𝑥, β) = 1 + ℎ1(β) · 𝑥2 +
∞∑︀
𝑛=2

ℎ𝑛(β) · 𝑥2𝑛.
(22)

Unknown coefficients will then also be presented in the form of series⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

𝑔𝑛(β) =
∞∑︀
𝑘=0

𝑔𝑛,𝑘 · β𝑘,

α(β) =
∞∑︀
𝑘=0

α𝑘 · β𝑘,

ℎ𝑛(β) =
∞∑︀
𝑘=0

ℎ𝑛,𝑘 · β𝑘,

δ(β) =
∞∑︀
𝑘=0

δ𝑘 · β𝑘.

(23)

Then, after replacing 𝑥 → 𝑥 · α(β), you can rewrite the system of equations (1) as follows:⎧⎨⎩ 𝑔(α(β) · 𝑥, β) = −α(β) · 𝑔β
(︀
𝑔
(︀
𝑥, β

)︀
, β

)︀
,

δ(β) · ℎ(α(β) · 𝑥, β) = α(β) · 𝑔′β
(︀
𝑔
(︀
𝑥, β

)︀
, β
)︀
· ℎ

(︀
𝑥, β

)︀
+ α(β) · ℎβ

(︀
𝑔
(︀
𝑥, β

)︀
, β
)︀
.

(24)

At β = 1, due to the analyticity of the functions 𝑔 and ℎ, the expansions (21, 22), presented
as a power series, become solutions of the system (1).

Substituting decompositions (21)–(23) into the system (24) and equating the coefficients
obtained, we obtain a chain of equations from which unknown coefficients in decompositions can
be calculated sequentially (23). In particular, for 𝑥 = 0, β = 0 and for the degree of 𝑥2 · β0 from
the first equation of the system (24) we obtain the system{︃

1 + α0 · (1 + 𝑔1,0) = 0,

2 𝑔1,0 + α0 = 0,
(25)

the solution of which is ⎧⎨⎩
α0 = 1 +

√
3,

𝑔1,0 = −1

2
− 1

2

√
3.

(26)

2.3.2. Derivation of the first coefficients of the desired expansions. Calculating
the coefficients along the chain, solving a sequence of linear equations, for β = 1, we obtain the
following expansions of constants α and δ:

α = 1 +
√
3 +

(︂
− 1

12
− 1

12

√
3

)︂
+

(︂
− 37

936
+

53

1872

√
3

)︂
+

(︂
21967

438048
− 3053

97344

√
3

)︂
+ ...,

δ = − 4 −
√
3 +

(︂
1

6
+

5

9

√
3

)︂
+

(︂
− 346709

623376
+

79357

311688

√
3

)︂
+

+

(︂
− 224225865065

126833951088
+

786425631715

761003706528

√
3

)︂
+ ... .

(27)

We also give decompositions of the first coefficients of the function 𝑔
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𝑔1 = −1

2
− 1

2

√
3 +

(︂
1

24
− 1

8

√
3

)︂
+

(︂
− 265

1872
+

101

1248

√
3

)︂
+

(︂
113621

876096
− 124663

1752192

√
3

)︂
+ ...,

𝑔2 =
1

4
· 3

√
3 + 5

5
√
3 + 9

+
1

72
· 71

√
3 + 123

265
√
3 + 459

+

(︂
− 113

5184
· 9973081

√
3 + 17273883

13058763
√
3 + 22618441

)︂
+ ...,

𝑔3 = − 1

12
· 7 + 4

√
3

93
√
3 + 161

+
1

432
· 457975465

√
3 + 793236774

110530697
√
3 + 191444783

+ ...,

𝑔4 =
1

3744
· 12327 + 7117

√
3

51409
√
3 + 89043

+ ...,

(28)
and functions ℎ

ℎ1 =
1

2
− 1

2

√
3 +

(︂
13

24
− 23

72

√
3

)︂
+

(︂
29947

623376
− 763

46176

√
3

)︂
+ ...,

ℎ2 =
1

12
· 45 + 26

√
3

97
√
3 + 168

+

(︂
− 1

648
· 806125404 + 465416719

√
3

50843527 + 29354524
√
3

)︂
+ ...,

ℎ3 = − 1

12
· 424267

√
3 + 734852

79976509
√
3 + 138523377

+ ... .

(29)

2.3.3. Features of this method. The main difficulty in this method is to calculate the
coefficients for the terms 𝑥𝑗 · β𝑖 after substituting the decompositions (21)–(23) into the system
(24). However, due to the possibilities of symbolic calculations, these series were calculated
with more than 15 terms, the analytical form of which quickly becomes very cumbersome when
the order increases. Numerical calculations have shown the convergence of series (27)–(29) to
the known calculated values (3). Calculations also showed that the terms of the series (27)–
(29), which are coefficients in expansions (23), at β = 1 asymptotically decrease as a geometric
progression with a denominator 𝑞 ≈ 2.2.

It is worth noting that these decompositions (27)–(29) are not unique, and depend on
the choice of setting the parameter β in the equations (1). However, the simplest way to set
the β parameter, which requires the least amount of calculations, was chosen here. Setting the
parameter β in decomposition (21) at higher degrees would lead both to a more complex initial
algebraic equation similar to (25) and to more complex calculations for finding higher-order
coefficients. At the same time, the convergence of series with the β assignment at higher degrees
in the decomposition (21) would lead to faster convergence of the resulting decompositions.

The use of numerical-analytical algorithms was also used earlier by the author for partial
differential equations [13].

2.3.4. Comparison with other methods. A distinctive feature of this numerical-
analytical method, in comparison with numerical algorithms, is the possibility of obtaining
the exact coefficients of the desired expansions. This feature makes it possible to use various
methods to accelerate the convergence of power series that require high accuracy of the values
of the expansion coefficients, such as the Pade approximation or the Shanks transform [14, 15].
Convergence acceleration methods allow, based on a small number of calculated decomposition
coefficients, to obtain a much larger number of correct signs than those obtained by direct
summation of the series.

Also, these decompositions can be useful for the theoretical study of numbers α and δ.
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Conclusion

The article proposes three new approaches to solving nonlinear functional equations by the
example of solving the Feigenbaum equation.

Two of them are related to the application of the numerical method of successive approximations
to a discretized system (10). In the first method, it was possible to write out an iterative scheme
for calculating the desired coefficients of decompositions of unknown functions. The main problem
in this approach was the calculation of higher-order derivatives of the composition of functions
represented by polynomials. In this regard, in the second method, the possibility was proposed
to reduce the calculation of higher-order derivatives to a fast Fourier transform.

The third method was a step towards obtaining an analytical representation of unknown
functions and constants of a nonlinear functional equation. To do this, an additional parameter
β was introduced into the equation in such a way that the coefficients of the desired expansions
could be found by sequentially solving linear equations obtained from the power decomposition
of this functional equation.

In conclusion, we note that all the methods proposed in this paper have been demonstrated
by the example of the Feigenbaum functional equation, but they can also be applied to other
nonlinear functional equations with similar properties.
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