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STEEP UNIDIRECTIONAL WAVES: EXPERIMENTS AND MODELING 

K. Goulitski, L. Shemer and E. Kit 

We demonstrate the possibility to obtain experimentally a single steep unidirectional 
wave at а prescribed cross-section оЁ the wave tank. It is shown that the evolution оЁ wave 

groups with moderate to high maximum steepness is accompanied by notable nonlinearity. 
The spatial version of the Zakharov equation that was obtained by the authors recently was 
used аз а theoretical model. The equation describes nonlinear spatial evolution of 
unidirectional wave groups with wide spectra. Good agreement was obtained between the 
experimental results and the model computations for wave groups with moderate steepness. 
For wave groups with very high steepness, а good gualitative agreement was observed. It is 
suggested that bound waves affect the wave envelope shape ав well ав the location оЁ the 
focusing. Lack оЁ the quantitative agreement between the numerical computations and the 
experiments for very steep wave groups is partially attributed to the inability of the 

conservative Zakharov model to describe the non-conservative effects like the wave breaking. 

Introduction 

An ability to produce a single steep wave at a prescribed location in a laboratory 
wave tank of constant depth is often required for model testing ш coastal and ocean 
engineering. Such waves can be generated by focusing a large number of waves at a 
given location and instant. Dispersive properties оЁ йеер ог intermediate-depth surface 
gravity waves can be utilized for this purpose. Since longer gravity waves propagate 
faster, а wave group generated а! the wave maker in which wave length increases from 
the front 10 the tail may be designed 10 focus the wave energy а! а desired location. Such 
а wave sequence can be seen а5 а group а! is modulated both in amplitude апа in 
frequency. One-dimensional theory describing spatial and temporal focusing of various 
harmonics оЁ dispersive gravity waves based оп the linear Schrddinger equation was 
suggested by Pelinovsky & Kharif (2000). These authors suggested such a focusing as a 
possible mechanism responsible for generation of extremely steep singular waves, the so 
called freak, or rogue, waves. However, the experiments of Brown & Jensen (2001) 
demonstrated that nonlinear effects are essential in the evolution of those waves. An 
extensive review of field observations of those waves, as well as relevant theoretical, 
numerical апа experimental studies was recently presented by Kharif and Pelinovsky 
(2003). 

The essential nonlinear behavior of wave groups with high maximum wave 

steepness has been demonstrated 1 а number оё studies. Attempts were made 10 describe 
the propagation of deep or intermediate depth gravity water-wave groups with a relatively 
narrow initial spectrum by а cubic Schxddinger equation (CSE), Shemer et al. (1998). It 
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was demonstrated in this study that while this equation is adequate for description of the 
global properties of the group envelope evolution, it is incapable to capture more subtle 
features such as the emerging front-tail asymmetry observed in experimenis. For the 
weakly-dispersive wave groups in shallow water, application of the Korteweg - deVries 
equation provided results that were in very good agreement with the experiments (Kit et 
al. 2000). In the case of stronger dispersion in deeper water, more advanced models than 
the CSE ате required. This stems from the fact that due 10 попНпеаг interaction, 
considerable widening of the initially narrow spectrum is observed. The modified 
Schrodinger equation due ю Dysthe (1979) is а higher (4%) order extension оЁ the CSE. 
Application of this model indeed provided good agreement with experiments (Shemer et 
al. 2002). An alternative theoretical model that is free of band-width constraints is the 
Zakharov (1968) equation. Unidirectional spatial version of this equation was derived in 
Shemer et al. (2001) ап applied successfully do describe the evolution оЁ nonlinear 
wave groups in the tank. Кн & Shemer (2002) showed the relation between the spatial 
versions of the Dysthe and the Zakharov equations. 

An attempt to check the limit of applicability of the Dysthe equation to describe 
evolution оё wave groups with wider specirum has been carried out in Shemer et al. 
(2002). Numerical solutions of the wave group evolution problem were performed out 
using both the Dysthe model and the Zakharov equation. Comparison of results obtained 
demonstrated that while the Dysthe model performed ш а satisfactory fashion for not 100 
wide spectra, it failed when initially very wide spectra were used. 

Extremely steep (freak) wave can be seen аб а wave group with а very narrow 
envelope and correspondingly wide spectrum. Kharif et al. (2001) applied the CSE model 
to simulate nonlinear freak wave generation by the focusing mechanism. For the reasons 
presented above, numerical simulation of this problem requires, however, application of a 
model without strong bandwidth limitations. In the current study we perform an 
experimental study of propagation of steep wave groups with wide spectrum in a 
laboratory tank, accompanied by numerical simulations based on the spatial version of the 
Zakharov equation. 

1. Theory 

The purpose of the present study is to obtain at a prescribed distance from the 
wave, x=x,, steep unidirectional wave group with а narrow, Gaussian-shaped envelope 
with the surface elevation variation in time, g(z), given by 

5(9 = ggexp(- (¢mT y)*)cos(wgt), @ 

where w,=2/T), is the carrier wave frequency, ап g, 15 the maximum wave amplitude in 
the group. The small parameter representing е magnitude оЁ nonlinearity € 15 the 
maximum wave steepness e=Cok,. The wave number is related 10 the frequency о by the 

finite depth dispersion relation 
w? = kgtanh(kh), (2) 

g being the acceleration due to gravity. The parameter m determines the width of the 
group; higher values of m correspond to wider groups and consequently narrower spectra. 

The spectrum of the surface elevation given by (1) 15 а150 Gaussian. 
To produce single steep wave at a desired location along the tank, we apply the 

«time-reversal» idea suggested by Pelinovsky & Kharif (2000). The wave field at earlier 
locations, x<x, is obtained from the computed complex surface elevation frequency 
spectrum at this location. To this end, the unidirectional discretized spatial version of the 

Zakharov equation is used: 
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ic 0B (х)/дх = 3 

where с. is Ше group velocity and * denotes complex conjugate. This equation describes 
the slow evolution along the tank of every free spectral component B =B(w,) оё the 
surface elevation spectrum in inviscid fluid of constant (infinite or finite) dlepth and 
accounts for Class I, or quartet, nonlinear interactions among various components. The 

procedure for computation оё @е interaction coefficients У ш (3) is based оп Krasitski 
(1994) and was developed by Annenkov (2002). 

The dependent variables В(о.„х) representing the free components т the wave field 
are related to the generalized complex «amplitudes» b(ooj,x). These complex amplitudes 

are composed of the Fourier transforms of the surface elevation i(mj.,x) and of the 

V(w,0,0,,0,)8,"B, B exp(-i(ktkqk, -k, )x), (3) ©О„ 

velocity potential at the free surface ‹Ъз(ш].‚х): 

b(wx) = (g/(20)) с(а + i(w/(28))'? ф`(о). 4) 
The amplitudes b represents a sum of the free and the bound waves given by 

b(w,x) = [eB(w;x,) + e%B'(w0.x,) + B (w,x.x,)... Jexp(ik). (5) 

The bound higher order components В' and В" can be computed аг each location 
once the free wave solution Bj(x) is known. The corresponding formulae, as well as the 
kernels necessary for their computations are given in Krasitski (1994). The scaled 
coordinate x,=¢%x. Inversion оЁ (4) allows computing the Fourier components of the 

surface elevation {(w,x). Inverse Fourier transform then yields the temporal variation for 
the surface elevation t(x,f). 

The spectrum corresponding to (1) & integrated using (3) from the planned 
focusing location x, backwards up to the wavemaker а! х=0. The waveforms derived 
from е computed specira serve а$ the wavemaker driving signals, with corrections that 
account for е actual wavemaker response. The study is саглей out Юг various 
maximum wave amplitudes. 

2. Experimental Facility and Procedure 

Experiments are carried out in а wave tank which is 18m long, 1.2m wide апа 
0.6 m deep. A paddle-type wavemaker hinged near the floor is located at one end of the 
tank. The wavemaker consists of four vertical modules, which in the present experiments 
are adjusted to move in phase with identical amplitudes and frequencies. The wavemaker 
15 driven by а computer-generated signal. The instantaneous surface elevation is 
measured simultaneously by four resistance-type wave gauges. The probes are mounted 
on a bar paralle] to the side walls of the tank and fixed to a carriage which can be moved 
along the tank. 

Probes are calibrated in situ using а stepping motor and а computerized static 
calibration procedure described in detail in Shemer et al. (1987). The calibration is 
performed at the beginning of each experimental run. The probe response is essentially 
linear for the range of surface elevations under consideration in the present study. The 
voltages of the four wave gauges, the signal driving the wavemaker and the wavemaker 
position potentiometers outputs are sampled using an A/D converter and stored at the 
computer hard disk for further processing. 

The carrier wave period adopted in (1) & T,=0.7s, corresponding to the 
wavenumber k,=8.22m, so а! k#=4.93 and thus deep-water dispersion relation is 
satisfied. The maximum driving amplitudes are selected so that at the focusing location, 
the resulting carrier wave has the maximum wave amplitudes &, corresponding 10 the 
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steepness e=k,C, ranging from e=0.1 to £=0.4. The location оё the focusing poini ranged 
from x;=5m Ю x,=8m. _ 

The Gaussian energy spectrum of (1) has a shape with the relative width at the 
energy level of 1/2 of the spectrum maximum given by 

Awlay, = 1/(mam) (L, In2)12, (6) 

The value of the parameter m in the experiments was selected to be m=0.6, so that the 
relative spectrum width Aw/w;=0.312, which is beyond the domain of applicability оё the 
narrow spectrum assumption of the cubic Schrodinger and Dysthe models. Moreover, the 
lower harmonics of the spectrum, contrary to the carrier wave, do not satisfy the deep 
water condition anymore. Therefore, in all expressions for the interaction coefficients 
finite depth versions were used in this study. 

For each set of selected variable parameters (maximum steepness ¢ and the 
distance of the focusing location from the wavemaker x,) the solution оё the system of N 
ordinary differential equations (3), N being the total number of wave harmonics 
considered, was obtained for distances from the wavemaker т the range 1m <х < 10т. 
The number of free wave harmonics considered in this study is N=100. The wavemaker 
driving signal was adjusted 10 get а5 good а5 possible agreement between the calculated 
and the measured wave field at x=1m. This value of x was chosen since at this distance 
from the wavemaker the evanescent modes decay and do not contaminate anymore the 
wave field. 

3. Results 

A representative selection of the accumulated in this study cases is discussed in this 
Section. In the first case considered the focusing point in the computations was selected at 
x,=8m, and the maximum wave steepness at the focusing location ok =0.2. The 
computed and the measured temporal variation of the surface elevation at different 
locations along the tank are presented ш Figs. 1, а, b, respectively. From the computation 
results @ Fig. 1, а one can see that the selected value оё the group-width parameter т in 
(1) indeed yields a narrow wave group with a single steep wave at this location. Closer to 
the wavemaker the group becomes notably wider, and the maximum wave amplitudes 
decrease accordingly. The amplitude and the frequency modulation within the group are 
clearly seen. Note that the computed surface elevations at equal distances from the 
focusing point, 1.е. а! x=6m and at x=10m, are identical if time is reversed after the 
focusing point. Before the focusing, the group starts with slowly-propagating short 
waves, while longer waves appear later. After the focusing point the faster long waves 
appear first. 

The experimental results presented in Fig. 1, b demonstrate a very good agreement 
with the computations. Residual noise is observed behind the group, and the wave shape 
at the focusing location is not exactly symmetric. 

The computed and the measured spectra for the experimental parameters of Fig. 1 
are presented in Fig. 2 at various locations along the tank. The variation of the spectral 
shape along the tank is evident and indicates that wave evolution is essentially nonlinear 
even at this relatively low amplitude of forcing. The agreement between experiments and 
computations 18 quite satisfactory and both the numerical simulations and the 
measurements exhibit similar features. The spectral shapes shown in Fig. 2, b indicate 
that the spectrum becomes wider with the distance from the wavemaker and at the 
prescribed distance of x,=8m the spectrum approaches the Gaussian shape of the 
numerical simulations. The peak frequency а! x=1m 15 shifted 10 the right relative 10 the 
carrier frequency f,=1/T,. The сотршей spectra (Fig. 2, а) аг the equal distances from 
the focusing location, e.g. at x=6m and at x=10m, are identical, as expected. The low 
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Fig. 1 

frequency part of the computed spectrum remains unaffected during the evolution 
process. 

When the maximum wave steepness is increased ю {k,=0.4, the agreement 
between the computed (Fig. 3, а) апа the measured (Fig. 3, b) surface elevation along the 
tank remains quite good. The distortion оЁ the envelope shape а{ x=1m is visible in 
computations as well as in experiments. Note that the peak values within the group appear 
to be somewhat different in those figures. It should be stressed that the computed surface 
elevation is obtained taking into account the free modes only, while in the experiments 
the effect of the bound waves can be of significance. 

Additional reason for certain disagreement between the measured results and the 
computations can be attributed to the difficulties 10 reproduce accurately т the 
experiments the computed spectrum at the vicinity of the wavemaker. The results on the 
wave amplitude spectra for the conditions of Fig. 3 are given in Fig. 4. Comparison of the 
variation of the computed spectral shapes at moderate maximum wave steepness in Fig. 2, 
a, with those in Fig. 4, a for very steep wave group, clearly indicates that the evolution 
process in the latter case is strongly affected by nonlinearity. The agreement between the 
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measured and the computed spectra is now less impressive. This can be partially 
attributed to discrepancy between the actual measured spectral shape at x=1m (Fig. 4, b) 
and that computed а{ this location (Fig. 4, а). While the lower frequency parts оЁ the 
spectra at all locations are quite similar in computations and in the experiments, the 
spectral amplitudes in the experiment also decay much faster than in the computations. 
This can possibly stem from the energy dissipation оЁ the shorter waves due 10 both 
viscous effects and breaking. 

It is customary in ocean engineering to determine wave height, H, as the difference 
between the consecutive minimum and maximum surface elevations. We adopt this 
definition here to study the wave height evolution along the tank. The evolution of the 
maximum wave height, H__, within the group along the tank Юг е=0.2 18 shown in Fig. 5, а 
for the focusing location of x,=6m. Although there is a consistent shift between the 
measured and the computed values due to the difficulties in accurate generation of the 
required initial waveform at the wavemaker, the rate of increase of the maximum wave 
height during the focusing process and the following decrease in the maximum wave 
height during defocusing for x>x, are practically identical. At an essentially higher 
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amplitude (£=0.4), the disagreement between the computational and the experimental 
results shown in Fig. 5, b Юг x,=6m is clearly visible. In the theoretical computations the 
growing and the decaying branches remain symmetric relative 10 the focusing pointx;. In 
the experiments, the growth rate of the maximum wave steepness is somewhat lower than 
in simulations, suggesting stronger dissipation. The notable decay of the measured value 
оё Н х following the focusing location x, is ап indication that this very steep wave 
breaks. 

Concluding remarks 

The ability to obtain focused steep waves at any desired location along the tank is 

demonstrated. It is shown that the focusing process is accompanied by a notable change 
of the spectral shape and is thus essentially nonlinear. The unidirectional spatial discrete 
version of the Zakharov equation is adequate to describe nonlinear evolution of wave 
groups with wide spectrum and moderate steepness. For very steep waves, the agreement 
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between the model predictions and the experiments is only qualitative. This is attributed 
to a number of effects. The reproduction in the experiments of the desired waveform at 
the wavemaker becomes more complicated а5 the amplitude increases. The effects related 
to the bound waves also strongly depend of the wave steepness. These effects in principle 
can be accounted for in the framework of the Zakharov equation. The corrections due to 
bound waves were not introduced in the current study. The most important factor, 
however, that causes the discrepancy between the experiments and the computations, is 
the wave breaking. The breaking effects and the resulting energy dissipation were clearly 
documented in the present study. The Hamiltonian Zakharov model is incapable of 
describing these non-conservative effects. 
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УДК 532.59 

ОДНОНАПРАВЛЕННАЯ ВОЛНА ВЫСОКОЙ КРУТИЗНЫ: 
ЭКСПЕРИМЕНТ И МОДЕЛИРОВАНИЕ 

K Гулицкий, Л. Шемер, Э. Кит 

В работе представлена возможность получения однонаправленной волны 
высокой крутизны в предписанном сечении по длине канала. Показано, что 
процесс фокусирования волновой группы сопровождается заметным изменением 
формы спектра в  результате существенной нелинейности. В качестве 
теоретической модели была использована полученная ранее авторами версия 
уравнения 3axapoBa, описывающая нелинейную эволюцию в пространстве 
волновых групп с широким спектром. Получено хорошее согласие между 
численными и экспериментальными результатами для волновых групп с умеренной 
крутизной волны, а также хорошее качественное соответствие для волновых групп 
с высокой крутизной. Выдвинуто предположение о влиянии связанных волн на 
изменение ожидаемой формы волны и на местоположение места фокусирования 
волновой группы. Отсутствие согласия между экспериментом и численным счетом 
для волновых групп с очень высокой крутизной можно объяснить отчасти тем 
фактом, что модель Захарова, основанная на сохранении гамильтониана, 
неспособна описывать такие неконсервативные процессы, как разрушение волны. 
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