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GAP SOLITONS 

S.V. Polyakov, A.P. Sukhorukov 

In this paper we present the studies of the problem of slow and immobile solitons 
which are excited inside the stop bands of inhomogeneous media with either quadratic ог 
cubic nonlinearity. We found ап integral criterion оЁ slow soliton formation, determined the 
main properties of вар solitons. The dynamics оГ parametric gap soliton formation and 
propagation in quadratic media 15 illustrated by means оё computer simulations and compared 

with such solitons due 10 cubic nonlinearity. 

Introduction 

It is well known what solitons can be excited ш wide range оЁ nonlinear media due 
to the balance оЁ dispersive and nonlinear effects [1]. The properties оЁ solitons in the 
media with third-order noniinearity were studied very intensively. In particular, the 
phenomenon of slow and immobile solitons forming near the bounds of stop bands in the 
medium with stop bands was discovered and studied theoretically and numerically by 
A.CNewell, Yul. Voloshchenko et. al., W. Chen.,, D.L. Mills and others [2-4]. 
Experimental evidence of slow solitons was reported by B.J. Eggleton et. al. [5]. This 
phenomenon is based on the bound frequency shift due to self-action effects. Thus, the 
non-dumping signals on «forbidden» frequencies may propagate through the material. 
The phenomenon оЁ non-dumping propagation was патей nonlinear tunneling. Solitons 
that propagate in forbidden bands are known as gap solitons. 

In recent years the phenomenon of parametric solitons draws the attention of many 
scientists а around е world. These solitons were predicted theoretically by 
Yu.N.Karamzin and А.Р. Sukhorukov т 1974 [6]. The parametric soliton consists оЁ 
three frequencies @,, ®, and @;=0)+0, or in degenerated case оЁ two frequencies 

с - fundamental frequency (FF) and 20 - second harmonic (SH). It is clear, that оп 
quadratic nonlinearity с wave расКе! with narrow band can not affect itself, 
Nevertheless, it can interact with second and subharmonic (mutual interaction). Thus the 
soliton due to quadratic nonlinearity consists ОЁ two ог three colours. In 1995 а scientific 
group directed by G.I. Stegeman proved the existence оЁ parametric solitons 10 
experiments with the beams [7]. Since then, many works апа publications were devoted 
to the phenomenon оё optical parametric processes (see [8-11] and the references within). 

Nevertheless, the investigations and discussions оЁ problems оё immobile and slow 

solitons were started only recently [12, 13]. There are still a lot of questions on the 
excitation and properties of gap parametric solitons in periodical structures. In order to 
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excite this type of solitons one can use media with two dispersion curves with a non- 
transmission gap between them, because both FF and SH have to be disposed near critical 
frequencies - bounds between transmission and non-transmission bands. Та particular, this 
phenomenon can be observed ш the chain of oscillatory circuits with asymmeltric 
constants of linear coupling. In this paper we present theoretical outline and results of 
numerical simulation, that show the main properties оЁ сар solitons both in @ апа °) 
inhomogenous media, illustrating some analogies between parametric solitons and ones 
due to cubic nonlinearity. We found that for both у) and % cases it is possible 10 
modify Hamiltonian /;, апа thus to obtain а good indicator оЁ nonlinear processes 
domination. 

Basic equations оё ¥ tunneling 

Let us consider the wave propagation in the system with a stop band. In the 
neighborhood of the boundary frequency w, one can approximate the dispersion relation, 
taking into account the cubic nonlinearity as follows: 

-© = DR - с\АР, (1) 

where D is а dispersion coefficient, с is а coefficient of nonlinearity, Q=+(w-w,) is the 
detuning of the impulse’s frequency from the boundary @,. Here, plus must be chosen for 
stop-band, аг lays under the limit frequency and minus corresponds 10 reverse situation. 
It 15 clear, аб ш е linear case а signal can not propagate into the medium 1Ё its 
frequency falls into е stop band, ав the wave number becomes imaginary. Nevertheless, 
е boundary frequency can vary due to the presence оЁ а nonlinear term, namely 1Ё ¢>0, 
it shifts into е forbidden (in linear approximation) band and if o<0 - it shifts to the 
reverse direction. 

The dispersion relation (1) what conforms to the propagation of narrow-band pulse 
can be obtained by substitution Ezj/'ZA(z,l)exp(i-z'cobr)+c.c., where A 15 а slow-varying 
envelope. The envelope of a signal into nonlinear medium can be described by NLS: 

DAIRI=ID(D°AIOZ) + iclAPA, (2) 

what gives the dispersion relation (1). АП variables and parameters оЁ (2) ате supposed to 
be dimensionless. 

The integrals оЁ motion {see for example [10]) are very useful т the theoretical 
analysis оЁ nonlinear tunneling. п е absence оЁ waves аё the boundaries of the system, 

the full energy / l:f(f‘ l412dz doesn’t vary in time. There are also two Hamiltonians апа 

1= TA"(2A032) - A(A"IB) )z, 

1,=) [DIDAR:R - оАМ а). 

We found Фаг it 18 possible to modify 7,, so the sign of this Hamiltonian indicates Ше 
domination of nonlinear processes on dispersion, or, in other words, the negativeness of 
modified /, . Let us make а conclusion оп slow solitons formation. If the envelope could 
be presented as 

A:/Iexp(—i/'nz), (4) 
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where A 18 real, it is clear that /, acquires the «superfluous» term Dm?l|, what 18 implied 
with the energy transfer. Even if nonlinearity dominates on dispersion, this positive 
«superfluous» term can make /; positive and doesn’t permit п5 10 determine analytically 
which of the processes is stmnoer To eliminate the infiuence оё energy transfer on I, we 
need 10 subtract Dm?l, from the Hamiltonian. Let us remark that IZ| after subsUtqun A 

from (4) gives 2mi,, and if there 18 no energy transfer 7,=0. Thus, we can modify the 
Hamiltonian /, а5 follows: 

I,=1, - DIL,?/(41). (5) 
We would like to notice Фаг (5) in the absence оЁ nonlinearity 15 always positive. Indeed, 
the assumption o=0 gives: 

I, = D(I(3A/32)-(QA™/82)dz - I,2/4]AA™d7). (6) 

The sign of Z~3 is determined by е sign of expression inside the brackets. It can be 
determined by substitution of /, in (6). So, the brackets can be given in the form: 

(4)(3A/92)-(0A™132)dz ] AA"dz - А' (дАГдг)аг?)/(А!. ). 

The obtained expression 15 positive due to Cauchy - Schwartz inequality 

l,[fjfza’z!2 < ] /Раг | Раг ‚ where in this case f,=A", f,=0A/dz. 

This permits us to make а suggestion а! the sign оЁ 7, could be used а5 ап 
indicator оЁ nonlinearity domination which 18 not disturbed by the energy transfer 
processes. We will show below that е numerical experiments confirm this conclusion. 
The same modification method could be used to determine the domination of nonlinear 
effects to study the propagation of inclined wave beams. In order to do this, one can apply 
the time-spatial analogy Ю (2), апа change г for @е propagation coordinate and z for the 
fransverse one. 

It is possible to perform the same analysis for у) medium and to obtain 
modification similar 1 (5) [14]. 

Let us remind that NLS (2) has ап analytical soliton solution [15]: 

A=asech[(z-ut)/l]exp(iQu-igz), (7) 

where а 15 а peak amplitude of the slow soliton, и is а velocity, 118 ап extension, © 15 а 
detuning of the soliton from the boundary frequency and ¢ is ап addition 10 wave number, 

Substitution of (7) to (2) gives that the parameters of a soliton are coupled by the 
following correspondences [16] 

и=[20(са? - 20)]!?, (8a) 

=[2/(са?)}!°, (8b) 

g=|(oca* - 2Q)12D]*>. (8с) 

The analysis оЁ (8) gives а simple result, that т order 10 excite а soliton т @е stop-band 
it is necessary 10 excite the medium edge by @е soliton (7) with а peak intensity a*>2Q/c. 

Computer modeling оё у) nonlinear tunneling 

To examine the dynamics оЁ formation and interactions between slow and 
immobile gap solitons we applied numerical simulations. To study the propagation of 
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complex input signals including long impulses we numerically solved the boundary 
problem for а nonlinear medium, described by (2). The left edge оЁ а medium is exited by 
the input signal A(r,z=0)=F,(r). The initial energy distribution 18 described by 
A(t 0,z)=E(z). In particular, for tanneling process the initial energy inside the system 
is equal го zero. As the observation о the propagation of a algnal т the nonlinear media 
is most interesting for us, the closeness of the right edge is very undesirable, due to 
unavoidable reflection оё impulses’ tails. To control the correctness оё the computations 
we watched for the conservation оё integrals оЁ motion / , ,. 

First, we examined the boundary excitation process оЁ exact seliton solutions (7). 
These excited solitons propagate without shape distortion with the velocities, predicted by 
(8b). № is necessary 10 underline, that the integral оЁ motion 1, т all опг numerical 
experiments remains positive‘ that doesn’t indicate strong nonlinear selfaction. However, 

the sign of modified integral /, points to a soliton propagation process. 
To show the 1nbens1t1v1ty of the modified integral to the phase modulation, we car- 

ried out a great nurnber оё computer experiments with various initial amplitude distributions 

and boundary excitations. These experiments demonstrate, that the sign of ] can be used 
as a keen indicator of nonlinear tunneling effect. In particular, for the initial distribution 

Al 
=0 

tion constant M. It 15 clear that [ =/, then M=0 (immobile impulse). We found, that е 

=A.exp —:2/1 Nexp(iMz) we measured the dependence оЁ [, апа l on phase modula- Е р р 3 р 

variation оЁ integral 1 is approximately 100 times less ап that оЁ 7, for О<М<5, (for 
example, in the nonlinear medium D=5- 10, o=1 for A_=0.593861, /.=0.2, апа M= 0 we 

obtain I, —[ =10°%; if M=1, уе observe 1,=4.4-10* апа 7,=2.24-10°%). Tt must be stressed, 
that the calculatlons method we used does not plo\qde а precise [, conservation due 10 
boundary influence to the phase of the signal. That is why we expect better insensitivity 

of [ for the scheme, that does not take into account the boundary problems i.e. for the 
ring- ке system with connected boundaries. 

It is interesting 10 observe the dynamics оЁ tunneling process with boundary 
exciting pulses оЁ different forms. Upon entering into the medium, these pulses split into 

one or more slow solitons depending on the form of the pulse energy. 
For the particular case оЁ rectangular pulse with career frequency equal 10 @, 

E,(1)=A,{th[100(z- b)]+th[100(b N}, with A =1.5, b=2.5 propagating т the nonhnedl 
dlspelflw medium D=5-103, o=1 ме camed out demded studies of the evolution of the 
signal shape. This rectanguleu pulse generates three slow solitons into the medium. Their 
velocities could be determined by analyzing the graphs showing the time dependence оЁ 
the positions of the vertices. Thus obtained velocities, namely 1,=0.2, 1,=0.165 and 
1,=0.16 апа durations differ noticeably (approximately by one with а half) from the 
velocities and durations calculated from е peak intensities (A *=10, A,’=9, A,’=14). 
This inconsistency leads us to the suggestion that the frequencies of new formed pulses 
are different from initial ones. So, propagating solitons possess nonlinear frequency 
shifts. Indeed, the analysis of the phase modulation of tunneling solitons has shown the 
presence оЁ such shifts: (2 =2.5, Q,=2.6, Q.,=4. These results are in а good agreement 
with theoretical calculations using fo: mula (8) 

The study of mutual interactions between two pulses was conducied for initial 
(Cauchy) value problems and boundary value problems. In all cases there are two 
interesting tasks: the mutual interactions between formed solitons апа interactions 

between weak underthreshold soliton-like pulses (with positive 1 for single pulse) that in 
some cases may generate one rigorous soliton. 
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The interactions of initially assigned pairs of identical solitons were investigated 
for energy distributions given by: 

2 

Al _y=%,_ asech[(z-z,)/lJexp(i®.), (10) 

where g апа / are selected according to (8). The distance between the solitons A=lz -z ] 
varies taking into account the necess1ty of tails overlapping. The phase difference A= Ф -Ф, 
determines the interaction scenario. If А=0 we observe the beating effect, when the 
solitons periodically merge into one powerful pulse with two symmetrical spikes on tails. 
Scon after formation, this strong pulse falls apart ап the system returns into its initially 
state. ТЕ the phase difference 15 equal 10 n/Z, the interaction scenario changes dramatically. 
Опе оё the solitons sucks energy from е other, 50 one pulse becomes stronger. After the 
energy exchange, the solitons repulse each other. Finally, if A=r one can observe the 
repulsion without energy exchange. 

The energy fusion we observed for a pair of exact solitons in phase leads us to the 
interesting problem of two underthreshold soliton-like pulses fusion and the capability of 
soliton generation. The initial conditions are set лп form (10) with @ =0.4a апа [ =/, where 

а, | are the parameters оЁ sech soliton accordmg 10 (8). It 15 с1еат that a pulse alone is 
sp1eadmg due to dispersion. However, а pair оё such impulses can form а soliton. 

The interaction dynamics оЁ signals initiated by boundary excitation оЁ the medium 
was studied for pairs of sech soliton-like pulses: 

AI_\,:O:Z’ilasech[(t—tol.)/t]exp(id),.). 

The process of interaction of two exact solutions of (2) is presented in Fig. 1. Fig. 1, a 

Fig 1. Tunneling of pairs оё solitons (а) апа underthreshold pulses (b) in cubic medium 
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represents the propagation of two overlapping solitons in phase. It is clearly seen, that 
these solitons attract each other and collide. The collision results in energy redistribution, 
that affects the velocity оЁ each soliton (8a). This velocity mismatch leads to separation 
оЁ solitons. In antiphase the same solitons repulse each other. 

The boundary excitation by underthreshold in-phase pulses with ¢ =0.7a leads 10 
formation of a pulsating soliton. It is easy to notice that some energy leaks off during the 
process оЁ this soliton producing (see Fig. 1, ). 

The outlined consideration shows аб it is possible to use the pulses with 
noticeably lesser amplitude than that оё slow soliton to generate one during the process оЁ 
nonlinear tunneling. 

Basic equations оё у) tunneling 

Let us consider а periodically inhomogenious medium with а dispersion 
characteristic, illustrated in Fig. 2. 

The fundamental and the second harmonics of the parametric soliton are coupled 

by nonlinearity [6]. In order (0 excite slow ог immobile soliton the second harmonic 
would have the frequency w,~w_near Ше top оё the upper curve and е fundamental one 
would consist ОЁ two waves with the frequency w,=w,/2 апа cross-oriented wave vectors 
& =k, (see Fig. 2). 

The envelopes оЁ these waves are found to obey the following equations [16]: 

OB,/t=iD (9B /9:2)-iO,B,+iB,B, B, 

0B, /0t=ID (d°B, /д:?)-1© B, +iB B , В. (i1 

0B ,/dt=iD (0°B ,/0:%)-i©,B „В,В В, 

where г is the propagation coordinate, D, are @с dispersion coefficients near е 
extreme points оп the dispersion curve, В, › 

1 are the coefficients оЁ дчайтанс nonlinea- 
2 rity. Terms © =(0,(-0,) and ©,=(m,-0) 
В correspond to frequency detuning between 
\ / frequencies of soliton and critical frequ- 

/ encies. 
To examine the properties of slow 

/ . й 
& solitons, let us substitute 

® А 

e В ‚ @ 
A\ 12 A В11.12‚2:А11_12,2@)6}@('“711,12.2‘)’ 

where &=z-v, ', v, are velocities оЁ РЕ 
and 5Н respectively, ¢ are additions to 
wave numbers, into (11): 

D (92430 =(8.+D ¢ YA -B.A A, 2 2 2T АРа Ay 

: ' I >~ D (A, /08)=(0+D ¢, )A,-B,AA —-п/2 О 72 & 
(12 

D (0°A,/08)=(0,+D,q,,))A B AA 
Fig 2. Dispersion curve of the system {lincar T Ny | 
regime); а, b, ¢ mark the boundaries оЁ pass-bands; Irl [ad.dl’tlO;l,Fl‘;V({a Oibézgn‘ ‘hc?m (11) tihgt gle 
circles correspond to excitation оё immobile soliton ~ YEOCIY © anc 1s determined by е 
and squares - of slow one following formula: 
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v=2q D, j=1,2 (13) 

and the additions to wave numbers satisfy to: ¢,=¢q,,+¢,,. The requirement of РЕ апа $Н 
velocity equality leads to the dispersion coefficient ratio: 

D,=2D, (14) 
апа additions Ю wave vectors parity: ¢,,=¢,,=q,, therefore 

f]2:2(] |' (15) 

It is easy 10 normalize equations (12), taking into account (14) апа (15): 

A=A -А A, 
1 1 2 (]6) 

A)'=0A,-A 2, 

where с 18 е dimensionless constant 

0=D(0,+D,9,)/[D(0,+D,q,.2)]= 2(0,40*2D )/(©,+v¥4D ). (17) 

The extension of soliton is determined by: 

I=[D /(©,+v*/4D )], (18) 

апа slow soliton’s velocity can be found from: 

v*=4D,(00,-20,)/(4-0.). (19) 

It is mecessary to notice, that in case =] it is easy Ю find ап exact sech? soliton solution. 
As it follows from (17), it 18 possible to excite а sech? soliton in wide range оЁ parameters 
©,>20,, D and B, imposing correct velocity by initial ог boundary conditions. The 

characteristics оЁ such solitons could be found by substitution the exact solution 

A=asech?(&/2[) шю (12), which gives us the extension апа peak amplitude: 

2=31,D,(20,-0,)'=31rD, (0,20 ), (20) 

a;,=a,=(0 2w )/ (2B В,° a=(o д0 )/. (21) 

Let us note, that @е condition оп detunings ©@,>20, guarantees the positivity of 
left part in (20), so the extension remains real. The next interesting feature is that the 
dispersion has no effect on peak amplitude. Nevertheless, the increasing of dispersion 
increases energy trapped into soliton by enlarging its extension (20). The parameters оЁ 
slow soliton (20), (21) are not depended on excitation frequency and determined by the 
properties оё media, оп the other hand, the velocity оЁ slow sech? soliton decreases with 
tuning the frequencies deeper into the gap. In the limit case, the velocity оЁ soliton is 
equal to zero. The properties оё immobile solitons are examined theoretically м [12, 17]. 
The method оё excitation оё such solitons was presented and numerically proved in [18]. 

Computer modeling оё х tunneling 

To support the theoretical investigations and to explore the dynamics of gap soliton 
tunneling we developed the algorithm of numerical solution of boundary value problem. 

First, we used the simulation program 10 prove the possibility оЁ boundary sech? 
soliton excitation. We found that the soliton in question could be excited by irradiating 
е edge of е nonlinear chain with РЕ and 5Н waves with soliton shapes. This soliton 
propagates frecly trough е system, as it was predicted theoretically. 
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Second, we were interested in evolution of long input impulses consisted of both 
РР and SH. We chose е following detunnmvs ©,=0.9, ©,=0.1. The system was 
determined by dmpersmn coefficients D,=102, D,=5- 10” dlld constants оЁ quadratic 

nonlinearity B,=1, В,=2.2. We obselved the cffecr of splitting of plane waves into 
slightly-oscillating slow solitons with close peak intensities, extensions, velocities and 
intervals. The variations of SH input intensity did not affect critically on the process of 
soliton formation. Moreover, the numerical experiment showed that it is possible to 
generate slow soliton series by irradiating the chain with ЕЕ only. It means that FF, that 15 
exposed 10 bragg reflection and can’t propagate alone, generates SH due ю nonlinear 
effect. The SH wave is unable to propagate trough the system too, because it is situated in 
the stop-band. Thus, energy of SH concentrates near the edge of the system. Then it 
grows strong enough it starts to interact with РЕ. This mutual interaction leads е 
soliton-like formation ю «tear off» from the edge zone оЁ nonlinear system. The 
dynamics of slow soliton generation and tunneling is presented in Fig. 3. 
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Fig 3. Generation of slow parametric вар solitons at the fundamental frequency and second harmonic 
frequency by input CW radiation at the fundamental frequency only 

л
 

(
]



The dynamics of interactions between two parametric sech? solitons, injected into 
the media from the bound 15 also оЁ interest. This process was simulated for the medium 
with dispersion coefficients D,=102, D,=5-102 and coefficients оЁ nonlinearity B,=3, 
B,=5. The typical interaction scenario is presented in Fig. 4. At first stage two solitons 
without phase mismatch propagate almost in a parallel way. At the critical point they start 

to fuse. At е collision point some energy 15 dropped, but the main part of it organizes 

the oscillating formation. The interval between solitons ejection determines the time 
between first collision and the «deepness» of pulsation. 
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Fig. 4. Collision of two in-phase parametric solitons
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Fig. 5. Tunneling оЁ overlapping underthreshold synphase bicolour signals, that leads 10 formation оЁ 

oscillating parametric soliton 

The fusion effect described above leads us to the question of possibility of 
decreasing the peak intensity оё input sech?® solitons 10 obtain underthreshold impulses, 
that cannot propagate through the chain alone, while the pair of these solitons can fuse 
and generate soliton-like signal that propagates on great distances without spreading. This 
regime was observed in numerical simulations. We used previous parameters of the 
medium апа detunings and altered the peak amplitude of sech® solitons and intervals 
between them. The typical behavior of the pair of pulses in «underthreshold fusion» 
regime 15 pictured in Fig 5. The collision that leads 10 fusion occurs near the edge оЁ the 
nonlinear system. The generated pulsing soliton slowly propagates along the chain. The 
increasing оЁ interval between two initial impulses аз well а$ decreasing оЁ the peak 
amplitude leads to absence pulsing soliton formation. 

Conclusions 

In this work we investigated the phenomenon оё вар Х) апа ®) soliton tunneling 
both theoretically and numerically. The original theory оЁ slow solitons was developed. 
The exact soliton solutions were found апа its properties were investigated theoretically. 
We presented the modification of integral оё motion /; that converted it to the sufficient 
condition of slow soliton formation. The same modification method could be applied to 
analysis of inclined wave beam propagation in nonlinear media. 

The dynamics оЁ slow soliton formation and main scenarios of interactions 
between solitons were explored by means of computer simulations. The tunneling of long 
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impulses was investigated. In particular, parametric soliton generation regime from pure 
FF wave was discovered. The collisions of in-phase solitons were found to lead to the 
fusion and formation of oscillating soliton. 

The research is supported by RFBR, Program «Russian Scientific Schools» and 
INTAS (grant 97-0581). 
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УДК 621.3.09:621.373.1 

ЩЕЛЕВЫЕ СОЛИТОНЫ 

С. В. Поляков, А. П. Сухоруков 

В статье представлены исследования, посвященные проблеме медленных и 
неподвижных солитонов, возбуждаемых внутри запрещенных зон неоднородной 
среды как с квадратичной, так и с кубичной нелинейностью. Найден интегральный 
критерий формирования медленных щелевых солитонов, позволяющий определить 
WX о основные — свойства.  Динамика — распространения — и — взаимодействия 
параметрических щелевых солитонов в квадратичной среде иллюстрируется с 
помощью численного моделирования и сравнения с солитонами такого же типа на 
кубичной нелинейности. 
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