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CHAOTIC OSCILLATIONS IN A MODEL ОЕ VOCAL SCURCE 

Р, S. Landa 

A model of human vocal folds in the form of two spring-loaded plates, which can 
collide with one another, 18 considered. It is shown that due to air flow between the plates 
excilation of chaotic self-oscillations occurs. In this process the shape оЁ oscillations of flow 
volume velocity was found to be close to observed experimentally. 

Introduction 

Nowadays many different models of voice production are known. A review of 
some of these models is given by Sorokin |1]. These models are of paramount importance 
both for the best understanding the mechanism оЁ voice production and т certain 
practical applications, for example, in speech synthesis and recognition [2], in voice 
pathology [3], апа so on. The heart of any such model is а model оЁ vocal source, i.e., ОЁ 
vocal folds located in фе human (or animal) larynx. The structure of vocal folds is rather 
complicated. It 18 described, in particular, @ {1]. The schematic vertical cross-section оЁ 
the larynx, taken from [4] and somewhat simplified, is shown in Fig. 1, a. The vocal 
folds are formed from cords of two muscles (the vocal muscle 7 and the aryten-thyroid 
muscle 2) and conjunctive tissues. Above е vocal folds there are located the so-called 
false vocal folds 3. They аге free from internal muscies but play ап important role т the 
formation оЁ hissing sounds. As frue vocal folds are resected, their functions are 
sometimes taken over by @е false vocal folds [5]. Between the true ап false vocal folds 
there 18 some expansion оЁ the larynx called Morgan’s veniricles 4. Variations оЁ 
stiffness, length and shape оЁ е vocal folds, ав their internal muscles contract, cause а 

certain change оЁ е fundamental frequency оЁ е seif-oscillations excited. 
A variety оё models оЁ vocal folds, both complicated [6-8] апа moderately simple 

[9-12] are known. The techniques for the calculation оЁ aerodynamic forces determine 
mainly the extent to which one or the other of these models is complicated. For example, 
in the widely known two-mass model by Ishizaka апа Flanagan [9] acrodynamic forces 
were calculated in the quasi-static approximation using the Bernoulli law. In so doing, the 
velocity оё motion оЁ the glottis® walls, the viscosity and inertia оЁ аг were ignored. Such 
а technique was also used ш a simplified version оЁ this model suggested by Herzel апа 
Kaomdsen [3]. 
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Fig. 1. а - The schematic vertical cross-section of the larynx: Ше vocal muscles are labelled 1, Ше aryten- 
thyroid muscles 2, the false vocal folds 3, ала Morgan’s ventricles #; Б - the model of the vocal 
folds 

Another model оЁ vocal folds, which by its nature 18 close to Ishizaka апа 

Flanagan’s model, was suggested in [13, 14]. Contrary to the first, this model permits the 
calculation of aerodynamical forces not only п quasi-static approximation. However, the 
study оЁ this model with such aerodynamical forces, even numerically, is very 
complicated problem. Therefore, we consider below е results оё numerical simulation 
оЁ this model] with aerodynamical forces calculated in quasi-static approximation. 

1. The structure of the model and its equations 

The model involves two absolutely rigid plates suspended by springs 10 the wallis 
оё а tube with right-angled (for simplicity) cross section (see Fig. 1, £). Air enters the 
tube from а reservoir of а sufficiently large volume V due 10 the pressure drop AP=P-P_ 
and can cause secif-oscillations оЁ the plates. It can be shown Фаг the excitation of self- 
oscillations is possible if each plate has at least two degrees of freedom, i.e., it can both 
move progressively in the direction orthogonal to the air flow and turn about axis O, pas- 
sing through its centre of mass. In this regard the excitation of self-oscillations of the pla- 
tes is akin 'ю the excitation оё the bending-torsion flutter оё ап aeroplane wing [15- 17]. 

Assuming the motion of the plates to be completely symmetric relative 10 the tube 
mid-plane, the motion equations for each оё the plates can be wriiten а5 

п7/.7.'„+ ос/'т„+ k(h, - l;a) + к(Ф - ‹;) = Ё, (1) 

7 + o+ К( - 9) + к( h) =M, 

where И, 15 the displacement оЁ plate’s center оЁ mass, ¢ 15 the angle of rotation clock- 

wise about the axis passing through the center of mass, И„ апа ¢ are the values of /1, апа ф 

for undeformed springs, т 18 the plate mass, / is the plate moment of inertia about @е 

axis passing through the center оЁ mass, k=k,+k,+k, is the total rigidity factor оЁ the 
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springs, K=k,a’+k,(b-a)? is the total vigidity factor with respect to the rotation, а 18 the 
distance between the lower edge of the plate _ ара its center оЁ mass, b is the plate length 
along the flow, w=ka-k,(b-a) 15 @е coupling factor characterizing the effect оё the 

displacement оЁ the piate center of mass ор the plate rotation, апа vice versa, o, and B are 
the damping factors, 

b 

F=l o РСОа 

M = ’Jg (x-a)p(x)dx 

are the aerodynamic force and moment acting on the plate which are created by the air 
flow, р(х) в the difference between е air pressure in the inter-plate slot апа 
atmospheric pressure P, and [ is е plate transverse dimension. It should be noted that 
Egs (1) can be obtained by the Galerkin methiod аз а discrete model of bending-torsion 
oscillations of a beam lying on an elastic base. 

Eqgs (1) are conveniently written in another form: 

50""261IS;)+2812‘§'IJ+CO]Z(SO_SO)'FKl (5,5,) = Fy, 
(3) 

53261593285 40,48, )41 (S-So)=F 

where 

8,,=[(b-a)blos(2m)+(alb)BI(2]), 

8,=(alb) (e (2m)-BI(21)), 
§,,=[(b-a)als,,, 

8,,=(alb) o/ (2m)+{(b-a)/b}/(2T), 

o 2=[(b-a)/BYk/m+(alb)KIT+ &/ (mIb) |[J+ma(b-a)], 

o,2=(a/D)kIm+[(b-a)/bIKII-[x/{mIb)}[J+ma(b-a)], (4) 

к =(al/b)(kim-KI17)-[x/(mJDb)](J-ma?), 

=] (b-a )b\ (klm-KITy+ [/ (mI b)Y J-m(b-a)?], 

S,=2U(h +ag), S,=2i{h -(b-a)g], 

F=21(Flm+aMl}y, F,=2l(FIm-(b-a)M/J}. 

1t should be remembered that е vocal folds, executing self-oscillations, collide 

with one another. This process plays а great role in voice production because results in 
the generation оё pulses containing а number оё high harmonics which enrich speech. 
Therefore we have 10 add impact conditions to Едв (3). These conditions may be obtained 
as follows: because the plates are assumed to be absolutely rigid, then only the plate 

edges can collide. For definiteness, first we consider the collision оЁ @е plate edges 

corresonding 10 x=0. Let ап impulse оЁ force FAt, causing changes of the plate momen- 

‘иг mAh, ап оё the plate angular momentum JAQ, arise ав а result оЁ the collision. Thus, 

Far=mAh ‚ Fart=JAg. From this it follows that 
@° 

Аф=(та/Л )А. (5)



On the other hand, it can be easily shown that 

Ah +aNo=Ah, (6) 

If the velocity restitution coefficient after impact 15 R<1, then 

Ahu h -11„ -(1+К)/1„‚ (7) 

where ’70 is the value of h(, after impact, апа /7„ 15 the value of /7„ before impact. From 
(5) - (7) ме obtain the following conditions for е collision of the plate edges under 
consideration: 

Ah.,a:—(i +R)l.10'/ (1+та!//), Аф=- (mal)[(1+R) )/20 `|/(1+,та?/Л). (8) 

In & like manner ме obtain the conditions for the collision оё the plate edges 
corresponding 10 x=h: 

A = (1R, [A+m(b-a)lT],  Ao=[m(b-a)J][(1+R)A, V[L+m(b-a 7] (9) 

From (8) апа (9) we can find the conditions for е collision оё the plate edges 
corresonding 10 х=0 апа x=b in terms оЁ §; апа S, for x=0 

AS =SSy =(1+R)S,, 
(10) 

AS"b:S:f - LS;b‘:—('l+R).S:O'[J'—ma(b—a)]/(]+ma7-), 
and for x=b 

AS,=-(1+R)S,,  AS;=-(1+R)S, [J-ma(b-a)V[J+m(b-a)?]. (11) 

We note that for sufficiently small R the impact may be quasi-plastic [19], i.e. the 
duration of the contact оЁ the plate edges during the impact may be finite. 

It can be shown а! the sound pressure above the slot is 

p)=peu-ug)/ (HI), (12) 

where ¢, 18 the velocity о sound, и is the volume velocity, и is the steady state value of 
и, апа Н is the width оЁ the tube. 

As opposed to е flow оЁ а wing, we are dealing here with one-sided flow. 
Therefore we cannot use the expressions for aerodynamic forces which are known for a 
flatter problem. Let us calculate these forces in quasi-static approximation with using the 
Bernoulli theorem. 

First of all, we use the formula for а dynamical pressure drop as flow is constricted 
gradually [18]. In а zero approximation with respect 10 i/H we obtain 

р(0)=АР-бри?/(252), (13) 

where 1<{,;<2 15 the coefficient depending оп Ше bevel shape аг the slot input and, in 
general, on the Reynolds number. 

According to the Bernoulli theorem we find p(x): 

p)=p(0)-pu(2S S [S(Sy-S,)x/b]-1}. (14) 

Unknown volume velocity и can be found from the formula for а dynamic 
pressure drop ав flow diverges abruptly аг е slot output {18] 
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p(B)=Lppu?l(25,7), (15) 

where (, 18 the coefficient depending оп the velocity profile at the slot’s output апа оп the 
Reynolds number Re (for Ке>10%, if the velocity profile is uniform then {,=0, апа # the 
velocity profile is Poiseuille’s then {,=0.6). Using further the expression (14), in view оЁ 
(13), for x=b уе obtain е following equation for the volume velocity u: 

puf2=8.28 2API[((,-1)S 2+(1+L,)S F. (16) 

Substituting (14) т (2) and taking into account (13) we find 

F=Dl[pu?/(25,2))(1+8,-S,/S,) 

М=гЕ-роЧи?/2(5 5) 0(5 /S )4(S,2-S, /(25,5 )]s 

where r=b/2-a. 
In addition 10 е explanation оЁ the excitation of self-oscillations, the model 

allows us to explain some other experimental facts as well. For example, certain results of 
е experiments performed with human vocal folds п vivo are presented by Kaneko т 
[20]. Tn these experiments human vocal foids were excited by а mechanical vibrator over 
the frequency range of 30-300 Hz. As a result of investigation of 17 men and 19 women, 
it was found that in the case of excitation of unstrained folds there is one resonance both 
for men and for women, the resonant frequency being in the range of 91-145 Hz for men 
(average value 128 Hz) and 115-167 Hz for women (average value is 136 Hz). For men, 
the average resonant frequency (128 Hz) approximately coincides with their average 
fundamental frequency at phonation (129 Hz), while for women the average resonant 
frequency (136 Hz) в significantly lower ап their average fundamental frequency аг 
phonation (240 Hz). Measurements оё frequency responses ш the case оё excitation оЁ the 
strained folds, ready 10 be voiced with а fundamental frequency f,, showed their essential 
distinction both between men and women апа between low апа high frequency /. For 
men, if the frequency / was low (approximately 100 Hz) then, аз in the first case, one 
resonance was observed af the frequency /; but Н the frequency f; was high then two 
resonances were observed: one аб а frequency оЁ about 100 Hz, апа another аё the 

frequency / For women two resonances were always observed: one also at а frequency 
of about 100 Hz, and anocther аг the frequency f,. These facts imply that vocal folds 
possess at least two natural frequencies, one of them depending only slightly on the extent 
of fold strain and another being completely determined by it. This behaviour can be easily 
explained in the framework of the model considered if we assume that the cord of the 
vocal апа the aryten-thyroid muscles, whose straining determines the fundamental 
frequency of phonation, passes close to the centre of mass of the fold. Under this 
assumption е change оЁ strain оЁ these mwuscles is associated with а change оЁ the 
rigidity К, in the model, which has to atfect slightly the value of the natural frequency 
close ю the partial frequency оЁ rotational plate oscillations. At the same time, it has 10 
change considerably the natural frequency close to the partial oscillation frequency of the 
plate centre of mass. ТЕ both frequencies are sufficiently close 10 each other then under ап 
external periodic action only one resonance can be observed. 

2. Results оё numerical simulation оё е model equations 

The parameters which are necessary for the simulation оЁ self-oscillations of the 
human vocal folds can be estimated оп the basis of the information аге presented by So- 
rokin [1]. We set the fellowing values оЁ the parameters: £;=1.37, {,=0.2, р=1.3.103 g/cm’, 
т = 0.15g, / = 0.004 gem?, k=810* g/s?, К=2400 gem¥s?, к = 103 gem/s?, a=40 g/s, 
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B=1 g/s, а=0.15 cm, b=0.5 cm, /=1.6 ст, ;10:0.07 cm, ’/;,,1:0.06 cm. The parameters AP 
and R are varying. 

A steady state solution оЁ Egs (3) в determined from the following algebraic 
equations: 

O (Sy=So)+Ky(Sy=S,)=Fy, - 0.3(5,-5,) 41, (8-S )=F . (17) 

(Here the subscripts ‘st” are omitted for brevity.) 
Taking into account (4), (16) and (17), we can find the dependence of steady-state 

values of the cross-section area оЁ the slot at its input and output апа оё the volume flow 
velocity u, оп the pressure drop AP. This dependence 15 given in Fig. 2. 
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Fig. 2. а - The plots of §,¥ (1) апа §,* (2) versus AP; b - the plot of 1, versus AP for the values of the 
parameters given above 

Writing linearized equations for small deviations from е steady state vaiues 
found, one can find a condition for the self-excitation of the system and the self- 
oscillation frequency in the neighbourhood of the boundary of self-excitation. It can be 
shown that е condition of seif-excitation is satisfied for AP2AP =~ 5650 g/cms*= 
=5.7 ста оЁ water. The crirical valuze of u associated with this value of AP is и 527 cm’/s. 
The self-oscillation frequency т the neighbourhood оЁ the self-excitation boundary 15 
f=w/2n=120 Hz. The results obtained correspond to known experimental data. 

Numerical simulation оё Egs (3), with using (17) and the impact conditions (10), 
(11), shows that excitation оЁ self-oscillations is hard. The character оЁ the transition 
throngh the self-excitation threshold essentially depends оп the restitution coefficient В, 
For small R а chaotic attractor exists оп each side of е transition point, but for 
AP"<AP<AP,, where AP"<3700 g/cm-s?, 11 addition 10 this attractor the steady state is also 
ап attractor, For R close 10 unity and AP<AP, no chaotic attractor has been found. In this 
case the transition through the self-excitation threshold occurs via intermittency. 

The shape of oscillations of S, for R=1 and different values of AP are given in Fig. 
3, а, b and с. The shape оё oscillations оЁ S, and и 18 similar 10 that for S, For АР=6000 

the oscillations resemble т their shape stochastic oscillations in Neymark’s pendulum 
that is an example of stochastic generator [21, 22]. Power spectra of the volume velocity 
и for аП indicated values ов AP contain only а single line, but this line 18 moderately 
wide. An example оё е power spectrum is shown 11 Fig. 3, 4, 

For small values of the restitution coefficient R stable self-oscillations are possible 
down 10 АР*. For AP"<AP<AP,, their existance depends оп initial conditions. [а this range 
of AP the oscillations excited in their shape are close to periodic with the fundamental 

frequency about 120 Hz. An example оё such oscillations is illustrated т Fig. 4.
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As AP increases the oscillations become more chaotic and the duration of the 
contact of the plate edges during the impact increases. This is illustrated in Figs 5, 6. 
Power spectra оЁ и contain а number оЁ moderately narrow lines аг the frequencies 
divisible by the fundamental frequency (see Figs 5, @ 6, @). 

It is interesting that the phase shift between oscillations of the lower and upper 

edges оё the plates is close 10 observed т experiments. This 15 illustrated in Fig. 7, where 

oscillations оЁ S, апа S, both numerical (for AP= 6000, R=0) and experimental [23] are 

shown. 
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Fig. 5. The dependences of S, (), S, {b), и (с) 
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Fig. 7. Plots of $5 (solid lines) апа S, (dashed Нлез) versus time for numerical simulation (а) and ап 
experiment (h) 

In more detail the shape оЁ the air flow volume velocity pulses is given in Fig. 8 
for R=0, AP = 6000 and AP=10000. It corresponds to known experimental data [1]. 
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Conclusion 

So, ме have shown а! the model considered allows п5 10 simulate chaotic self- 

oscillations оЁ human vocal folds taking into account collisions between them. 
Experiments with speech synthesators, where have used periodic vocal sources, show that 
for better sounding it is necessary to add small noise [1]. It seems likely that in the Nature 
slight chaos plays а role о this noise. 
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УДК 537.86/.87 

ХАОТИЧЕСКИЕ КОЛЕБАНИЯ B МОДЕЛИ ГОЛОСОВЫХ СКЛАДОК 

I1.C. Ланда 

Рассматривается модель голосовых складок человека в виде двух пластин, 
прикрепленных пружинами к стенкам ТрубЬ1. Предполагастся‚ что в процессе 

колебаний пластины могут соударяться друг с другом. Показано, что под 
действием потока воздуха происходит возбуждение хаотических колебаний пластин 
и скорости воздушного потока. При определенных значениях параметров форма 
колебаний объемной скорости потока оказалась близкой к экспериментально 
наблюдаемой. 
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