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PHASE SYNCHRONIZATION ОЕ SWITCHINGS IN STOCHASTIC 

AND CHAOTIC BISTABLE SYSTEMS 

V.S. Anishchenko, A.B. Neiman, А.М. Silchenko, Г.А. Khovanov 

We study synchronization of switching processes in stochastic and chaotic bistable the 

systems driven by а periodic signal 1 terms of phase synchronization. Introducing 

instantaneous phases оЁ transitions between metastable states and the periodic forcing we 
show explicitly the effect оЁ phase locking. The dynamics оЁ phase difference арреаг 10 be 
qualitatively equivalent to that of a synchronized classical self-sustained oscillator. We have 
found that the degree of phase coherence between е input signal and the response estimated 

employing the cifective diffusion constant is maximal аб ап optimal noise level in stochastic 

bistable system от at ап optimal value of а control parameter in а purely deterministic case. 
We also consider the effect of mutual synchronization of the switching processes in coupled 

stochastic апа chactic bistable systems. 

I. Introduction 

Starting with the work of C.Huygens [1] synchronization phenomena attracted 
great attention of researchers from many different fields оЁ science [2]. According 10 [3], 
«to synchronize» means to concur or agree in time, to proceed or to operate at exactly the 
same rate, to happen а! the same time. Synchronization occurs in nonlinear self-sustained 
oscillators driven by external periodic force or coupled with each other [4,5]. In the 
absence of periodic force the system should possess a stable limit cycle in the phase space 
which reflects stable oscillations occurring in the system. It is important 10 note, Наг the 
properties оЁ these oscillations, i.e., the natural frequency and the amplitude, are 
determined by the internal dynamics and do not depend (within reasonable ranges) on the 
initial conditions. In general, synchronization can be treated as the appearance of some 
functionals characterizing the correlations in temporal behavior of two or more processes 
[2]. The instanteneuos phase plays the role of such functional in classical theory of 
oscillations. Synchronization defines ав the locking оЁ instantaneous phases Ф(г) оё а 
state variable оЁ the self-sustained oscillator and of the external periodic force 
W(0)=Q,.t: In®(1)-m¥(r)l<const, ог by а weaker requirement оёё frequency locking 

Q=0=(m/n)Q,. Here m, п are integer numbers. These requirements are fulfilled т finite 
regions оЁ the parameter space оЁ the system which called Arnold tongues. Recently, 
classical approach 10 synchronization based оп the notion оЁ instantaneuos phase of 
oscillations was generalized оп the cases оЁ non-autonomous and interacting chaotic 
systems [6.7]. 
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The problem of noise influence on the synchronization effect of self-sustained 
oscillators was first raised by S.M. Rytov [8] and then studied т detail by R.L. 
Stratonovich [9]. Gaussian noise leads to amplitude and phase fluctuations [9]. As a 
result, the phase difference ¢(#)=®(z)-'¥(¢) also fluctuates and, т the assumption of 
constant amplitude, its slow dynamics can be described by the stochastic differential 
equation (SDE): 

0= A-2G(9) + (, ) 
where A=Q-Q, 15 the frequency mismatch, С(ф) 18 а 2r periodic function, € is the 
parameter оЁ nonlinearity ап &(r) 18 Gaussian noise. In the case оЁ Van der Pol oscillator 
studied by R.L.Stratonovich [9] С(ф)=5тф and the phase difference performs 
overdamped Brownian motion in @е tilted periodic potential U(¢)=-Ad-ecos¢. 1Е A<e апа 
the noise strength is small, then the phase difference fluctuates for a long time inside a 
well оё the potential U(¢) (the phase locking) and rarely makes jumps from опе potential 
well to another (i.e., displays phase slips). 

As is well known, the effect of noise on the synchronized self-sustained oscillator 
is negative: the increase of noise intensity leads to the loss of phase coherence (phase 
slips become more frequent) and shrinks Arnold tongues [10,11]. However, there are 
qualitatively different situations when additive noise plays the constructive role and 
causes phase transitions [12]. One of the typical examples of the positive effect of noise is 
stochastic resonance (SR). 

The phenomenon of stochastic resonance [13] has been extensively studied over 
the last two decades [13]. SR occurs in a wide class of nonlinear systems driven 
simultaneously by noise and а signal. The necessary property which а nonlinear system 
should possess to be able to demonstrate SR is the existence of a noise-controlled time 
scale. 

Recent investigations have shown аг SR also takes place in multistable dynamical 
systems which have two co-existing attractors in phase space [16-19]. The effect of noise 
on such systems leads to the random transitions of the phase trajectory between different 
attractors and causes the appearance of a new noise-controlled time scale. It should be 
noted that SR takes place independently оп the type of the co-existing attractors which 
can be regular ог chaotic [16]. Moreover, ав was shown in works [16,20], SR also can be 
observed in purely deterministic case when the regime of intermittency of «chaos-chaos» 
туре takes place апа hoppings between different chaotic attractors caused by the internal 
dynamics of the system. 

The traditional description of SR defines this effect as the amplification of a weak 
signal applied to the input of the system by tuning the noise intensity. SR manifests itself 
in the existence оЁ а bell shaped maximum т the dependence of the spectral power 
amplification (SPA) [21] ог signal-to-noise ratio (SNR) [22] versus noise intensity. For 
extremely weak signals SR 15 correctly described by the linear response theory [23,24]. In 
this case a stochastic resonator might be thought as an equivalent filter with a noise tuned 
transfer function determined by the linear susceptibility оЁ the system. In order 10 
calculate the response of the system we have to know its statistical property in an unper- 
turbed (i.e. in the absence of the signal) equilibrium state (or more generally, in a statio- 
nary state). From this point of view, the structure оё the weak signal 18 immaterial: the 
signal can be harmonic, quasiperiodic [25] ог even aperiodic broad-band noisy [26,27]. 

Another way for description of SR, based on the statistics of residence times, has 
been proposed by Gammaitoni et. al. [28,29]. In the absence оЁ periodic excitation the 
residence time distribution possesses an exponential shape. However, when the periodic 
signal is switched on, the residence time distribution becomes structurized and contains 
series of peaks centered at the odd multiples of the half period of the signal the strengthes 
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Fig. 1. The dependence of mean switching frequency 
оё Shmitt trigger versus noise intensity for different 
values of the amplitude оЁ periodic force: A=0 mV, 
A=60 mV, A=100 mV. Frequency of input signal is 

Noise Voltage, mV 

Fig. 2. The regions of synchronization for different 
values of the frequency оЁ periodic force: Q,=100 
Hz, Q=250 Hz, Q=500 Hz, threshold of §hmin 
trigger М =150 mV 

Q=100 Hz. threshold of Shmitt trigger V=150 mV 

оЁ which decrease according to е exponential law. At an optimal noise level the peak аг 

the half driving period becomes dominant and the probability concentrated within this 
peak passes through a maximum by varying both the noise intensity and the driving 
frequency [30]. This picture clearly displays synchronization features оЁ SR. These 
features manifest themselves more brightly in a situation when the amplitude of the 
periodic force is large enough, although it is insufficient 10 cause the swiitchings т the 
absence оЁ noise. As shown т work [31], which main results are presented in Figs. 1,2, 
the effect of mean switching frequency locking in Shmitt trigger driven simultaneuosly 
by noise апа periodic signal takes place. Moreover, there are regions оЁ synchronization 
оё switchings оп the parameier plane «noise intensity - amplitude оё periodic force» (вее 
Fig. 2) in which the mean frequency of switchings coincides with the frequency of the 
periodic input signal. 

The effect оЁ mutual synchronization оЁ switching processes in symmetrically 
coupled stochastic bistable systems was discovered in work [32]. In this case there are no 
deterministic ime scales in the system and synchronization об switchings caused by the 
interaction оЁ statistical time scalcs оё subsystems which are defined а$ the moments of a 
stationary probability density. The mean frequencies of switchings of the subsystems are 
drawn close to one another with the increase of the coupling parameter and coincide at 
the moment of synchronization. 

As follows from these results, SR-systems can demonstrate synchronization-like 
pbenomena which are similar Ю classical synchronization mentioned above. The 
description оЁ these phenomena by means оЁ the residence time distribution and the mean 
frequency of switchings has one disadvantage - it provides no information about 
instantaneous matching оЁ output switching events with the input signal and does not 
allow 10 answer е questions: how long the switchings between metastable states are in 
synchrony with the input signal? Is it possible to observe phase locking and locking of 
е mean {requency ш finite regions т the parameter space оЁ the system as it is in 
classical self-sustained oscillators? It is important, that such a formulation of the problem 
is just the same as in the classical theory of oscillations, where synchronization is 
understood originally а5 instantaneous matching оё input / output phases. 

The goal of the present study is to bridge a classical notion of synchronization as 
е instantaneous phasc locking effect [2,4,5] апа synchronization-like effects occurring 
in stochastic and chaotic bistable systems [31-33]. For this purpose we first discuss two 
definitions of the instantaneuos phase for а periodically driven noisy bistable system in 
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Sec. П. The effects оЁ phase and frequency locking are discussed т Sec. Ш. Sec. 1V 
devotes to the effect of synchronization оё switchings in а periodically driven chaotic 
bistable system with discrete time. In Sec. V we consider synchronization of the 
switching processes in coupled stochastic and chaotic bistable systems in terms of the 
phase synchronization theory. Our conclusions are given т Sec. VL. 

П. Instantaneous phase for noisy bistable system driven by periodic signal 

We treat а5 the mode]l ап overdamped stochastic bistable system driven by а 
periodic signal, which is governed by the following SDE: 

x=-dU(x)ldx +2DYE(r) + Acos(Qi+v,), (2) 

where U(x)=(-0/2)x*+(p/4)x* 18 the symmetric potential with о„В>0, &(¢) 15 white 
Gaussian noise, у is the initial phase of the signal. We set y,=0 for convenience. This 
systern has no deterministic oscillation frequency. Instead it possesses a noise controlled 
time scale represented by Kramers time or mean escape time from a potential well and 
has essentially relaxation features. In the frequency domain this time scale determines the 
mean switching frequency (MSF) of the system. 

It should be noted that the amplitude of the periodic forcing is always small: the 
signal alone can not switch the system from one state to another. For the low frequency 
modulation this requires that 

А <А, =213[/(3B)]2. (3) 

In order 10 study synchronization in the above described classical sense we пеей 10 
introduce ап instantaneous phase ов the system. For this purpose we have nsed the formal 
but general definition- of instantaneous phase which 15 based сп the concept оё analytic 
signal introduced by Gabor [35]. The analytic signal w(r) 15 а complex function of time 
defined as 

„() = x(0) + iy(2) = а() ехр(:Ф(2), (4) 
where y(¢) is the Hilbert transform (HT) оЁ original process x(¢): 

y(£) =1/n J'w x(t)/(t-7)dr. (5) 

In the last expression the integral 18 taken in the sense оЁ Cauchy principal value. 
Instantaneous amplitude а(г) апа phase Ф(г) оё x(¢) are unambiguously defined through 
this concept as: 

@(#) =arctan[y()x()], — @(0 = (1) + (, (6) 

ав well ав instantaneous frequency o(7)=d(7) 

о() = [Ua(D)][x(0)y(r) - y(D)x(1)] (7) 
The mean frequency () is then defined а5 

() =1lim,_ (U, @(га (8) 

The concept of analytic signal is widely used in the theory of non-linear oscillations and 
waves [36,37]. Recently the definition of instantaneous phase through this concept has 
been applied to study phase synchronization of chaotic systems [6]. 

The phase difference between response and input signal is defined by the following 
expression: 
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(1) = Ф( - Q. (9) 

The analytic signal concept can be applied directly to SDE (2) ю derive explicit SDEs for 
the instantaneous amplitude and the phase difference. During the transformations we have 
used the remarkable property оё any analytic signal: its Fourier transform vanishes for 
negative frequencies. SDE for the analytic signal is 

w=ow - (B/4)(BaPw + w?) + E(1) + Aexp(iQ 1), (10) 

The analytic noise Z(7)=E(r)+in(t), where n(¢) 15 е Hilbert transformation оЁ &(r). From 
Ед.(10) ме derive SDEs for the instantaneous amplitude апа phase: 

а = оа - (B2)a*[1+cos?(0+Q,1)] + Acos ф +&,(1), () 

е = -Q, - (B/4)a>sin[2(0+Q )] - (Ala)sing + (Ма)Е,(7), 

where noise sources Е‚…_(г) are defined а5 

E,(t) = E(1)cosd +n({)sind, 

£,(1) =n(r)cos® - E(1)sind. 

Note that the equations (11) are exact and similar to those for amplitude and phase 
fluctuations оЁ the Van йег Pol oscillator [9]. This similarity is indeed due 10 the structure 
оЁ nonlinear transformation which we have used 10 derive equations for е amplitude апа 
phase. However, there is also ап important difference. The distinction appears т the 
second equation for the phase. In the case of Van der Pol oscillator there is an additional 
term in the r.h.s, Q, which refers to the natural frequency of the oscillator. The absence of 

this term in (11) reflects the fact that the overdamped oscillator has no deterministic 
natural frequency, e.g. there is no rotational term in the equation for the phase for the 
unperturbed system (A=0). 

Although both the amplitude апа the phase are defined а! any instant moment of 
time, they have iniegral character [37]. This follows from the fact that in order to 
calculate them we have to perform the Hilbert transform (5), which implies knowledge of 
the system behavior аё all time axis from -© Го +е9, 

The exact SDEs (11) are highly nonlinear with multiplicative noise. For 
computational reasons it is more convenient 10 integrate original SDE (2) numerically 
апа then perform HT by the well established technique (see, for example, [39]). 

Indeed, other definitions of the phase are possible. As known, the dynamics of 
bistable systems includes the fast intrawell motions and slow switchings between 
metastable states. We can introduce the instantaneous phase of oscillations basing оп the 
moment of switching times. For this purpose we тар continuous stochastic process x(r) 
into а stochastic point process {7,}, where ¢, are the moments оЁ time of successive level 
crossing x=tv =(0/B)"* (see for detail [28]). The residence time between two subsequent 
switching events 15 then T(¢)=¢ t,<t<t,,. Inthis case phase () is defined а5 bt й 

(1) = 2n(t-1 )/(1,, -r,) + 20k, r<t<t, . (12) 
k+1 

The phase defined in this way is a piccewise-linear function of time. In the case of 
purely periodic switching process, when transitions between metastable states are fully 
synchronized with the period 2n/Q, this definition gives the exact phase Q. The 
instantaneous frequency o(f)=2n/7(f) 18 constant during waiting periods inside



potential wellg, while е mean frequency for this definition 18 equivalent to the mean 
switching frequency of the system: 

M 

(w) = Ип„( )Х 2(а (13) 

and can be calculated а150 via residence time distribution. 
Note, that the first definition of the phase bears both inter- and intrawell motions, 

while the second one takes into account only global switching dynamics. Nevertheless, 
both definitions display equivalent averaged behavior пр 10 а constant phase shift [24]. 
This coincidence is not by chance. The analytic signal concept makes automatically a 
separation of different time-scales [37]. This follows from the property оё the Hilbert 
transformation to froze slow variables. The global dynamics of the system, e.g. transitions 
between metastable states, gives the main contribution to the phase dynamics, while the 
short-time fluctuations inside а potential well are immaterial for the global phase 
dynamics [42]. 

IV. Noise enhanced phase coherence 

The results оЁ calculations of phase difference (9) by using е Hilbert 
transformation are presented in Fig.3. As it can be clearly seen from this figure, within 
some region of noise intensity the phase coherence becomes amenable to be observed. At 
an optimal noise level the phase is locked in course of observation time [41,42]. With 
deviations of noise intensity from this optimal value the phase slips appear, so that we can 
speak about partially synchronized dynamics. It is remarkable that е dynamics оё the 
phase difference ¢(¢) is very similar to аг of а synchronized self-sustained oscillator апа 
can be qualitatively described by SDE (1). in the limit cases of small or large noise the 
switching process and the periodic force are incoherent: the mean frequency of switchings 
becomes smaller (larger) than the driving frequency and the phase difference 
monotonically decreases (increases) with time and is represented by a straight line with 
negative (positive) slope (not shown). The same behavior has been observed for the 
phase determined via switching times (12). Fig. 3 clearly shows the effect оЁ 
synchronization: the phases of the switching process and of the input signal are 
instantaneously locked а{ ап optimal noise 
level. It is also seen from this figure that 
tuning noise we can increase the duration of 
locking time intervals. 

The dependence of the mean 
frequency, determined via the analytic 
signal concept (8), and of the mean ; 
switching  frequency, calculated ° by ] 

averaging return times (13), versus noise ] 
intensity is shown in Fig. 4 for different -45| ] 
values of the driving amplitude. This figure 
displays once more the effect оЁ the mean — -90 - 042 
switching frequency locking reported first in Ъ 
[31]. For а weak signal е mean frequency — 135 e . , . 
follows е Kramers law and raises 0 100 200 300 400 500 wh 

exponentially with increasing noise strength. 
However, for а large enough A the mean Fig. 3. The instantaneous phase difference calculated 
frequency matches with the drivine using е analytic signal approach for indicated 

@ (=] _ й . finit . £ . values of noise intensity. Other parameters are A=3, 
requency 1 а finite region оЁ noise a=5, B=1, ©,=0.01 
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intensity. Note, that е behavior оЁ the 
mean frequencies calculated using two <WS T ' 

/ A different definitions оЁ instantaneous phase 

0.04 г 1 / { & nearly the same. It is important to 
2/ mention that the effect of mean frequency 

0.03 | / // ?ockin_g occurs і'п а finite region оЁ noise 
/ / intensity. The w.1dth of this region depends 

0 | и | оп driving amplitude and frequency [31]. 
;:/ 3/ „ As it was mentioned above, the 

о01 /*___‘_____7‘;&‘/ _° presence of ‚ потве makes obscu're .the 

el =g o classical definition оЁ synchronization. 
S g + That 15 why for noisy systems we must use 

0.0 L™, the notion оЁ effective synchrorization 
01 03 05 06 07 09 11 13 D 

Fig. 4. Mean frequency (8) (solid line) апа the mean 
switching frequency (13) (symbols) versus noise 
intensity for different values оЁ driving amplitude: 

A=0 (1), A=1 (2) апа A=3 (3). Other parameters are 
the same as in previous figure 

[40]. The definition of effective 
synchronization can be made via imposing 
restrictions 10 (i) phase fluctuations, (ii) 
frequency fluctuations and () output 
signal-to-noise ratic [40]. In our study we 
consider the strongest definition оЁ 

effective synchronization based оп statistics оЁ phase fluctuations. The stochastic system 
can be considered as effectively synchronized by external periodic force if the mean time 
in course оЁ which the instantaneous phase оЁ the system is locked, is much larger than 
the driving period. 

Although the effect of phase and mean frequency locking already indicates a 

synchronization-like behavior we need to calculate second-order statistical quantities to 
determine synchronization according to the definition given above. The quantity related 
to this definition which can be used as a measure of the phase coherence is the effective 

diffusion constani D, defined ав 

D=Ly (dldt)[(0%(2)) - ((£))*]. 

This value characterizes the spreading оЁ ап initial distribution оЁ the phase 

difference along the potential profile. It can be shown that the effective diffusion constant 
is proportional 10 the mean escape rate 7 from а well оё the potential U(¢) (1): D_=dn’r 
[9], i.e. D, 18 inverse proportional to the mean time interval оё phase locking. Thus, we 
can use this quantity 10 answer the question: for how long the phase а! @е output still 

locked by the signal? 

(14) 

Эе Г T T T The dependence оЁ the effective 
10t e o) diffusion constant (14) vs noise intensity is 

‚ % R shown in Fig. 5 for different values о 
10° ` o 4 driving amplitude. In contrast 10 classical 

й \ f“ oscillators, where у  monotonically 
107 \ й 1 increases, here the effective diffusion 
10} 1 \ 7 | constant passes through а minimum. This 

) \ ? means that the phase proves to be locked 
107t L 1  for longer time intervals with the increase 
10 Ц В оЁ noise intensity. In other words, we сап 

0.0 0.4 0.8 12 16 D enhance the phase coherence by increasing 
noise level in the system. As clearly seen 

й н й . . _ ‚ 

Fig. 5. The effective diffusion constant versus noise from Fig. 5, the diffusion of the phase 
intensity for indicated values of driving amplitude: 
A=3.0 (1), A=1.0 (2). Other parameters are: 0=3, 
p=1,Q,=0.01 
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difference is extremely slow for а strong 
enough signal in a finite region оЁ noise 
intensity so that we can define a region of



effective synchronization. The condition determining а region оё effective synchroniza- 
tion can be expressed as 

D, <2mQ /n, (15) 
eff — 

where n>>1 is а number оЁ periods оё external force. In опг concrete case we took n=100, 
e.g. the system (2) 15 10 be effectively synchronized by ап external periodic signal 1Ё its 
instantaneous phase is locked ш course оЁ а! least 100 periods оЁ the signal. The 
synchronization region is shown in Fig. 6 on the parameter plane A-D and as seen, it 
posses а tongue-like shape. Also, е threshold-like character оЁ the synchronization 
effects 15 clearly seen: а periodic force with the amplitude less than а threshold value can 
not synchronize the bistable system in the above defined sense. Recall, that 
experimentally obtained «Arnold tongues» of periodically driven noisy Schmitt trigger 
(see Fig. 2) also have the same threshold feature. With the increase of the driving 
frequency the threshold value of the driving amplitude also increases and effective 
synchronization regions shrink (not shown). This feature is determined by the low- 
frequency character оЁ SR in bistable systems. 

It is important to underline that phase and frequency locking effects occur for a 
strong enough signal only. It can be seen clearly т Figs 4,5. For weak signals, both the 
diffusion coefficient and frequency fluctuations are large, so that the phase is not locked 
for long periods. For а weak signal the system is only partially synchronized even in the 
case when the mean switching frequency equals exactly the driving frequency. This 
situation is shown in Fig. 7. Although there are relatively short locking segments, the 
difference displays a random walk-like behavior with zero slope. The dependence of the 
effective diffusion constant has not а minimum and increases with the growth оЁ noise 
intensity а$ well а5 in the classical case. 

The case оЁ а weak input signal can be correctly described т the frame of а 
qualitatively different approach for investigation of SR based on the calculation of the 
residence time distribution which was given in studies of Gammaitoni et al. [28,30]. 

The residence times distribution gives a weaker definition of synchronization in SR 
systems based оп the restriction imposed ю frequency fluctuations. This approach 
defines synchronization in an averaged sense. Really, the existence of the peak at the half 
driving period indicates that the number of residence times which are near the half 
driving period 18 much larger than е whole number of switchings occur during ап 
observation time. However, it does not require instantaneous phase locking in course of 
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Fig. 6. The region оЁ effective synchromization. Fig. 7. The phase difference versus time (in units оЁ 

Other parameters are the same ав in the previous driving period) for А=1, D=1.0215. Other 

figure parameters are the same as in previous figures 
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long times. Therefore, the residence time distribution recover an average phase preference 
of the system. That is why the measures based on the residence time distribution reflect 
synchronization nature of SR even for weak signals. 

Our investigations have shown that for comparatively small signals the phase 

dynamics cannot be viewed as synchronized, although the residence time distribution 
displays synchronization-like behavior [30]. Even in the case when the mean frequency is 
equal to the driving frequency (w)=£,, the phase difference performs Brownian-like 
motion with а zero slope (see Fig. 7). 

The measure of synchronization proposed by Gammaitoni et.al. [30] is a strength 
of the peak ш the residence times distribution centered аг the half driving period, e.g., the 

area under the peak. The dependence of this quantity versus noise intensity has a bell 
shaped form. For a small amplitude of the periodic force it achieves a maximal value at 
ап optimal single noise level. With the increase of the driving amplitude the maximal 
value оЁ the strength оЁ first peak tends 10 1 and this maximal level keeps nearly constant 
in a finite region of noise intensity. We can, therefore, define a synchronization region at 
which this quantity is nearly 1. In this region the residence time distribution is 
represented by а single narrow peak а{ the half driving period and instantaneous phase 
locking can be observed again. Therefore, for а large enough driving amplitude (but still 
subthreshold) both definitions оЁ synchronization maich. 

0? 

1\. Phase synchronization of switchings in periodically 
driven chaotic bistable system 

As known, опе оЁ the typical properties оЁ chaotic dynamical systems with 
quasiattractors 18 the coexistence об а number of different attractors in phase space 
[45.46]. The effect оЁ external perturbations оп such systems от the variation оЁ their 
control parameters causes the interaction оЁ attractors and can generate а set оё interesting 
phenomena one ов which is stochastic resonance [45]. Really, if а system has few 
attractors in the phase space separated by separafrix hyperplanes then the effect оЁ noise 
or parameter variation can lead to the destruction of these hyperplanes and cause the 
intermittency of different types [47]. The low-dimensional dynamical systems with 

symmetry which have two chaotic attractors in the phase space separated by a separatrix 
plane form ап important class оё bistable chaotic systems [17]. Chaotic attractors play the 
role оЁ the metastable states in this case. The external perturbations ог parameter variation 
destroy the separatrix surface separating the basins об attraction оЁ chaotic attractors that 
leads 10 е noise-induced ог dynamical intermittency оЁ «chaos-chaos» type, 
respectively [16,17]. 10 this case ме can stay the tasks about SR and phase 
synchronization of switchings as well as in the case of stochastic bistable systems. 

SR ш chaotic bistable systems with continiuos and discrete time was studied in 
works [16,17,20,33,43,19]. It was shown, that SR т such systems can be realized via 

both parameter variation (in the absence оЁ noise when the hoppings caused by the 
internal chaotic dynamics) and variation of the noise intensity with fixed values of other 
parameters. The results оЁ investigations ов synchronization-like phenomena in chaotic 
bistable systems are reported in work [48]. 

In this section we will consider с purely deterministic task about phase 
synchronization оЁ switchings п а chaotic bistable system with discrete time. To describe 
this effect we use the same approach as ш our previuos study. 

Let us consider a discrete system 

= (ax, - x Vexp(-x Yb). (16) 
Хп+1 
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control parameter. Other parameters are А=0.025, parameter for different values of driving amplitude: 
€,=0.0153 A=0.025 (1), 0.015 (2) апа 0.005 (3), £2,=0.0153 

This system has the only stable fixed point (x,=0) for O<a<2 (parameter 5=10). А 
pitchfork bifurcation takes place at а=2.39. The cascade of period-doubling is realized т 
the interval 2.4<a<2.5 апа тар (16) demonstrates chaos for а>2.5. For values оЁ е 
control parameter from the interval 2.5<a<2.84 there are two symmetric chaotic attractors 
whose basins оЁ attraction are separated by the saddle point x,=0. At a=2.84 е crisis оЁ 
attractors takes place. The merging оЁ atiractors is followed by а phenomenon оЁ 
dynamical intermittency of the «chaos-chaos» type when the phase trajectory resides on 
the partial attractors for a long time and makes random switchings from one region to 
another. It is important to underline that random switchings in the considered system are 
caused by the internal dynamics only and parameter а controls by the «frequency оЁ 
switchings» playing the role а! 15 similar to the role оЁ noise intensity ш our previuos 
consideration. 

Let us add periodic modulation to the system (16): 

х = (ах, - x )exp(-x */b) + Acos(Qn), (17) 
л1 ° 

where А and Q, are the amplitude and frequency оё the periodic force. As in @е previos 
section, we define the mnstantaneuos phase of the input signal and оЁ chaotic signal 
through the Hilbert transfomation. The results of опг phase calculations are pictured in 
Fig. 8. As clearly seen, for ап optimal value ов the control parameter the instanteneuos 
phases of the chaotic system and the input signal are locked. This fact means that in 
purely deterministic case we can observe exactly е same effect оЁ phase 
synchronization of switchings as in periodically driven stochastic bistable systems. The 
effect of mean frequency locking ао takes place and, ав seen from Fig. 9, there is ап 
interval of control parameter values where the mean frequency of chaotic oscillations 
coincides with Q. The effective diffusion constant (14) (see Fig. 10) also demonstrates 
the behavior which 18 similar to the previnos one. It’s very small in а certain interval оЁ 
confrol parameter values, Фаг means а high degree оЁ phase the coherence between the 
input signal and switchings in the system (17). For a weak signal, the spreading of the 
distribution оЁ the phase difference 15 sufficiently large and the system (17) саппог be 
treated as effectively synchronized, that is to be in good agreement with our previuos 
results. By analogy with the study in Sec. III, ме constructed the region оЁ phase 
synchronization of switchings, that is presented in Fig. 11. We have considered the 
system (17) being effectively synchronized by а periodic force if, ав earlier, its 
instantaneuos phase is locked т course оЁ at least 100 periods оЁ е signal. The region 
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Fig. 10. The dependence оё effective diffusion Fig. 11. The region of synchronization of switchings 
constant versus conlrol parameter in purely — л deterministic case. The value of driving frequency 

deterministic case for different values оЁ driving — № €2=0.0153 

amplitude: A=0.025 (1), 0.015 (2) апа 0.005 (3) 

has а tongue-like shape. Synchronization оЁ switchings has а threshold character, 
although е threshold is very small in this case. 

V. Mutual synchronization of switching processes 

As it should follow from the above results, the effect of phase synchronization of 
switchings can be observed in periodically driven chaotic or stochastic bistable systems. 
It is natural to make the next step in study оЁ synchronization т the systems which 
possessed оЁ statistical time scales and (0 а5К the following questions: Is it possible to 
observe mutual synchronization of switchings when the deterministic time scales are 
absence in the system? How long the switching processes in subsystems may be 
coherent? Can we generalize the notion of phase synchronization for this case? The 

positive answer to the first question has been already given in [32] and [50], where the 
phenomena об mutual synchronization оЁ switching processes in symmetrically coupled 
stochastic and chaotic bistable systems have been reported, respectively. То answer the 
other questions, in this section we will consider phenomena оЁ synchronization оЁ 
switching processes in symmetrically coupied stochastic апа chaotic bistable systems 
from the above developed approach point of view. 

At it first, let п5 consider two symmetrically coupled stochastic bistable systems, 
which governed by the following SDE: 

= ох - Х3 + E (1) + К, - х)), (18) 

х = о;, - Х)) + B (1) + у( - ), 

where у 15 the coupling parameter and § , are statistically independent white noise 
sources, e.2.. (€ (7)€ (1+5))=2D8 8(s). Parameter o (о:>0) оЁ a subsystem characterizes the 
deepness оЁ potential wells апа can be used а5 а control parameter changing of which we 
can detune subsystems. Bifurcations occuring ш this system were analyzed 1а detail п 
work [32]. It was shown, аг the growth оЁ the coupling parameter causes the 
reconstruction of the two-dimensional stationary probability density and leads to the 
synchronization оЁ switchings т subsystems. As mentioned ш Sec. П, the stochastic 
bistable systems such as (2) and (19) have a statistical time scale which deals with the 
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Fig. 12. The dependencies of mean switching Fig. 13. The instantaneous phase difference versus 
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mean escape rate from a potential well and is represented in the frequency domain by the 
mean frequency of switchings. As seen from Fig. 12, the increase оЁ the coupling 
parameter leads to the approach of mean switching frequencies, that means the 
synchronization of switching processes. 

As it was mentioned above, the description of synchronization of stochastic 
bistable systems by means оё mean switching frequency only 15 not complete. It provides 
по information about matching оЁ switchings in subsystems. By analogy with our 
previous consideration, let п5 consider this effect in terms of the theory оЁ phase 
synchronization. The instantaneuos phase of stochastic oscillations can be introduced by 
the above described ways, e.g., through the HT (6) and through the switchings times 
(12). In this case, we introduced е phase оЁ stochastic bistable systems through the 
switching times. The dependence of the instantaneuos phase difference versus time is 
presented in Fig. 13. As seen, for an optimal value of coupling and detuning between 
subsystems е phases оЁ subsystems are instantaneuosly locked. When the values оЁ 
parameters differ from е optimum the increase оЁ the phase difference should be 
observed. Such a behavior of the phase difference is typical for the phenomenon of 
mutual phase synchronization of classical coupled oscillatory systems. The dependencies 
of the difference of mean frequencies versus detuning for different values of the coupling 
parameter are presented 1 Fig. 14. They also demonstrate the behavior which 18 similar 
10 the classical one. In some range of detuning values they coincide that means the тита! 
locking of mean frequencies. 

We have used the effective diffusion constant (14) again (see Fig. 15), as the 
measure of the coherence degree between switching processes in subsystems. Н& behavior 
clearly demonstrates that for an optimal value of coupling the spreading of the initial 
distribution of the phase difference is very small and switchings in subsystems are highly 
coherent. 

Now, let us consider the purely deterministic case when the switchings in 
subsystems are caused by their internal dynamics only and there are по апу sources оЁ 
random forces 1 the system. A similar task was considered in work [50]. A dynamical 
system considered in this work is described by the following ordirnary differental 
equations: 
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It is clearly seen аг these equations describe the dynamics оЁ two symmetrically 
coupled Lorenz systeins, each оё them 15 considered а5 а chaotic bistable system [49]. As 
it was found in [50], the effect of synchronization of switching processes in subsystems 
takes place for some value оЁ coupling parameter у. This effect was described in terms оЁ 
the mean switching frequency and residence time distributions, which, as mentioned 
above do not provide any information about the matching оЁ switchings 10 subsystems. It 
is reasonable to try to generalize the above approach based on the notion of instantaneous 
phase of oscillations for this purely deterministic case, especially ав the Lorenz system 

can be considered as a bistable system driven by some effective noise [49]. We defined 
the instantaneous phases of the subsystems through the switching times as in the previous 
case оЁ the interaction оё stochastic bistable systerns. As seen from Fig. 16, we have got 
exactly the same results. The phases оЁ switchings 10 the subsysterns are instantaneuosly 
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Fig. 16. The dependence of phase deference оЁ 
couled Lorenz systems versus Нте for different 
values оЁ detuning: . /r,=1.00357 (1), 1.042857 (2), 
0.9589 (3). The coupling parameter is y=6.0 

Fig. 17. The dependence of the deference оГ mean 
frequencies versus detuning value for different value 
оЁ coupling parameter: y=1.0 (7), 4.0 (2), 6.0 (3) 
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locked for а certain value оЁ coupling and detuning between the subsystems. The mean 
frequencies of switchings coincide with the mean frequency of chaotic oscillations and 
demonstrate the behavior which is similar to the previous one. The increase of the 
coupling parameter leads to their approaching to each other, e.g., the effect of mutual 
locking of mean frequencies of chaotic oscillations takes place. Moreover, the mean 
frequencies of the subsystems coincide 11 some range of detuning values for sufficiently 
large values of у (see Fig. 17), that means the existence оЁ some region оп е parameter 
plane «coupling - detuning» in which the switchings are synchronized and occured at 
exactly the same times. 

Thus, as seen from the results presented in this section the notion of phase 
synchrorization сап be successfully generalized for the case of е interaction о 
subsystems which have only statistical time scales. 

VI. Conclusion 

We have studied the phenomena of synchronization of switching processes in 
stochastic and chaotic bistable systems in classical terms of phase synchronization. We 
have used two definitions of the instantanecus phase, basing on the analytic signal 
concept and on the switching times sequences. The first definition appreciates both 
switchings between wells and intrawell motion, whereas the second definition takes into 

consideration the process of switchings only. Both phase definitions provide the same 
results for averaged quantities. The effect of phase synchronization of switching process 
18 shown ЮЮ occur in а finite region оЁ noise intensity ог in а finite range оЁ а control 
parameter in purely deterministic case. However, this effect is restricted by comparatively 
large amplitudes оЁ external signal. The above results оЁ our study allow 10 understand 
deeper е essence оё the phenomenon of synchronization in SR systems, which was 
previously described in terms of residence times distributions [30]. As it was mentioned 
above, synchronization of switchings in the frame of this approach deals with the 
presence оЁ single gaussian-like peak т the residence time distribution аг the half period 
of external force [30]. For small signals the measure which was proposed by authors in 
{30] demonstrates the resonance-like behavior and achieves its maximal value at ап 
optimal single level оЁ noise intensity. However, according 10 the classical definition, the 
phenomenon of synchronization is characterized by the presence of a finite region of 

control parameter values in which the input signal and response are synchronized. The 
appearance о such а region, 1 our case, is 

й possible for large enough amplitude оЁ 
i е external force only and it deals with the 

0.8 e effect of noise enhanced phase locking 
which was described т details т е 

06 present work. We have used the effective 
o diffusion constant as е measure of е 

= phase coherence between the input signal 
0.4 -~ апа response. This characteristic passes 

` “Щ ‚‚‚‹/ through а minimam being plotted versus 
02} / noise intensity ог control parameter that 

means the increase оЁ «phase order» in a 
00 , system. This ordering is also reflected т а 

40 60 &0 100 Р non-monotonous behavior оЁ е source 

Fig. 18. The dependence of source entropy calculated €0tropy which takes its minimal value (see 
by the residence times distribution for Shmitt trigger  Fig. 18) т the case ов synchronization [51]. 
- symbols O, Symbols O indicate the source entropy MOIEOV@r, the effect of phase Syncl‘u‘onjza_ 

of input signal, See [51] for details 
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tion can be observed in a more complex case of the interaction of symmetrically coupled 
stochastic or chaotic bistable systems when there are no deterministic time scales in the 
systera and the interaction оЁ statistical time scales takes place. 
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ФАЗОВАЯ СИНХРОНИЗАЦИЯ ПЕРЕКЛЮЧЕНИЙ B 

СТОХАСТИЧЕСКИХ И ХАОТИЧЕСКИХ БИСТАБИЛЬНЫХ CUCTEMAX 

B.C. Аншщенко, А.Б.Нейман, А.Н. Сильченко, И.А. Хованов 

В данной работе эффекты синхронизации переключений в неавтономных п 
связанных стохастических и хаотических бистабильных системах рассмотрены с 
позиций классической теории колебаний. Мгновенная фаза колебаний в системах 
демонстрирующих бистабильную динамнку вводнлась как с помощью концепции 
аналитического сигпала, так и непосредственно через времена переключений 
между метастабильными состояниями. Показано, что действие шума (изменение 
управляющего параметра в детерминистском случае) обуславливает фазовую 
синхронизацию нереключений. В качестве величины, характеризующей стелень 
когерентности — переключений и внешнего — воздействия — (или — взаимной 
когерентности в случае  связанных - снстем) использовался  коэффициент 
эффективной диффузии мгновенной разности фаз, традиционно применяемый в 

теории колебаний. 
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