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Abstract. The purpose of this work is to study a new mathematical model of a ring neural network with
unidirectional chemical connections, which is a singularly perturbed system of differential-difference equations
with delay. Methods. A combination of analytical and numerical methods is used to study the existence and
stability of special periodic solutions in this system, the so-called traveling waves. Results. The proposed methods
make it possible to show that the ring system under study allows the number of stable traveling waves to increase
with the number of oscillators in the network. Conclusion. In this article, we rethink and refine the previously
proposed method of mathematical modeling of chemical synapses. On the one hand, it was possible to fully take
into account the requirement of the Volterra structure of the corresponding equations and, on the other hand,
the hypothesis of saturating conductivity. This makes it possible to observe the principle of uniformity: the new
mathematical model is based on the same principles as the previously proposed model of electrical synapses.
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1. Description of the research object

One of the fundamental principles for constructing mathematical models of neural systems
is the so-called equivalence hypothesis. The essence of this hypothesis is that we a priori assume
the equivalence of a biological neuron to some physical generator with lumped parameters. In
turn, the mentioned generator is modeled by a nonlinear system of ordinary differential equations
or a similar system with a delay. And since the oscillations of the membrane potential are
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obviously relaxation in nature, the corresponding system, as a rule, turns out to be singularly
perturbed.

The principle mentioned above underlies the well-known Hodgkin-Huxley model [1] and
many other mathematical models of an isolated neuron (see the monograph [2] and the detailed
bibliography contained therein). In this work, adhering to the equivalence hypothesis, as a model
of an individual neuron we use a scalar nonlinear differential equation with delay of the form

�̇� = λ𝑓(𝑢(𝑡− 1))𝑢 (1)

for membrane potential 𝑢 = 𝑢(𝑡) > 0. Here the parameter λ > 0 characterizing the rate of
electrical processes in the neuron is assumed to be large, the point is differentiation with respect
to 𝑡, and the function 𝑓(𝑢) ∈ 𝐶2(R+), R+ = {𝑢 ∈ R : 𝑢 ⩾ 0}, has the following properties:

𝑓(0) = 1, 𝑓(𝑢) = −𝑎+𝑂

(︂
1

𝑢

)︂
, 𝑢𝑓 ′(𝑢) = 𝑂

(︂
1

𝑢

)︂
, 𝑢2𝑓 ′′(𝑢) = 𝑂

(︂
1

𝑢

)︂
(2)

as 𝑢 → +∞, where 𝑎 = const > 0. An example of such a function is

𝑓(𝑢) =
1− 𝑢

1 + 𝑢/𝑎
. (3)

Since in the method proposed below for modeling chemical synapses, the equation (1) is
taken as a basis, it makes sense to dwell briefly on the history of its origin and properties. In this
regard, let us draw attention to the fact that our approach to modeling neural activity is based
on ideas belonging to Yu. S. Kolesov [3] and V.V. Mayorov [4], namely, in the monograph [3]
describes the general principle of mathematical modeling of biological processes using special
Volterra-type delay systems, similar to the well-known Hutchinson equation [5]. Further, in the
work [4], based on this principle and the idea of delayed conduction with saturation, a certain
equation with delay, similar to (1), was proposed as a model of an individual neuron. And finally,
in the article [6], after proper modification, the mentioned equation acquired the required form(1),
(2).

It should also be noted that previously, regardless of neurodynamic applications, the
equation (1) was considered in the work [7] as one of the possible generalizations of the Hutchinson
equation. In this work it was established that for all λ ≫ 1 it admits an exponentially orbitally
stable cycle 𝑢(𝑡, λ) > 0, 𝑢(0, λ) ≡ 1 of period 𝑇 (λ), satisfying limit relations:

lim
λ→+∞

𝑇 (λ) = 𝑇0, max
0⩽𝑡⩽𝑇 (λ)

|𝑥(𝑡, λ)− 𝑥0(𝑡)| = 𝑂

(︂
1

λ

)︂
, λ→ +∞, (4)

where 𝑇0 = (1 + 𝑎)𝑡0, 𝑡0 = 1+ 1/𝑎, 𝑥(𝑡, λ) = (1/λ) ln(𝑢(𝑡, λ)), and the 𝑇0-periodic function 𝑥0(𝑡)
is given by

𝑥0(𝑡) =

⎧⎪⎨⎪⎩
𝑡 for 0 ⩽ 𝑡 ⩽ 1,

1− 𝑎(𝑡− 1) for 1 ⩽ 𝑡 ⩽ 𝑡0 + 1,

𝑡− 𝑇0 for 𝑡0 + 1 ⩽ 𝑡 ⩽ 𝑇0,

𝑥0(𝑡+ 𝑇0) ≡ 𝑥0(𝑡). (5)

A visual representation of the relaxation properties (4) of this cycle is given by its graph on the
(𝑡, 𝑢) plane, constructed numerically for the case (1), (3) at λ = 5, 𝑎 = 2 (Fig. 1), as well as the
graph of the function (5) (Fig. 2).

Let us now turn to the question of modeling chemical synapses that interests us and recall
that a corresponding attempt has already been made earlier in the article [8]. Precisely speaking,
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Fig 1. Graph of the solution 𝑥(𝑡) of the equation (1)
with the function 𝑓(𝑢) satisfying the formula (3) for
λ = 5, 𝑎 = 2
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Fig 2. Graph of the function 𝑥0(𝑡) for 𝑎 = 2

in [8] some approach to this problem was proposed, which was based on a suitably modified idea
of fast threshold modulation.

The phenomenon of fast threshold modulation (FTM), first described in the works [9,10],
is a special way of coupling dynamic systems. A characteristic feature of this method is that the
right-hand sides of the corresponding differential equations change abruptly when some control
variables pass through their critical values. In neural systems, the idea of FTM is implemented,
as a rule, as follows.

Let us assume that the voltage 𝑢 = 𝑢(𝑡) and current 𝑣 = 𝑣(𝑡) in an individual neuron cell
satisfy a system of differential equations

𝜀�̇� = 𝑓(𝑢, 𝑣), �̇� = 𝑔(𝑢, 𝑣). (6)

Here 𝜀 > 0 is a small parameter, and standard restrictions are imposed on the right-hand sides
𝑓, 𝑔 ∈ 𝐶∞ [11, p. 45–55], ensuring the existence of a stable relaxation cycle. A typical example
of the (6) model is the well-known FitzHugh–Nagumo system [12].

Let us next consider a simple network consisting of two synaptically connected neurons. In
this case, according to the concepts developed to date (see, for example, [13]), the corresponding
electrical variables (𝑢𝑗 , 𝑣𝑗), 𝑗 = 1, 2 satisfy the system of equations

𝜀�̇�1 = 𝑓(𝑢1, 𝑣1) + 𝑏 𝑠2(𝑢2)(𝑢* − 𝑢1), �̇�1 = 𝑔(𝑢1, 𝑣1),

𝜀�̇�2 = 𝑓(𝑢2, 𝑣2) + 𝑏 𝑠1(𝑢1)(𝑢* − 𝑢2), �̇�2 = 𝑔(𝑢2, 𝑣2).
(7)

Here 𝑏 is a positive parameter characterizing the maximum conductance of the synapse, 𝑢* is
the resting potential (or Nernst potential), and the functions 𝑠𝑗(𝑢𝑗), 𝑗 = 1, 2 are postsynaptic
conductivity dependent on presynaptic potentials 𝑢𝑗 .

It should be noted that there are several different ways to select functions 𝑠𝑗(𝑢𝑗), a
description of which can be found in [13]. We, guided by the idea of FTM, will focus on the
simplest of them, namely, we will assume that

𝑠𝑗(𝑢𝑗) = 𝐻(𝑢𝑗 − 𝑢**), 𝐻(𝑥) =

⎧⎨⎩0 for 𝑥 < 0,

1 for 𝑥 ⩾ 0,
(8)
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where 𝑢** is the threshold from which one cell influences another. For example, if 𝑢1 < 𝑢**, then
the first neuron does not act on the second, but if 𝑢1 > 𝑢**, then it acts.

Let us now assume that there is unidirectional synaptic interaction in a network of 𝑚,
𝑚 ⩾ 2 neurons united in a ring. If we assume that each individual neuron is modeled by the
equation (1), then we can, guided by the methodology described above, move from (1) to a
similar (7) system

�̇�𝑗 = λ𝑓(𝑢𝑗(𝑡− 1))𝑢𝑗 + 𝑏 𝑠𝑗−1(𝑢𝑗−1)(𝑢* − 𝑢𝑗), 𝑗 = 1, 2, . . . ,𝑚, (9)

where 𝑢0 = 𝑢𝑚, 𝑠0 = 𝑠𝑚, functions 𝑠𝑗 are set by (8).
The given model (9) has a right to exist. However, in our opinion, in this situation we should

abandon generally accepted ideas. The first step in this direction was made in the article [8],
where instead of (9) the system

�̇�𝑗 = [λ𝑓(𝑢𝑗(𝑡− 1)) + 𝑏 𝑔(𝑢𝑗−1) ln(𝑢*/𝑢𝑗)]𝑢𝑗 , 𝑗 = 1, 2, . . . ,𝑚, 𝑢0 = 𝑢𝑚, (10)

in which 𝑏 = const > 0, 𝑢* = exp(σ λ), σ = const ∈ R, and the function 𝑔(𝑢) ∈ 𝐶2(R+) is such
that

𝑔(𝑢) > 0 ∀𝑢 > 0, 𝑔(0) = 0; 𝑔(𝑢) = 1 +𝑂

(︂
1

𝑢

)︂
, 𝑢𝑔′(𝑢) = 𝑂

(︂
1

𝑢

)︂
,

𝑢2𝑔′′(𝑢) = 𝑂

(︂
1

𝑢

)︂
𝑢 → +∞.

(11)

The reasons why we chose the (10) system in [8] were as follows. Firstly, when we move
from (9) to (10) the general qualitative nature of the synaptic coupling is preserved, since in
both cases the corresponding connecting terms 𝑏 𝑠𝑗−1(𝑢𝑗−1)(𝑢* − 𝑢𝑗) and 𝑏 𝑔(𝑢𝑗−1)𝑢𝑗 ln(𝑢*/𝑢𝑗)
change sign from “+” to “−” when the potentials 𝑢𝑗 increase and when they pass through the
critical value 𝑢*. Secondly, in accordance with the methodology of works [3, 4] the system (10)
has the required Volterra structure.

However, over time, it became clear that the (10) system also needed some improvement.
This is due to the fact that the function ln(𝑢*/𝑢) appearing in (10) does not satisfy the hypothesis
of saturating conductivity, according to which all nonlinearities included in the model should tend
to the finite limits as 𝑢 → +∞.

In order to correct the situation, let’s move from (10) to the system

�̇�𝑗 = λ[𝑓(𝑢𝑗(𝑡− 1)) + 𝑏 𝑔(𝑢𝑗−1)ℎ(𝑢𝑗/𝑢*)]𝑢𝑗 , 𝑗 = 1, 2, . . . ,𝑚, 𝑢0 = 𝑢𝑚. (12)

Here the function ℎ(𝑢) ∈ 𝐶2(R+) has similar (2), (11) properties:

ℎ(𝑢) > 0 for 0 ⩽ 𝑢 < 1, ℎ(𝑢) < 0 for 𝑢 > 1, ℎ(1) = 0, ℎ′(1) < 1,

ℎ(0) = 1, ℎ(𝑢) = −𝑐+𝑂

(︂
1

𝑢

)︂
, 𝑢ℎ′(𝑢) = 𝑂

(︂
1

𝑢

)︂
, 𝑢2ℎ′′(𝑢) = 𝑂

(︂
1

𝑢

)︂ (13)

𝑢 → +∞, where 𝑐 = const > 0.
Properties (13) guarantee that signℎ(𝑢) = sign (ln(1/𝑢)) for all 𝑢 > 0, and this means

that the qualitative nature of the coupling in the models (10) and (12) is identical. The required
saturation property also holds for ℎ(𝑢). However, it is appropriate to make one more non-trivial
assumption, namely, we will assume that for each equation from (12) the corresponding rest
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potential 𝑢*, assumed constant, now depends on time and coincides with 𝑢𝑗−1(𝑡). Thus we arrive
at the system

�̇�𝑗 = λ[𝑓(𝑢𝑗(𝑡− 1)) + 𝑏 𝑔(𝑢𝑗−1)ℎ(𝑢𝑗/𝑢𝑗−1)]𝑢𝑗 , 𝑗 = 1, 2, . . . ,𝑚, 𝑢0 = 𝑢𝑚, (14)

where, recall, the functions 𝑓 , 𝑔, ℎ have the properties (2), (11), (13) respectively, 𝑏 = const > 0,
λ≫ 1. This system is the new mathematical model of chemical synapses that interests us.

Concluding the description of the object of study, we note that the model (14) proposed in
this article is quite similar to the mathematical model of electrical synapses considered in [14],
that is, the so-called principle of uniformity is observed. It is for the sake of this principle that
the replacement of 𝑢* with 𝑢𝑗−1 was carried out in (12).

2. Traveling waves of a relay system

A characteristic feature of the (14) system is the fact that after replacement 𝑥𝑗 = 𝜀 ln𝑢𝑗 ,
𝑗 = 1, 2, . . . ,𝑚, 𝜀 = 1/λ≪ 1 and the subsequent tendency of the parameter 𝜀 to zero, it admits
a certain limit object . Indeed, the indicated replacements transform it to the form

�̇�𝑗 = ℱ(𝑥𝑗(𝑡− 1), 𝜀) + 𝑏𝒢(𝑥𝑗−1, 𝜀)ℋ(𝑥𝑗 − 𝑥𝑗−1, 𝜀), 𝑗 = 1, 2, . . . ,𝑚, (15)

where 𝑥0 = 𝑥𝑚,

ℱ(𝑥, 𝜀) = 𝑓
(︁
exp

(︁𝑥
𝜀

)︁)︁
, 𝒢(𝑥, 𝜀) = 𝑔

(︁
exp

(︁𝑥
𝜀

)︁)︁
, ℋ(𝑥, 𝜀) = ℎ

(︁
exp

(︁𝑥
𝜀

)︁)︁
. (16)

Note further that, due to the properties (2), (11), (13) for the functions (16) for any fixed 𝑥 ∈ R,
𝑥 ̸= 0 the limit equalities are satisfied

lim
𝜀→0

ℱ(𝑥, 𝜀) = 1− (𝑎+ 1)𝐻(𝑥), lim
𝜀→0

𝒢(𝑥, 𝜀) = 𝐻(𝑥),

lim
𝜀→0

ℋ(𝑥, 𝜀) = 1− (𝑐+ 1)𝐻(𝑥),
(17)

where 𝐻(𝑥) is a function from (8).
The relations (17) indicate that as 𝜀 → 0 the initial system (15) moves into relay system

�̇�𝑗 = 1− (𝑎+ 1)𝐻(𝑥𝑗(𝑡− 1)) + 𝑏𝐻(𝑥𝑗−1)[1− (𝑐+ 1)𝐻(𝑥𝑗 − 𝑥𝑗−1)], 1 ⩽ 𝑗 ⩽ 𝑚, (18)

where 𝑥0 = 𝑥𝑚. In turn, the presence of a limit object (18) significantly simplifies the problem of
finding attractors of the system (15) and allows, in particular, to apply to it the general results
from [15] on the correspondence between rough relay cycles and relaxation systems. The results
mentioned below are used to find special periodic motions, the so-called traveling waves.

According to generally accepted terminology, a traveling wave with number 𝑘 ∈ N, 1 ⩽
𝑘 ⩽ 𝑚− 1 is a special periodic solution of the system (15) that can be represented

𝑥𝑗 = 𝑥(𝑡+ (𝑗 − 1)∆), 𝑗 = 1, 2, . . . ,𝑚. (19)

Here ∆ = const > 0 is some phase shift, and the function 𝑥(𝑡) is a T-periodic solution of the
auxiliary equation

�̇� = ℱ(𝑥(𝑡− 1), 𝜀) + 𝑏𝒢(𝑥(𝑡− ∆), 𝜀)ℋ(𝑥− 𝑥(𝑡− ∆), 𝜀), (20)
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where 𝑇 = 𝑚∆/𝑘. A similar definition of a traveling wave is preserved for a relay system (18),
but in this case 𝑥(𝑡) is a periodic solution of the period 𝑇 = 𝑚∆/𝑘 of the auxiliary equation

�̇� = 1− (𝑎+ 1)𝐻(𝑥(𝑡− 1)) + 𝑏𝐻(𝑥(𝑡− ∆))[1− (𝑐+ 1)𝐻(𝑥− 𝑥(𝑡− ∆))]. (21)

As it turns out, for a relay system (18) the traveling waves (19) with proper choice of
parameters 𝑎, 𝑏, 𝑐, 𝑘, 𝑚 can be found explicitly. In order to verify this, let us analyze the
equation (21), namely, we will establish the fact that it has some periodic solution 𝑎, 𝑏, 𝑐, ∆ in
a suitable range of parameters 𝑥 = 𝑥*(𝑡,∆) of period 𝑇* = 𝑇*(∆).

Assuming that the condition ∆ > 1 is satisfied, in the phase space 𝐶[−∆, 0] of scalar
functions 3(𝑡) continuous for −∆ ⩽ 𝑡 ⩽ 0 we introduce into consideration a special family
3τ1,τ2(𝑡) of initial conditions for equation (21). This family depends on two auxiliary parameters
τ1, τ2, satisfying the inequalities

0 < τ1 <
𝑎

𝑎+ 𝑏+ 1
τ2, τ2 < 1,

𝑎

𝑏+ 1
+ τ2 + 1 < ∆ < τ2 + 1 + 𝑎. (22)

The functions themselves 3τ1,τ2(𝑡) are given by the formula

3τ1,τ2(𝑡) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
𝑡+ ∆− τ1 + 𝑎(τ2 − τ1) at −∆ ⩽ 𝑡 ⩽ −∆+ τ1,
−𝑎(𝑡+ ∆− τ2) at −∆+ τ1 ⩽ 𝑡 ⩽ −∆+ τ2 + 1,
−𝑎+ 𝑡+ ∆− τ2 − 1 at −∆+ τ2 + 1 ⩽ 𝑡 ⩽ −∆+ τ3,
(𝑏+ 1)𝑡 at −∆+ τ3 ⩽ 𝑡 ⩽ 0,

(23)

where
τ3 = ∆+

1

𝑏
(∆− τ2 − 1− 𝑎). (24)

Let us note that, due to the relations (22)–(24), the following inequalities are true:

−∆ < −∆+ τ1 < −∆+ τ2 < −∆+ τ2 + 1 < −∆+ τ3 < 0,

3τ1,τ2(𝑡) > 0 for − ∆ ⩽ 𝑡 < −∆+ τ2, 3τ1,τ2(𝑡) < 0 for − ∆+ τ2 < 𝑡 < 0,
(25)

which means that the graph of any function 3τ1,τ2(𝑡) from our family has the form shown in
Fig. 3.

Let us denote by 𝑥 = 𝑥τ1,τ2(𝑡), 𝑡 ⩾ 0 the solution to the equation (21) with the initial
condition 3τ1,τ2(𝑡) , −∆ ⩽ 𝑡 ⩽ 0. Let 𝑡 = 𝑇 > 0 is the second positive root of the equation
𝑥τ1,τ2(𝑡) = 0 (if it exists). As will be shown below, under some additional restrictions on 𝑎, 𝑏, 𝑐, ∆
and on the parameters τ1, τ2, the function 𝑥τ1,τ2(𝑡+𝑇 ), −∆ ⩽ 𝑡 ⩽ 0 coincides with 3τ1,τ2(𝑡), where
the new parameters are τ1, τ2 depend linearly on τ1, τ2. Moreover, the corresponding mapping
(τ1, τ2) ↦→ (τ1, τ2) has a single fixed point (τ*1(∆), τ

*
2(∆)). As for the desired periodic solution

𝑥*(𝑡,∆) of the equation (21), then it itself and its period 𝑇*(∆) are given by the relations

𝑥*(𝑡,∆) = 𝑥τ1,τ2(𝑡)|τ1=τ*1(∆),τ2=τ*2(∆),
𝑇*(∆) = 𝑇 |τ1=τ*1(∆),τ2=τ*2(∆).

(26)

In order to implement the action program described above, we will integrate the equation
(21) using the step method, namely, we will sequentially consider different time intervals and
obtain for the solution we are interested in 𝑥τ1,τ2(𝑡) on in these intervals there are some explicit
formulas.
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In the first step, let’s look at the interval

0 ⩽ 𝑡 < 𝑡*, 𝑡* =
𝑎

𝑎+ 𝑏+ 1
τ2. (27)

In this case, due to inequalities (22), (25) we have

𝑡− 1 ∈ [−1, 𝑡* − 1) ⊂ (−∆+ τ2, 0), 𝑥(𝑡− 1) = 3τ1,τ2(𝑡− 1) < 0,

which means 𝐻(𝑥(𝑡 − 1)) ≡ 0. Further, taking into account inequality τ1 < 𝑡*, following from
(22), (27) we arrive at the formula

𝑥(𝑡− ∆) = 3τ1,τ2(𝑡− ∆) =

{︃
𝑡− τ1 + 𝑎(τ2 − τ1) for 0 ⩽ 𝑡 ⩽ τ1,
−𝑎(𝑡− τ2) for τ1 ⩽ 𝑡 ⩽ 𝑡*.

(28)

From here and from (25) it automatically follows that 𝑥(𝑡−∆) > 0, 𝐻(𝑥(𝑡−∆)) ≡ 1. And finally,
in the case of the function 𝑥(𝑡)− 𝑥(𝑡− ∆) we a priori assume that the inequality

𝑥(𝑡)− 𝑥(𝑡− ∆) < 0 ∀ 𝑡 ∈ [0, 𝑡*). (29)

Taking into account the listed facts, we come to the conclusion that at the first step the
Cauchy problem must be considered

�̇� = 𝑏+ 1, 𝑥|𝑡=0 = 3τ1,τ2(0) = 0.

Thus, on the interval (27) the solution 𝑥 = 𝑥τ1,τ2(𝑡) is given by the equality

𝑥 = (𝑏+ 1)𝑡. (30)

It should be recalled, however, that this equality was derived under the assumption (29). But
from the formulas (28), (30) it is easy to deduce that the mentioned a priori condition is indeed
satisfied.

The second step involves considering the interval

𝑡* < 𝑡 < 𝑡**, 𝑡** = τ2. (31)

Fig 3. Graph of function 3τ1,τ2(𝑡) from the family (23) under conditions (22), (24), (25)
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Let us immediately note that at the point 𝑡 = 𝑡* the solution 𝑥τ1,τ2(𝑡) is further determined by
continuity, that is, 𝑥τ1,τ2(𝑡*) = (𝑏+ 1)𝑡*. Taking this circumstance into account, we come to the
conclusion that for 𝑡 = 𝑡* the corresponding inequality from (29) turns into a strict equality.
Therefore, it is appropriate to assume that at point 𝑡 = 𝑡* switching occurs and

𝑥(𝑡)− 𝑥(𝑡− ∆) > 0 ∀ 𝑡 ∈ (𝑡*, 𝑡**). (32)

Let us further analyze the signs of the functions 𝑥(𝑡−1), 𝑥(𝑡−∆). As in the previous case,
for the first of them we have

𝑡− 1 ∈ (𝑡* − 1, 𝑡** − 1) ⊂ (−∆+ τ2, 0), 𝑥(𝑡− 1) = 3τ1,τ2(𝑡− 1) < 0, 𝐻(𝑥(𝑡− 1)) ≡ 0.

The second one on the interval (31) is given by the formula

𝑥(𝑡− ∆) = 3τ1,τ2(𝑡− ∆) = −𝑎(𝑡− 𝑡**), (33)

from which, in turn, it follows that 𝑥(𝑡− ∆) > 0, 𝐻(𝑥(𝑡− ∆)) ≡ 1.
The above facts indicate that on the interval (31) we are dealing with the Cauchy problem

�̇� = 1− 𝑏𝑐, 𝑥|𝑡=𝑡* = (𝑏+ 1)𝑡*,

which means that in this case the solution 𝑥 = 𝑥τ1,τ2(𝑡) has the equality

𝑥 = (𝑏+ 1)𝑡* − (𝑏𝑐− 1)(𝑡− 𝑡*). (34)

Combining it with (33), we come to the conclusion that

𝑥(𝑡)− 𝑥(𝑡− ∆) = (𝑎+ 1− 𝑏𝑐)(𝑡− 𝑡*) ∀ 𝑡 ∈ [𝑡*, 𝑡**).

Thus, the a priori requirement (32), under which the formula (34) was obtained, is obviously
valid under the condition (which we assume to be satisfied everywhere below)

𝑏𝑐 < 𝑎+ 1. (35)

Let us also add that, as usual, at the point 𝑡 = 𝑡** the solution 𝑥τ1,τ2(𝑡) is further determined by
continuity, and the condition (35) guarantees that

𝑥τ1,τ2(𝑡**) =
(𝑏+ 1)(𝑎+ 1− 𝑏𝑐)

𝑎+ 𝑏+ 1
𝑡** > 0. (36)

Before proceeding to the subsequent construction of the solution 𝑥τ1,τ2(𝑡), let us make one
useful observation. Since, by virtue of (25), the inequality 𝑥(𝑡 − ∆) < 0 is valid for 𝑡 ∈ (𝑡**,∆),
then automatically 𝐻(𝑥(𝑡 − ∆)) ≡ 0. Thus, on the interval (𝑡**,∆) instead of (21) we must
consider a simpler equation

�̇� = 1− (𝑎+ 1)𝐻(𝑥(𝑡− 1)). (37)

In the third step, we turn to the interval

𝑡** < 𝑡 < 1 (38)

and note that according to (25) for the specified 𝑡 the relations 𝑥(𝑡−1)<0 are valid, 𝐻(𝑥(𝑡−1)) ≡
0. And from here and from (36), (37) we conclude that on the interval time (38) solution 𝑥τ1,τ2(𝑡)
is given by the formula

𝑥 = 𝑡− 𝑡** +
(𝑏+ 1)(𝑎+ 1− 𝑏𝑐)

𝑎+ 𝑏+ 1
𝑡**, (39)
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and at the point 𝑡 = 1 it is further determined by continuity.
Before considering the next period of time, let us set

𝑡*** = 1 +
1

𝑎

(︂
1− 𝑡** +

(𝑏+ 1)(𝑎+ 1− 𝑏𝑐)

𝑎+ 𝑏+ 1
𝑡**

)︂
> 1 (40)

and we will consider the following condition to be fulfilled

𝑡*** + 1 < ∆. (41)

The fourth step is related to the interval

1 < 𝑡 < 𝑡*** + 1, (42)

on which, due to (41), we are still dealing with the equation (37). Moreover, we assume a priori
that for the specified time values

𝑥(𝑡− 1) > 0. (43)

Taking into account the condition (43), from (37), (39), (40) we conclude that here for the
solution 𝑥τ1,τ2(𝑡) the equality

𝑥 = −𝑎(𝑡− 𝑡***) (44)

holds. Further, combining the formula (44) with the previously obtained formulas for 𝑥τ1,τ2(𝑡) in
the first three steps (see (30), (34),(39)), we come to the conclusion that the required condition
(43) is valid on the time interval (42). Thus, the equality (44) takes on legal force, and at the
point 𝑡 = 𝑡*** + 1, by continuity we obtain

𝑥τ1,τ2(𝑡*** + 1) = −𝑎. (45)

In the fifth step, we turn to the interval

𝑡*** + 1 < 𝑡 < ∆, (46)

assuming that for the specified 𝑡 the following inequality is true:

𝑥(𝑡− 1) < 0. (47)

Further, taking into account in (37) the identity 𝐻(𝑥(𝑡 − 1)) ≡ 0 following from (47) and
supplementing the resulting equation with the initial condition (45), for 𝑥τ1,τ2(𝑡) we arrive at the
next formula

𝑥 = 𝑡− 𝑡*** − 𝑎− 1. (48)

Let us assume that the condition is met

∆ < 𝑡*** + 𝑎+ 1. (49)

Then, by virtue of formulas (44), (48), the a priori requirement (47) is automatically satisfied.
Thus, on the interval (46) the equality (48) actually holds by continuity

𝑥τ1,τ2(∆) = ∆− 𝑡*** − 𝑎− 1 < 0. (50)

Before moving on to the final stage of constructing the solution 𝑥τ1,τ2(𝑡), we introduce into
consideration the quantity

𝑇 = ∆+
1

𝑏+ 1
(𝑡*** + 𝑎+ 1− ∆), (51)
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additionally assuming that
∆+ 𝑡** < 𝑇 < ∆+ 1. (52)

We emphasize that according to (51) the condition (49) means that 𝑇 > ∆. Thus, the requirements
of (52) are stronger than the constraint (49).

In the sixth step, consider the interval

∆ < 𝑡 ⩽ 𝑇 (53)

under the assumption that the inequalities are satisfied

𝑥(𝑡) ⩽ 0, 𝑥(𝑡− 1) < 0, 𝑥(𝑡− ∆) > 0. (54)

Next, taking into account the information (54) on the right side of the equation (21) and
relying on the formulas (50), (51), to find 𝑥τ1,τ2(𝑡) we arrive at the Cauchy problem

�̇� = 𝑏+ 1, 𝑥|𝑡=∆ = (𝑏+ 1)(∆− 𝑇 ).

Thus, in the case (53) the solution 𝑥τ1,τ2(𝑡) has the form

𝑥 = (𝑏+ 1)(𝑡− 𝑇 ). (55)

As for the a priori conditions (54), their validity is guaranteed by the inequalities (52), the
formula (55) and the previously obtained explicit expressions for 𝑥τ1,τ2(𝑡) in the previous five
steps (see. (30), (34), (39), (44), (48)).

A visual representation of the process of constructing a solution 𝑥τ1,τ2(𝑡) of (21) gives
Fig. 4, which shows the graph of 𝑥τ1,τ2(𝑡) on the segment 0 ⩽ 𝑡 ⩽ 𝑇 . From this graph and from
the conditions (52), in particular, it follows that the function 𝑥τ1,τ2(𝑡 + 𝑇 ) has on the interval
−∆ ⩽ 𝑡 ⩽ 0 exactly three breaks (as well as the original initial condition 3τ1,τ2(𝑡)). Moreover,
based on the relations (39), (44), (48), (55), it is easy to see that 𝑥τ1,τ2(𝑡 + 𝑇 ) = 3τ1,τ2(𝑡),
−∆ ⩽ 𝑡 ⩽ 0, where

τ1 = 1 + ∆− 𝑇, τ2 = ∆+ 𝑡*** − 𝑇. (56)

Fig 4. Graph of function 𝑥τ1,τ2(𝑡) for 𝑡 ∈ [0, 𝑇 ]
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Let us now show that the mapping (τ1, τ2) ↦→ (τ1, τ2), generated by the relations (56) has a
unique fixed point (τ*1(∆), τ*2(∆)). For this purpose, let us substitute explicit formulas for 𝑡*** and
𝑇 into (56) (see (40), (51)). As a result, after some transformations we come to the conclusion
that the components of the fixed point of interest to us are given by the equalities

τ*1(∆) =
1

𝑏+ 1

(︂
∆+ 𝑏− 𝑎− 1

𝑎
− 1

)︂
+

𝑏(𝑎− 𝑐(𝑏+ 1))

𝑎(𝑏+ 1)(𝑎+ 𝑏+ 1)
τ*2(∆), (57)

τ*2(∆) =
𝑎+ 𝑏+ 1

𝑎(𝑎+ 1)(𝑏+ 1) + 𝑏(𝑎+ 𝑐𝑏(𝑏+ 1))
(𝑎∆− (𝑎+ 1)(𝑎− 𝑏)). (58)

Let us summarize. Let us denote by Ω1 the set of all possible sets of parameters (𝑎, 𝑏, 𝑐,∆)
satisfying the conditions (22), (35), (41), (52), in which τ1, τ2 are given by the equalities (57),
(58). From the above constructions, the statement follows.

Theorem 1. For any set (𝑎, 𝑏, 𝑐,∆) ∈ Ω1 the equation (21) has a periodic solution 𝑥 = 𝑥*(𝑡,∆)
of period 𝑇*(∆), given by the formulas (26), (57), (58). Moreover, for 𝑇*(∆) the following relations
hold true:

𝑇*(∆) = θ1∆+ θ2, θ1 =
𝑏

𝑏+ 1

(︂
1 +

𝑎− 𝑐(𝑏+ 1)

𝑎(𝑎+ 1)(𝑏+ 1) + 𝑏(𝑎+ 𝑐𝑏(𝑏+ 1))

)︂
,

θ2 =
𝑎+ 1

𝑎(𝑏+ 1)

(︂
𝑎+ 1− (𝑎− 𝑏)𝑏(𝑎− 𝑐(𝑏+ 1))

𝑎(𝑎+ 1)(𝑏+ 1) + 𝑏(𝑎+ 𝑐𝑏(𝑏+ 1))

)︂
.

(59)

The established theorem makes it possible to obtain in explicit form some traveling waves
of the relay system (18). In order to do this, we fix an arbitrary natural number 𝑘 : 1 ⩽ 𝑘 ⩽ 𝑚−1
and, based on the formulas (59), from the equation 𝑇*(∆) = 𝑚∆/𝑘 let’s find

∆(𝑚,𝑘)
* =

θ2
𝑚/𝑘 − θ1

. (60)

Next, let Ω2 denote the set of tuples (𝑎, 𝑏, 𝑐,𝑚, 𝑘) for which

𝑚/𝑘 − θ1 ̸= 0, ∆(𝑚,𝑘)
* > 0, (𝑎, 𝑏, 𝑐,∆)|

∆=∆(𝑚,𝑘)
*

∈ Ω1, (61)

where ∆(𝑚,𝑘)
* is the value (60). It is easy to see that under conditions (61) the system (18) admits

a traveling wave of the form (19) with number 𝑘. This wave is given by the equalities

𝑥𝑗 = 𝑥
(𝑚,𝑘)
* (𝑡+ (𝑗 − 1)∆(𝑚,𝑘)

* ), 𝑗 = 1, 2, . . . ,𝑚, (62)

where 𝑥
(𝑚,𝑘)
* (𝑡) = 𝑥*(𝑡,∆)|∆=∆(𝑚,𝑘)

*
, and has a period 𝑇

(𝑚,𝑘)
* = 𝑚∆(𝑚,𝑘)

* /𝑘.

3. Traveling waves relaxation system

Let us now turn to the question of the existence of a similar (62) traveling wave in the
original relaxation system (15). To do this, we first turn to the corresponding auxiliary equation
(20). The analogue of theorem 1 here is the following statement.

Theorem 2. Let us assume that the functions 𝑓(𝑢), 𝑔(𝑢), ℎ(𝑢) appearing in (16) satisfy the
monotonicity conditions

𝑓 ′(𝑢) < 0, 𝑔′(𝑢) > 0, ℎ′(𝑢) < 0 ∀𝑢 ⩾ 0. (63)
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Then, for any set of parameters (𝑎, 𝑏, 𝑐,∆) ∈ Ω1, one can specify a sufficiently small 𝜀0 > 0 such
that for the specified 𝑎, 𝑏, 𝑐, ∆ and for all 0 < 𝜀 ⩽ 𝜀0 the equation (20) admits a periodic solution
𝑥*(𝑡, 𝜀,∆), 𝑥*(0, 𝜀,∆) ≡ 0 of period 𝑇*(𝜀,∆) with asymptotics

𝑇*(𝜀,∆) = 𝑇*(∆) +𝑂(𝜀), max
𝑡∈[0,𝑇*(𝜀,∆)]

|𝑥*(𝑡, 𝜀,∆)− 𝑥*(𝑡,∆)| = 𝑂(𝜀), 𝜀 → 0. (64)

Here 𝑥*(𝑡,∆) is a periodic solution to the equation (21) of period 𝑇*(∆), from the theorem 1.

Since the proof of the theorem formulated is based on general results from [15], we will
limit ourselves to only describing its general scheme, consisting of three stages.

At the first stage, we fix sufficiently small σ0, σ1 > 0 and introduce into consideration the
set 𝑆 of initial functions 3(𝑡) ∈ 𝐶[−∆− σ0,−σ0] satisfying the conditions

|3(𝑡)− 𝑥*(𝑡,∆)| ⩽ σ1 for − ∆− σ0 ⩽ 𝑡 ⩽ −σ0, 3(−σ0) = −(𝑏+ 1)σ0.

Next, let us denote by 𝑥3(𝑡, 𝜀,∆), 𝑡 ⩾ −σ0 the solution to the equation (20) with an arbitrary
initial function 3 ∈ 𝑆. Based on the conditions of monotonicity (63) and the apparatus of
differential inequalities, it is possible to show that the second positive root 𝑡 = 𝑇3(𝜀,∆) of the
equation 𝑥3(𝑡−σ0, 𝜀,∆) = −(𝑏+1)σ0 exists and is simple. Thus, the Poincaré succession operator
is correctly defined on 𝑆

Π𝜀(3) = 𝑥3(𝑡+ 𝑇3(𝜀,∆), 𝜀,∆), −∆− σ0 ⩽ 𝑡 ⩽ −σ0 (65)

with values in 𝐶[−∆ − σ0,−σ0]. A complete proof of the existence and simplicity of the second
positive root of the equation for defining the Poincaré operator Π𝜀(3) is given, for example, in
articles [14] and [16]. This proof, with minor technical changes, is carried over to the case under
consideration. Considering that the corresponding calculations are rather cumbersome, they are
not given here.

At the second stage, we introduce into consideration the solution 𝑥(𝑡, 𝜀,∆) of the equation
(20) with initial function 𝑥*(𝑡,∆), −∆−σ0 ⩽ 𝑡 ⩽ −σ0. Asymptotic integration of the corresponding
Cauchy problem leads to the conclusion that as 𝜀 → 0 the asymptotic equalities hold

𝑇3(𝜀,∆)|3=𝑥*(𝑡,∆) = 𝑇*(∆) +𝑂(𝜀), max
𝑡∈[0,𝑇3(𝜀,∆)]

|𝑥(𝑡, 𝜀,∆)− 𝑥*(𝑡,∆)| = 𝑂(𝜀). (66)

The relations (66) mean that the function 𝑥 = 𝑥(𝑡, 𝜀,∆) is an approximate (up to 𝑂(𝜀)) periodic
solution of the equation (20).

At the third stage, consider the linear operator

𝐴(𝜀,∆) = 𝜕3Π𝜀(3)|3=𝑥*(𝑡,∆) : 𝐶0[−∆− σ0,−σ0] → 𝐶0[−∆− σ0,−σ0], (67)

where 𝜕3Π𝜀(3) is the derivative of the Fréchet operator (65),

𝐶0[−∆− σ0,−σ0] = {3(𝑡) ∈ 𝐶[−∆− σ0,−σ0] : 3(−σ0) = 0}.

An asymptotic analysis of the linear equation corresponding to the equation (20) in variations
on the solution 𝑥 = 𝑥(𝑡, 𝜀,∆) allows us to conclude that the operator (67) admits a simple real
eigenvalue λ = λ0(𝜀):

lim
𝜀→0
λ0(𝜀) =

𝑏2(𝑎− 𝑐(𝑏+ 1))

𝑎(𝑏+ 1)(𝑎+ 𝑏+ 1)
< 1. (68)

The rest of the spectrum of this operator lies in the ball {λ ∈ C : |λ| ⩽ 𝑟(𝜀)}, where 𝑟(𝜀) → 0 as
𝜀 → 0.
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To summarize, we note that the relations (66)–(68) guarantee applicability to the equation
Π𝜀(3)− 3 = 0 at the point (𝜀,3) = (0, 𝑥*(𝑡,∆)) implicit mapping theorems. Thus, the operator
(65) admits a fixed point 3*(𝑡, 𝜀,∆) ∈ 𝑆, asymptotically close to 𝑥*(𝑡,∆). It is also clear
that in the original equation (20) this fixed point corresponds to a periodic solution, which,
after an appropriate time shift, will transform into the desired periodic solution 𝑥*(𝑡, 𝜀,∆) with
asymptotics (64).

From the first equality (64) it obviously follows that in the case

(𝑎, 𝑏, 𝑐,𝑚, 𝑘) ∈ Ω2 (69)

for all sufficiently small 𝜀 > 0 the equation 𝑇*(𝜀,∆) = 𝑚∆/𝑘 allows for solution

∆(𝑚,𝑘)
* (𝜀) = ∆(𝑚,𝑘)

* +𝑂(𝜀), 𝜀 → 0. (70)

In turn, substituting the relation (70) into 𝑥*(𝑡, 𝜀,∆), we obtain the function 𝑥
(𝑚,𝑘)
* (𝑡, 𝜀), periodic

with period 𝑇
(𝑚,𝑘)
* (𝜀) = 𝑚∆(𝑚,𝑘)

* (𝜀)/𝑘. This means that we have constructed a traveling wave of
the system (15) of the form

𝑥𝑗 = 𝑥
(𝑚,𝑘)
* (𝑡+ (𝑗 − 1)∆(𝑚,𝑘)

* (𝜀), 𝜀), 𝑗 = 1, 2, . . . ,𝑚. (71)

In principle, the question of the stability of the cycle (71) can be solved theoretically (see,
for example, [8, 17]). However, the formulas obtained along this path cannot be analyzed by
analytical methods. In this regard, we undertook a series of numerical experiments, consisting of
two stages.

At the first stage, the parameters 𝑎 = 2, 𝑏 = 1, 𝑐 = 2 and when the number of oscillators 𝑚
changes from 10 to 50, it becomes clear at what values of 𝑘 for the set of parameters (𝑎, 𝑏, 𝑐,𝑚, 𝑘)
the inclusion (69) is valid. The choice of values 𝑎, 𝑏, 𝑐 is largely random; the only requirement
is that for different values of the number of oscillators 𝑚, the number of stable traveling waves
should be as large as possible.

In Fig. 5 shows the dependence of the value 𝑁(𝑚), determined by the number of suitable
values 𝑘, on the parameter 10 ⩽ 𝑚 ⩽ 50. It turned out that 𝑁(𝑚) grows with increasing 𝑚
according to a nearly linear law.
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Fig 5. Number 𝑁(𝑚) of stable traveling waves (71) (suitable values of 𝑘) at 10 ⩽ 𝑚 ⩽ 50

At the second stage, for the sets of parameters to which traveling waves correspond, the
relay system of equations with delay is numerically integrated (18). We use the VODE method,
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which checks the problem for rigidity and for non-rigid problems is the implicit Adams method,
and for hard problems is the method from the BDF (backward differentiation formulas) class (see,
[18]). The functions (62) for −1 ⩽ 𝑡 ⩽ 0 with the addition of small random disturbance. Recall
that these functions are known to us in explicit form. Based on the results of this integration, a
conclusion is made about the stability or instability of the traveling wave with number 𝑘.

Calculations have shown that for the number of oscillators 𝑚 from 5 to 20, only one of
the available traveling waves turns out to be stable. At 𝑚 ⩾ 21 it is possible to obtain two
stable waves. It was not possible to obtain a larger number of coexisting stable waves within the
framework of this experiment. At the same time, numerical calculations showed that the relay
system (18), and therefore the relaxation system (15), also have other stable periodic regimes.

Fig. 6 shows the dependence on 𝑡 of the first component 𝑥1(𝑡) of a stable traveling wave
of the system (18) for 𝑚 = 19 and 𝑘 = 16, all other components of the solution to this system
represent the same function 𝑥1(𝑡) with a shift corresponding to the wave number (см. формулу
(71)).

Fig 6. Dependence on 𝑡 of the first component 𝑥1(𝑡) of a stable traveling wave of the system (18) for 𝑚 = 19 and
𝑘 = 16

Conclusion

In this article, we rethought and refined the method of mathematical modeling of chemical
synapses proposed in [8]. Unlike the model (10), its new version (14) fully takes into account
the requirements of the Volterra structure of the corresponding equations and the hypothesis
of saturating conductivity. In addition, as noted above, the so-called principle of uniformity is
observed: the new mathematical model (14) is similar to the model of electrical synapses proposed
in [14].

Concluding our consideration of the model (14), we note two unsolved problems. The first
one is related to the threshold value 𝑢 = 𝑢** from (8). In the case of the system (14), we initially
assumed that the analogue of this value was equal to one. If this is not so, then instead of (14)
we arrive at the system

�̇�𝑗 = λ[𝑓(𝑢𝑗(𝑡− 1)) + 𝑏 𝑔(𝑢𝑗−1/𝑢**)ℎ(𝑢𝑗/𝑢𝑗−1)]𝑢𝑗 , 𝑗 = 1, 2, . . . ,𝑚, (72)

where 𝑢0 = 𝑢𝑚, 𝑢** = exp(λ 𝑑), 𝑑 = const ∈ R.
As in the case of (14), the (72) system corresponds to a similar (18) relay system

�̇�𝑗 = 1− (𝑎+ 1)𝐻(𝑥𝑗(𝑡− 1)) + 𝑏𝐻(𝑥𝑗−1 − 𝑑)[1− (𝑐+ 1)𝐻(𝑥𝑗 − 𝑥𝑗−1)], 1 ⩽ 𝑗 ⩽ 𝑚, (73)

where 𝑥0 = 𝑥𝑚. Of interest is the problem of finding stable traveling waves, first for the limiting
object (73), and then for the original system (72). It is clear that, by analogy with the analysis
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done in this work, the formulated problem can well be solved through an appropriate combination
of analytical and numerical methods.

Another unsolved problem is to study the attractors of a similar (14) fully connected
network of interacting neurons. The corresponding mathematical model has the form

�̇�𝑗 = λ

[︂
𝑓(𝑢𝑗(𝑡− 1)) + 𝑏

𝑚∑︁
𝑠=1
𝑠 ̸=𝑗

𝑔(𝑢𝑠)ℎ(𝑢𝑗/𝑢𝑠)

]︂
𝑢𝑗 , 𝑗 = 1, 2, . . . ,𝑚, (74)

where the functions 𝑓 , 𝑔, ℎ are the same as in (14), 𝑏 = const > 0, λ ≫ 1. According to the
general results from [16, 19], both periodic modes of two-cluster synchronization and traveling
waves can exist in the (74) system. The problems of finding these periodic solutions have not yet
been solved.
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