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Abstract. The aim of this work is to develop a compact finite-difference approach for modeling the dynamics of
predator and prey based on reaction-diffusion-advection equations with variable coefficients. Methods. To discretize
a spatially inhomogeneous problem with nonlinear terms of taxis and local interaction, the balance method is
used. Species densities are determined on the main grid whereas fluxes are computed at the nodes of the staggered
grid. Integration over time is carried out using the high-order Runge-Kutta method. Results. For the case of
one-dimensional annular interval, the finite-difference scheme on the three-point stencil has been constructed
that makes it possible to increase the order of accuracy compared to the standard second-order approximation
scheme. The results of computational experiment are presented and comparison of schemes for stationary and
non-stationary solutions is carried out. We conduct the calculation of accuracy order basing on the Aitken process
for sequences of spatial grids. The calculated values of the effective order accuracy for the proposed scheme
were greater than the standard two: for the diffusion problem, values of at least four were obtained. Decrease was
obtained when directional migration was taken into account. This conclusion was also confirmed for non-stationary
oscillatory regimes. Conclusion. The results demonstrate the effectiveness of the derived scheme for dynamics of
predator and prey system in a heterogeneous environment.
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Introduction

Compact schemes allow increasing the order of difference approximations and providing
the desired accuracy with minimal computational costs [1,2]. Their development and application
in acoustics, hydrodynamics and aerodynamics are described in a number of articles, see reviews
[3–7]. For linear problems, the order of approximation is established by substituting the exact
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solution into difference analogues of the equations and direct expansion in a Taylor series [8]. In
the case of nonlinear problems, computational procedures on condensing grids of the Richardson,
Runge, Aitken type are used [9].

There are approaches based on difference approximations in space and time, as well as
variants of the method of lines in which the difference approximation is carried out over spatial
variables, and Runge-Kutta-type methods are used over time. High orders of time integrators [10]
allow one to focus only on approximations over spatial coordinates.

In the study of population dynamics models based on reaction-diffusion-advection equations,
it is necessary to calculate and analyze stationary solutions, as well as oscillatory regimes for
systems describing the interaction of predators and prey [11–14]. The use of high-order schemes
for problems in mathematical biology is quite rare. In [3], a compact high-order difference
scheme is implemented to solve a one-dimensional reaction-advection-diffusion problem. In [4], an
approximation of the three-dimensional convection-diffusion equation is proposed for the case of a
non-uniform grid. In [5] finite-difference approximations in time and space coordinates were used
for the Kolmogorov–Petrovskii–Piskunov–Fisher equation. To solve reaction-diffusion equations
with variable coefficients and a nonlinear source term, a compact fourth-order finite-difference
scheme was developed in [6]. In [7], a chemotaxis model for a system with cross-diffusion and a
logistic source was considered.

In this paper, the method of lines is used to solve the nonlinear equations of the predator-
prey system, similar to the scheme with staggered grids developed in [15, 16]. Species densities
are determined on the main grid, and their fluxes are calculated at the nodes of the staggered
grid. The discretization of the problem for the ring range is carried out on a three-point stencil.
For time integration, the high-order Runge-Kutta method is used.

1. Mathematical model of predator and prey in a heterogeneous environment

The reaction-diffusion-advection equations are used to describe the spatiotemporal inter-
actions between predator and prey [11,13]. In the case of a one-dimensional habitat, the mathema-
tical model can be written as a system of equations for the densities of prey 𝑢(𝑥, 𝑡) and predator
𝑣(𝑥, 𝑡) [15, 16]

�̇� = −𝑞′1 + 𝐹1, 𝑞1 = −𝑘1𝑢
′ + 𝑢3′1, (1)

�̇� = −𝑞′2 + 𝐹2, 𝑞2 = −𝑘2𝑣
′ + 𝑣3′2, (2)

where the dot denotes differentiation with respect to time 𝑡, and the prime denotes the derivative
with respect to 𝑥. The terms 𝐹𝑖 (𝑖 = 1, 2) describe the local interaction of species based on the
Holling functional response of the second kind, the hyperbolic growth model for prey, and the
linear law of predator decline [17]

𝐹1(𝑢, 𝑣) = 𝑢

[︂
𝑢

(︂
1− 𝑢

𝑝

)︂
− 𝑣

1 + 𝐶𝑢

]︂
, 𝐹2(𝑢, 𝑣) = 𝑣

[︂
−λ+ 𝐵𝑢

1 + 𝐶𝑢

]︂
. (3)

Here 𝑝 = 𝑝(𝑥) is the resource, λ is the mortality rate, 𝐵 is the predator’s growth as a result of
contact with the prey, and 𝐶 allows us to take into account the predator’s inertia in searching
for, absorbing, and processing the prey.

In the expressions for the flows 𝑞𝑖 (formulas (1)–(2)), the first term characterizes diffusion,
and the second is responsible for directed migration (taxis) [13,16]. The function 31 includes the
taxis of the prey to the resource 𝑝(𝑥) nonuniformly distributed along the habitat, migration from
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individuals of its own species (−β11𝑢) and from the predator (−β12𝑣). The function 32 describes
the taxis of the predator to the prey (β21𝑢) and the taxis (−β22𝑣) from the concentration of
predators [16]:

31 = α𝑝− β11𝑢− β12𝑣, 32 = β21𝑢− β22𝑣. (4)

The diffusion coefficients 𝑘𝑖 and directional migration α, β𝑖𝑗 (𝑖, 𝑗 = 1, 2) are non-negative values.
The system (1)–(4) is supplemented by periodicity conditions at 𝑥 = 0 (𝑥 = 𝑎):

𝑢(0, 𝑡) = 𝑢(𝑎, 𝑡), 𝑞1(0, 𝑡) = 𝑞1(𝑎, 𝑡),

𝑣(0, 𝑡) = 𝑣(𝑎, 𝑡), 𝑞2(0, 𝑡) = 𝑞2(𝑎, 𝑡). (5)

Initial conditions are given for the species densities

𝑢(𝑥, 0) = 𝑢0(𝑥), 𝑣(𝑥, 0) = 𝑣0(𝑥). (6)

2. High-order accuracy difference scheme

In the works [15, 16] a finite difference scheme for solving population dynamics problems
based on the finite difference method using staggered grids to calculate fluxes is described. To
discretize the equations (1)–(6) along the spatial coordinate on the interval [0, 𝑎], we introduce
a uniform grid 𝑥𝑟 = 𝑟ℎ, 𝑟 = 0, . . . , 𝑛, ℎ = 𝑎/𝑛. At its nodes, the densities of species 𝑢, 𝑣 and the
local interaction terms 𝐹𝑖, 𝑖 = 1, 2, are calculated. To determine fluxes, we use a staggered grid
𝑥𝑟− 1

2
= 𝑟ℎ− ℎ/2, 𝑟 = 1, . . . , 𝑛. Next we define the operators of the difference derivative and the

calculation of the average

(𝑑𝑦)𝑟 =
𝑦𝑟+ 1

2
− 𝑦𝑟− 1

2

ℎ
, (δ𝑦)𝑟 =

𝑦𝑟+ 1
2
+ 𝑦𝑟− 1

2

2
, (7)

(𝑑𝑦)𝑟− 1
2
=

𝑦𝑟 − 𝑦𝑟−1

ℎ
, (δ𝑦)𝑟− 1

2
=

𝑦𝑟 + 𝑦𝑟−1

2
. (8)

We apply the approach [1, 8] to approximate the equations (1)–(4), using the integro-
interpolation method (balance method) [8] and Simpson’s formula. We integrate (1) over the
interval [𝑥𝑟− 1

2
, 𝑥𝑟+ 1

2
], and replace the time derivative and 𝐹1 with the half-sum of the values in

the neighboring nodes of the main grid at the nodes of the staggered grid 𝑥𝑟− 1
2
. As a result, we

have

0 =

𝑥
𝑟+1

2∫︁
𝑥
𝑟− 1

2

(−𝑞′1 − �̇�+ 𝐹1)𝑑𝑥 ≈ −𝑞1(𝑥𝑟+ 1
2
) + 𝑞1(𝑥𝑟− 1

2
) + (𝑥𝑟+ 1

2
− 𝑥𝑟− 1

2
) [−Ψ�̇�+Ψ𝐹1]𝑟 , (9)

where the grid operator Ψ is defined by the following formula:

Ψ𝑦𝑟 =
1

12
(𝑦𝑟−1 + 10𝑦𝑟 + 𝑦𝑟+1) .

Then from (9) we get

Ψ�̇�𝑟 = −𝑑𝑞1,𝑟 +Ψ𝐹1,𝑟, 𝐹1,𝑟 = 𝐹1(𝑢𝑟, 𝑣𝑟), 𝑟 = 1, . . . , 𝑛. (10)

Using the second difference derivative

Λ𝑦𝑟 =
𝑦𝑟+1 − 2𝑦𝑟 + 𝑦𝑟−1

ℎ2
, 𝑟 = 1, . . . , 𝑛, (11)
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equation (10) is rewritten as follows:(︂
1 +

ℎ2

12
Λ

)︂
�̇�𝑟 = −𝑑𝑞1,𝑟 +

(︂
1 +

ℎ2

12
Λ

)︂
𝐹1,𝑟, (12)

and 𝐹1,𝑟 is calculated using the formula:

𝐹1,𝑟 = 𝑢𝑟

[︂
𝑢𝑟

(︂
1− 𝑢𝑟

𝑃𝑟

)︂
− 𝑣𝑟

1 + 𝐶𝑢𝑟

]︂
, 𝑃𝑟 =

⎡⎢⎢⎣1

ℎ

𝑥
𝑟+1

2∫︁
𝑥
𝑟− 1

2

𝑑𝑥

𝑝(𝑥)

⎤⎥⎥⎦
−1

. (13)

As a result of integrating the second equation (1) over the segment [𝑥𝑟−1 𝑥𝑟] for the flow
𝑞𝑖 we obtain

𝑞1,𝑟− 1
2
= (−𝑘1𝑑𝑢+ δ𝑢𝑑31)𝑟− 1

2
. (14)

Taking into account (4), (7) and (8) we have

𝑞1,𝑟− 1
2
= [−𝑘1𝑑𝑢+ α𝑑𝑝δ𝑢− β11𝑑𝑢δ𝑢− β12𝑑𝑣δ𝑢]𝑟− 1

2
. (15)

Similarly, equations for the predator density 𝑣 are derived from (2)(︂
1 +

ℎ2

12
Λ
)︂
�̇�𝑟 = −𝑑𝑞2,𝑟 +

(︂
1 +

ℎ2

12
Λ
)︂
𝐹2,𝑟, 𝐹2,𝑟 = 𝑣𝑟

[︂
−λ𝑟 +

𝐵𝑢𝑟
1 + 𝐶𝑢𝑟

]︂
, (16)

and the expression for the flow 𝑞2 at the nodes of the staggered grid is given by the formula

𝑞2,𝑟− 1
2
= [−𝑘2𝑑𝑣 + β21𝑑𝑣δ𝑢− β22𝑑𝑣δ𝑣]𝑟− 1

2
. (17)

As a result of discretization with respect to the spatial variable, we obtain a system of
equations with unknowns 𝑢𝑟(𝑡), 𝑣𝑟(𝑡), 𝑟 = 1, . . . , 𝑛, corresponding to the distribution densities
of the population 𝑢, 𝑣 at the nodes 𝑥𝑟. The system (12), (13), (16), 𝑟 = 1, . . . , 𝑛 and (15), (17),
𝑟 = 1, . . . , 𝑛 can be written in vector form

�̇� = −𝑀−1𝐷1 +𝐺1, �̇� = −𝑀−1𝐷2 +𝐺2, (18)

here
𝑈 = (𝑢1, ..., 𝑢𝑛), 𝑉 = (𝑣1, ..., 𝑣𝑛),

𝐷𝑖 = [𝑑𝑞𝑖,1, ..., 𝑑𝑞𝑖,𝑛], 𝐺𝑖 = [𝐹𝑖,1, ..., 𝐹𝑖,𝑛], 𝑖 = 1, 2,

and due to the conditions of periodicity 𝑢0 ≡ 𝑢𝑛, 𝑢𝑛+1 ≡ 𝑢1, 𝑣0 ≡ 𝑣𝑛, 𝑣𝑛+1 ≡ 𝑣1, 𝑞𝑖,𝑛+ 1
2
≡ 𝑞𝑖, 1

2
.

The matrix 𝑀 of size 𝑛2 has the form

𝑀 =
1

12

⎡⎢⎢⎢⎢⎢⎣
10 1 · · · 0 1
1 10 · · · 0 0
...

...
. . .

...
...

0 0 · · · 10 1
1 0 · · · 1 10

⎤⎥⎥⎥⎥⎥⎦ . (19)
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The constructed finite-dimensional model can be written as

�̇� = Φ (𝑊 ) , 𝑊 (0) = 𝑊0, (20)

here 𝑊 = (𝑈, 𝑉 ) — vector of values of variables at grid nodes. The initial data for system (20)
follow from (6):

𝑊0 = (𝑈0, 𝑉0) = (𝑢01, ..., 𝑢
0
𝑛, 𝑣

0
1, ..., 𝑣

0
𝑛). (21)

To integrate the (20) system over time, the high-order Punge–Kutta method is used (the
ode89 time integrator from MATLAB). The second-order spatial discretization is obtained from
(18) by replacing 𝑀 with the identity matrix:

�̇� = −𝐷1 +𝐺1, �̇� = −𝐷2 +𝐺2. (22)

3. Results of computational experiments

To evaluate the accuracy of approximations (18) and (22), calculations of the stationary
and oscillatory modes of the (1)–(6) system were performed for fixed values of the following
parameters: 𝑘1 = 0.02, 𝑘2 = 0.01, 𝐵 = 4, β12 = β11 = β22 = 0. The number of nodes in the
area 𝑛, the mortality parameter λ, the value 𝐶, the migration coefficients α and β21 varied. The
resource distribution was specified on the interval [0, 1] as

𝑝(𝑥) = 1− 0.2 sin 2π𝑥+ 0.2 sin 4π𝑥. (23)

The experiment was carried out on grids 𝑛𝑖, 𝑛𝑖+1 = 2𝑛𝑖, 𝑛𝑖+2 = 4𝑛𝑖, and 𝑊𝑖 is the
numerical solution on grid 𝑛𝑖. The effective order of accuracy η based on the Aitken process
(ℎ𝑖 = 1/𝑛𝑖) was calculated by the formula

η𝑖 = log2
𝑆𝑖

𝑆𝑖+1
, 𝑆𝑖 = ‖𝑊𝑖 −𝑊𝑖−1‖ ,

where 𝑆𝑖 are the norms of the difference between the numerical solutions of 𝑊 on grids 𝑛𝑖 and
𝑛𝑖−1.

Fig 1. Spatial-temporal distribution of prey 𝑢 (left) and predator 𝑣 (right) for α = 0.005, β21 = 0.01, λ = 1.1,
𝐶 = 2.5, 𝑛 = 20
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Fig 2. a — Stationary distributions of prey 𝑢(𝑥) (blue curves), predator 𝑣(𝑥) (red), resource 𝑝(𝑥) (green); b —
order of accuracy values at various times for 𝑃𝐶2 (black), 𝑃𝐶4 (blue): α = 0.001, β21 = 0.005 (solid curves),
α = 0.005, β21 = 0.005 (dashed line) and α = 0.005, β21 = 0.01 (dots); λ = 1.1, 𝐶 = 2.5 (color online)

Table 1. Efficient order of standard scheme (𝑃𝐶2)
and high order scheme (𝑃𝐶4); λ = 1.1, 𝐶 = 2.5,

𝑛1 = 10, 𝑛2 = 20, 𝑛3 = 40 (Aitken process)

α β21 𝑃𝐶2 𝑃𝐶4

0.001 0.005 2.054 3.9745

0.005 0.005 2.0588 3.209

0.005 0.01 2.0589 2.9398

The Table and Figs. 1, 2 present
the results of calculations for establishing
stationary solutions with coexisting predator
and prey at λ = 1.1, 𝐶 = 2.5 for a number of
values of the migration parameters α and β21.
Fig. 1 shows the change in spatial distributions
over time at α = 0.005, β21 = 0.01. For three
sets of migration parameters α and β21, Fig. 2 shows stationary distributions (𝑎) and calculated
values of the effective order of accuracy at different moments in time (𝑏). Depending on the
values of the parameters, different distributions of predator and prey are realized. In the Table,
column 𝑃𝐶2 corresponds to the calculation of order η using the standard scheme of the second
order of accuracy, and 𝑃𝐶4 — calculations using the scheme of the increased order of accuracy.
At α = 0.001, β21 = 0.005 the value of η is almost equal to four. With an increase in migration
parameters, the value of η decreases.

With a decrease in the mortality rate (λ = 0.95), the stationary solution of the coexisting

Fig 3. Spatial-temporal distribution of 𝑢 (top) and 𝑣 (bottom) for 𝐶 = 2.5, α = 0.01, β21 = 0, λ = 0.95, 𝑛 = 24
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Fig 4. Graphs of changes 𝑆𝑖 over time for α = 0.001 (left), α = 0.005 (center), α = 0.01 (right): high-order
accuracy scheme (blue color), second order accuracy scheme (black), 𝑛𝑖 = 24 (curves 1 and 3 ), 𝑛𝑖 = 48 (2 and
4 ); β21 = 0, λ = 0.95, 𝐶 = 2.5 (color online)

4

3

2

1
0 500 0 500 0 500 ttt

η

Fig 5. Graphs of changes η over time for α = 0.001 (left), α = 0.005 (center), α = 0.01 (right): high-order accuracy
scheme (blue color), second order accuracy scheme (black); β21 = 0, λ = 0.95, 𝐶 = 2.5 (color online)

Fig 6. Change in time of the order accuracy η for β21 = 0.005 (left), β21 = 0.01 (right): high-order accuracy
scheme (blue), second order accuracy scheme (black); α = 0.005, λ = 0.95, 𝐶 = 2.5 (color online)
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Fig 7. Spatial-temporal distribution of 𝑢 (top) and 𝑣 (bottom) for 𝐶 = 2, α = 0.01, β21 = 0, λ = 0.95, 𝑛 = 24

predator and prey becomes unstable and periodic oscillations of the species arise (Fig. 3), that
is, traveling waves of population densities are realized in the area. Fig. 4–7 shows the results of
calculations of oscillatory modes and calculations of effective orders of accuracy on grids 𝑛 =
12, 24, 48 for λ = 0.95. Fig. 4, 5 shows calculations of the norm 𝑆 and the order of accuracy η
at different points in time for three values of α in the absence of taxis (β21 = 0). The difference
norm for 𝑛 = 12, 24 in the case of the proposed scheme is always less than the difference norm
for the second-order accuracy scheme for 𝑛 = 24, 48, and comparable results are obtained only
when using grids 𝑛 = 48, 96.

For the second-order scheme, on a large time interval [0...1000], the value of 𝑆 increases, and
oscillations of the calculated order of accuracy are visible. This is the result of the accumulated
error when calculating the cycle on a coarse grid. For the high-order scheme, with an increase
in the migration parameter α, some time is required to establish η. For the problem taking into
account taxis (β21 = 0.005, 0.01), the results of calculating the order of accuracy are shown in
Fig. 6. With a twofold increase in β21, the order of accuracy changes insignificantly.

The influence of the parameter 𝐶 on the nature of periodic oscillations is illustrated by
Fig. 3 and 7. For close values of the predator inertia parameter 𝐶 = 2, 2.5, oscillatory modes
with different amplitudes and periods are realized. The scheme of a high order of accuracy allows
for calculations of relaxation oscillations on fairly coarse grids (𝑛 = 24), when the predator is
practically absent for significant periods of time (Fig. 7).

Conclusion

The paper proposes a simple to implement compact numerical scheme for solving a system
of parabolic equations with nonlinear advective and source terms. The problem of the dynamics
of predator and prey populations in a heterogeneous environment is considered. The results of
calculating stationary distributions of species and oscillatory modes are presented. The calculated
values of the effective order of accuracy showed the advantages of the proposed scheme compared
to the classical second-order approximation in calculating stationary and non-stationary solutions.
The scheme of a higher order of accuracy allows using smaller grids. This is important when
calculating stationary distributions using the establishment method and when calculating non-
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stationary processes such as traveling waves. This is especially important when analyzing population
dynamics problems with highly heterogeneous resource distributions in the environment and in
the case of several spatial variables.
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