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NONLINEAR DYNAMICS OF MIXED EVOLUTIONARY STRATEGIES
FOR SOLVING OPTIMIZATION PROBLEMS -

Werner Ebeling

Several elementary strategies of evolution are investigated and described by simple
mathematical models, leading to a highdimensional system of coupled differential equations.
The stationary states of the system correspond to relative optima and the stable attractor cor-
responds to the finai solution of the optimization problem. Special attention is devoted here to
mixed Boltzmann - Darwin strategies modelling basic elements of thermodynamic and bio-
logical evolution respectively. A continous model leading to one p.d.e., the corresponding ei-
genvalue problem and several applications are discussed.

1. Introduction

Our world including biological species, the ecological communities and human so-
ciety appears to be the result of a special search process: natural evolution. There is no
external program which controls this search for weli-adapted solutions. Our world is
fundamentally based on the selforganization of matter which is a highly complex non-
linear process {1-7].

Evolution we understand here as in earlier work as unlimited sequences {spirals in
Hegel's picture) of selforganization steps [1,2]. Selforganization is defined as the spon-
taneous formation of order in open entropy-exporting systems. One of the most evident
features of evolution is the tendency to form ever more complex structural and behaviour
modes during the course of time. The understanding and explanation of the trend to com-
plexification and optimization forms the heart of any research program dealing with
problems of evolution. Modern research has shown that the strategies developed in the
process of natural evolution might also be of interest for the design and construction of
technical systems. Pioneering work in this direction was done by Holland, Bremermann,
Rechenberg and Schwefel [8-10].

2. Models of the Basic Strategies of Evolution

Analyzing the mechanisms of natural evolution we find several basic strategies [8-14];
the main of them are:

1. Boltzmann strategy. The fundamental goal nature tried to reach in its course of
evolution up to the appearance of life is the optimization of certain thermodynamic func-
rions. In our present understanding the metagalaxis was the result of a giant vacuum fluc-
tuation which extended through an inflationary process and led to an hot and quickly ex-
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panding plasma. The expansion of this very hot plasma started about 10-20 billions of

years ago. The expanding plasma tried to maximize its entropy and this was the basic

reason for the formation of the chemical elements and for the clustering of matter which

finally led to galaxies, stars and planets.
The Boltzmann strategy has three important elements:

a. Motion along gradients to reach steepest ascent of entropy. :

b. Various stochastic processes including thermal and hydrodynamic fluctuations. Thank
to these fluctuations locking in local maxima was avoided.
¢. Decrease in temperature during the adiabatic expansion of our world.

Let us consider for example a numbered set of states i = 1,2,....n each characterized
by a potential energy U, and a population x(f) at time ¢. Then the simplest model of a
Boltzmann process which tends to find minima of U, is

0,xi(1) = L (Ayx(t) - Ajxd1)), €]

1 if U;> U,

A, =A0 3 jo M
v { exp {(U; - U)/T), otherwise. - @)

A;jo = Aj ;0.

In other words a hill-down transition is always carried out and a hill-up transition
occurs only with a small rate which decreases exponentially with the height of the
threshold.

2. Darwin strategy. This second important natural strategy appears in the universe
only in the process of biogenesis i.e. about 3-4 billions of years ago. The basic elements
of a Darwinian strategy are:

a. Self-reproduction of good species that show maximal fitness.

b. Mutation processes due to error reproductions that change the phenotypic
properties of the species. '

¢. Increase of the precision of selfreproduction in the course of the evolution of life.

Considering again as an example the population of ~ states a simple model reads

a,x,- = (E, - <.E>) X; + Ej (Aijxi - Ajix,-). (3)

Here E; denotes the fitness (expressed by the rate of self-reproduction) of species i in
the population and <E*> is the population average.

The two strategies discussed so far will be denoted in the following as elementary
strategies. For completeness let us mention only other more difficult strategies which
were developed by nature in the course of evolution, as e.g. Haeckel strategies, Volterra
strategies etc.[1,2,10-12].

3. Mixed Boltzmann - Darwin Strategy. Boltzmann and Darwin strategies show
several parallels but also essential differences [10-11]. Both strategies are well suited to
find the extrema in landscapes of potential functions. In general it will depend on the
structure of this landscape, what search strategy is the better one. The qualitative analysis
carried out in earlier work [11] suggests that in the case that no knowledge about the
structure of the landscape is available, it will be advantageous to apply the Boltzmann
strategy combined with annealing. This strategy seems to be more universal; it will al-
ways work. However, thermodynamic processes have the tendency to be locked in rel-
ative extrema surrounded by high threshold. In the other hand, Darwinian processes are
able to cross high barriers by tunneling if the next minimum is close. In any case we have
seen, that both strategies are quite different and we might expect that there exists a class
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of problems, where the Boltzmann strategy is better and another class of problems where
the Darwin strategy is more appropriate. In such a situation it seems to be a good idea to
develope a strategy which possesses components from both elementary strategies.

In order to model mixed strategies let us consider again a numbered set of states
i =1, 2. ..., n each characterized by a potential energy U, and a population x,(¢) at time ¢.
Then a simple model of a mixed strategy with the property to find minima of U, is

ax; =y(<U> - Ux; + Z; (A5 - Ajix), (4)
1, if U, > U,

Ay = A0 { ! : (5)
exp {B(U; - Uy)} otherwise,

with

f’“}‘:jo = Aji09 B = 1/T. (6)
The new models described by eqgs. (4)-(6) contains as a special case the Boltzmann
strategy for y = 0. The Darwin strategy is obtained for y=1and T — oo.

3. The Continuous Model of Mixed Strategies
and the Associated Eigenvalue Problem

Since the mathematical problem connected with the solution of the coupled non-
linear differential equations (4)-(6) is extremely difficult, let us simplify it. We introduce
a corresponding continuous model leading to one partial d.e. by replacing the vector x; by

a continuous function x(g, ¢) and restricting mutational changes to small steps [1,11].
With these assumptions we get a mixture of Fisher - Eigen and Fokker - Planck equations

dx(q, 1) = y[<U> - Ulg)}x(g, 1) + D[Ax(g; 2) + Bx(q, HVU(q) |- (™)

For § = 0 (T — o) this is the standard Fisher - Eigen equation which is solved for ¢ — oo
by a Gaussian-like distribution centered around the absolute minimum of U(g). For
v = 0 results the standard Fokker - Planck equation which is solved for ¢ — oo by the
Boltzmann distribution

xo(q) ~ exp [-BU(q)] (8)

which possesses a maximum around the lowest minimum of U(g). In the general case
v> 0, B > 0 the following ansatz is useful

x (g, t) = exp [ﬂo <Usdt - BU(q) 2] ¥(q, 1). (%)

This substitution transforms the nonlinear p.d.e. (7) into a linear equation for y(g, 1)
which is similar to the Schradinger equation with imaginary time

d(q, 1) =D[ay(q, 1) - V(9)]¥(q. ©) (10)
with the effective potential
V(g) =y U(q) - (DI2)BAU(q) + (D/4) (VU(q))~ (11)
The new linear equation which is solved by
y (Qa I) =X an‘yn(q)exp('gn't ) (12)

Here the eigenvalues ¢, and the eigenfunctions v, are determined by the stationary
Schridinger problem



DAy,(q) +[ &, - V(g) Twu(g) =0 o (13)

fgr ;he effective potential. In this way we get the complete explicite solution of eq. (7) in
e form

x(qa t) = exp[-BU(q)/Z ] ’ E an\un(q)exp(-e,,t)/chexp(-s,,t). (14)

The coefficients a, and ¢, are defined by

a, = ldg x(¢.0) v.(q),
(15)
¢ = a,ldg v.(q).

In the limit ¢ — oo our solution converges to

x0(g) = exp [-BU()/2 ] - (ao/co) Wo(q) (16)

where yy(q) is the ground state wave function which is centered around the deepest min-

imum of the effective potential V(g). A deeper mathematical analysis of the solution giv-
en above is in preparation [15]. A

4. Application to Optimization Problems

Let us first show that the dynamics of the mixed process is problem-solving that
means it will find the absolute minimum of U(g) which is the target of the search. Since
the Boltzmann factor has a maximum at the deepest minimum of the potential U(g) we
see that xo(q) is centered near to the latter. In other words, the dynamics of the mixed
strategy converges to a point attractor near to the minimum of U(g) which is searched,
i.e. the strategy is indeed problem solving, In order to guarantee the exact convergence to
the minimum of U(g) we may use a kind of annealing y — 0 and B — <. Since for y=0
the ground state solution of eq. (13) is

wolg) = exp[-BU(g)/2 ] a7

we see that xy(q) degenerates in the limit of the annealing process to.a 8-function cen-
tered around the deepest minimum of U(g). This proves that the dynamic process con-
verges in the limit y — 0 , B — oo and ¢ — oo indeed to the absolute minimum of U(g).

In earlier work we considered the application of mixed Boltzmann - Darwin
strategies based on the discrete form of the mixed strategies given by egs. (4)-(6) to the
travelling salesman problem (TSP) and the related cost problem (CP) [13]. For example
we considered routes between 100 towns stochastically distributed on a square as well as
routes connecting 16 «real» towns. The potential corresponding to the TSP is the total
length of a closed tour connecting all towns [13]

U=XLG,)) (18)

where L(i, j) is the distance between the towns i and j. The «real» towns considered in
our earlier work were: Schwerin (B), Rostock (A), Stralsund (P), Neubrandenburg (C),
Stendal (H), Potsdam (D), Berlin (I), Frankfurt (E), Cottbus (Z), Dresden (R), Chemnitz
(T), Gera (N), Halle (K), Leipzig (S), Suhl (O), Erfurt (L). The distances then were tak-
en from the data given in a common calendar for automobile kilometers. The problem
was of course not, to solve a realistic touring problem but, to find good strategies which
yield short tours in a modest time. It could be shown by simulations that in this respect
mixed Boltzmann - Darwin strategies have very good scarch properties. We mention
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also another variant of those strategies which includes aging of the searchers, a strategy
which was called a Haeckel-type strategy {12]. _

In owr simwlations the number of representatives (selesmen) in the ensemble was
varied between 29 znd 27. We calculated the mean value of the dispersion and the best re-
sults obtained by & search in a given fixed total computer time. It was shown that en-
sembles with 4-32 representatives give the best results with respect to the mean value,
the best value and the dispersion of the results. The interpretation of these findings is the
following: certain amount of parallelism is a useful element of good search strategies. The
computer time which is lost for simulating a number of parallel searchers is gained by
certain advantages of parallel search as e.g. the possibility of exchange of experience. In
our mixed strategy this is modelled by the Darwinjan elements: competition between
searchers, survival of the fittest. However when the number of searchers working in par-
allel is too high. in our case exceeding the number 32, the parallelism costs more than one
can gain from it. According to our experience, a successful strategy requires a fine bal-
ance between parallelism and individualism on one side and between Darwinian and
Boltzmann elements on the other side.

Similar results were obtained by the analysis of a cost problem with the potential

U=3%C(i)) (19)

where the cost for travelling from town / to town j was derived from the distance by mul-
tiplication with a rendom number in the range (0.2 + 1.2). The cost problem does not sat-
isfy a triangle inequality and must be considered therefore as a different class of op-
timization problems. The results show again certain advantage of including Darwinian
elements into the search strategy. Let us underline that N = 1 corresponds to a pure
Boltzmann strategy and N = 2,4,...,128 to a mixed Boltzmann - Darwin strategy. In this
case we are simulating a population of N salesman which are searching simultaneously
and which are coupled by a competition for the best results. The simultaneous search was
simulated always on a single sequential computer. Of course it could in principle be car-
ried out also on a net of parallel processors. Since the coupling (acts of selection) be-
tween the elements of a Darwinian ensemble is a rather seldom event, the speed up by
using such an N-processor net might be near to N. Possibly the real power of mixed
strategies inciuding Darwinian elements will show up only on parallel computers with 4 -
32 parallel processors [14]. This question has to be left to future work, as well as a deeper
mathematical analysis of the mixed strategies [15], which were described here in a more
qualitative way.
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HEIMHEUHAA THHAMUKA CMEMAHHBIX 3BOIOIMOHHBIX
CTPATETHA I PEMEHUSA IMMPOBJIEM OIITHAMU3A LN

Beprep 36eaunz

Hccnenyrorcs HECKONBKO NMPOCTBIX CTPATerdd 3pomolym. OHH — ONMCHIBAIOTCS
IPOCTEIMA MaTEMATHYECKHME MOJIENISMH, CBOIAIUINMHCA K MHOCOMEpHOH cHcTeMe
cBa3aHERIX uddepeHIEanbHLIX ypaBHeHmd. CTanpoHApHBIE COCTOSHHS CHCTEMBL
COOTBETCTBYIOT OTHOCHTEJIHHBIM ONTHMAJBHBIM YCIIOBHSM, a YCTOWYMBBIN aTTPaKTOp
COOTBETCTBYET OKOHYATEIbHOMY pelieHmio npobieMsl onrtaMmsarmmd.  Ocoboe
BHEMAaHHE yHAeasieTcd CMellaHHol crpaTermm bonbiMana - [lapsuHa, Mopemmpyroiiei
OCHOBHBIE OJIEMEHTB! TePMOJUHAMHAYECKON B OHONIOrAIeckol sromronan. O0cyxnaeTcs
pacripefieicHHast MOJEIb, CBOAsHIasicd K ofHoMYy mucdd¢epeHnranbHOMy ypaBHEHHAIO B
YaCTHBIX NNPOH3BOJHbIX, POOIeMa COOCTBEHHBIX 3HAUSHUH B DS IPAMECHEHAM.

Bepuep OJfeaunz - oxkowuun Pocrtoxckud ymmeepcurter (1958),
npoceccop, 3aBefylolliiii Kaceppoit cTaTtucTimdeckol usmru ['yMGonbackoro
yuuBepcuTeTa B bBepmuHe. VM3BeCTHLIM (DU3HK-TEOPETHK, ONUH M3 BELYLUBX
CNENMAACTOB TI0 TEOPHY IPONECCOB CaMOOPranu3aliil U SBOMIONUA OTKPBITHIX
HEepaBHOBECHBIX CHCTeM pa3Hoi npupopel. Ero yuemmku ycmemno pafoTarorT BO
MHOTHX YHHBEDCHTeTaX W HayuHbIX uHCTHTYTaX. Fimeer Gonee 20 KHUT: OT
¢hyHIaMeHTANbHBIX MOHOrpadil NO TeopuM HHU3MKH Ma3Mbl O HAYYHO-
TONMYNAPHBIX KHAT HO cuHEepretdke. Ero KHUTH HEOJHOKDAaTHO H3[aBaJMCh Ha
aHITIMIICKOM U Ha PYCCKOM S3bIKaX.
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