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4. Model Making in Chaos 

The last topic we take up in this article is that of making models in chaotic systems 
for prediction or control of the source of the observed chaotic signal. In a sense this is 
both the easiest and the hardest task we have discussed in this article. It is the easiest be- 
cause it is quite simple to make models of the dynamics which very accurately allow one 
to predict forward in time from any new initial condition close to or on the attractor with- 
in the limits of the intrinsic instabilities embodied in the positive Lyapunov exponents. It 
is also the hardest because there is no guideline as to which of many functional forms to 
nse for the models and what interpretation to place on the parameters in the models from 
a physical point of view. In this section we make models on the attractor and evaluate 
them by how well they do in prediction or possibly control. However, another route to 
model making which must be based in an understanding of the fundamental physics of 
the problem would be to develop equations of motion for the dynamical system and then 
compare the output of those equations of motion not by individual orbit y(k) to the ob- 
served orbit, for these must disagree and be essentially uncorrelated from each other 
again due to the intrinsic instabilities in the dynamics. Instead the comparison is to be 
made in terms of the statistical quantities such as fractal dimensions and Lyapunov ex- 
ponents as we have discussed. 

As we noted in our introduction, we work here with data as observed on the at- 
tractor alone, thus we cannot hope as an algorithmic matter to make models which would 
have general validity throughout the system state space. For example, if there is a set of 
initial conditions in that original phase space which leads to other behaviour than what we 
have observed and analyzed, it is plausible that our models for the motion in that other 
basin of attraction could be different. It is also quite possible that we would have been 
lucky enough or insightful encugh to have made a model which encompasses both fea- 
tures of the dynamics. When we make models we have to decide from the outset what 
kind of functional form we are going to use to express what is certainly fundamentally 
forms of Newton's laws. The impossibility of selecting in any a priori way the correct 
functional form is stressed by Rissanen [43] who also lays out a clear program for ex- 
tracting from experimental data the most information available. 

Our discussion here will limit itself to outlining how one can use the phase space 
structure we have built up in the у(п) to provide effective models of the dynamics which 
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allow one to predict the evolution of any newpoint in the phase space within the basin of 
attraction which has been observed. The basic idea is that since we have seen how points 
in a neighbourhood evolve into points in the «next» neighbourhood we ought to be able 
to provide an appropriate interpolation scheme which would allow us to say that any new 
point would evolve more or less as its neighbourhood was seen to evolve. Now we’ll put 
some flesh on these bones. 

4.1. Local Models 

The first kind of model we consider is that of local neighbourhood to neighbour- 
hood maps. The idea follows our construction of local maps for purposes of extracting 
local Jacobian matrices to use in determining Lyapunov exponents. We imagine that we 
have a certain local functional form for the dynamics x—F®(x) in the neighbourhood of 
the observed point y(k): 

F(x) = Sy ет) 9х), (55) 
where the functions ф„(х) are a basis set we choose from intuition or good guessing or 

convenience. These ¢,,(x) could be polynomials or other furictions with some appeal. The 
discussion of what functions to use and how many to use takes us into the difficult sub- 
ject of multidimensional interpolation [44] which we will not pretend to present here. In 
an intuitive sense we can say that if we have enough data, then local polynomial ap- 
proximations to the dynamics is sure to provide accurate local maps. When data becomes 
sparse or dimensions become high and the number of coefficients in the polynomials 
correspondingly large, other interpolation functions will probably be more efficient and 
accurate. Г do not have a favorite all purpose basis set to offer or suggest. 

Returning to the general problem, which we will then illustrate with polynomials. 
We go to a particular point y(k) in the embedding space of dimension а; and using a de- 
vice such as the principal component decomposition discussed in the context of local 
false nearest neighbors select out a d; dimensional subspace in which to make a model. 
All distances are evaluated in the 4; 2 а, dimensional space, but all other computations 
are done on the а, dimensional model which takes the selected а, components of y(k) 
into the same components of y(k+1) via 

y(k+1) = Р®(у(0) = Zo (mk) dn (y(K)). (56) 
To determine the coefficients in the model we select the М, nearest neighbors of the 
phase space point y)(k); r=1,2,...,N3, and minimize 

EAD) - Boy mk) Gy) (57) 
This 1s a linear problem once the basis functions ф„(х) are fixed. Vary this expression 

with respect to cg(n,k); B=1,2,d, to find 

M Np 

Ул M(K) my c(h) = Zp yp(rk+1),(y0(k)), (58) 
where 

ME) = Zrii 0, (JOE) 000K). (59) 
So the problem is an M x M matrix inversion problem, and this is well studied. The lit- 
erature is rife with examples of good, stable, accurate algorithms for solving this kind of 
problem. 

When we are done with this, we will have a local model associated with each ob- 
served point y(k) on the attractor. In practice what one would do for prediction is to store 
the points y(%), and, when handed a point z(0) from which one wants to predict the evo- 

120



lution of the system, we would search the y(k) to find the one nearest (0), then for this 
point, let’s call it y(J), we would construct the model local to its nearest neighbor among 
the observed points. This would give us a local model F(x) which should be valid as an 
interpolating function in the neighbourhood of y(/) which includes the point of interest 
2(0). Now we evaluate F,(z(0)) and this gives us the next point on the orbit which starts 
with z(0) as initial condition: z(1)=F,(2(0)). We call this an interpolating operation be- 
cause the function F(x) contains information in its coefficients с(т,/) about all the 
neighbors in the neighbourhood of y(J). Now we find the nearest neighbor of z(1), call it 
y(K), evaluate the required local map Fy(x) and proceed to z(2)=Fg(z(1)). We iterate 
this procedure for as far into the future of z(0) as we wish to predict. The bound on our 
accuracy in this is determined by the error we make in the actual value of z(0) and the 
largest local Lyapunov exponent A;(z(0),L) which tells us how that error grows. 

The procedure we have just described is called iterative forecasting since we make 
a large number of unit time steps to reach L steps into the future of z(0). The root mean 
square error in this forecast should scale approximately ав [2,45] in going from z(0) to 
z(L) in L steps - 

. N - (+1)deplha, (60) 

if we use polynomial basis functions ¢,(x) where Г is the maximum order of the poly- 
nomials used, and N is the number of data. If we attempt to build a model which goes 
from z(0) to z(L) in one direct step, then the scaling is less optimistic with the RMS error 
estimated to be 

N - (+)dee(I+ 1), (61) 

4.1.1. Lorenz Model. As ever we take an example from the Lorenz model to dem- 
onstrate how these methods work. In Figure 47 we have the RMS prediction error scaled 
to the size of the attractor В, for local polynomial prediction functions. The results for 
local linear maps are shown with circles and local quadratic maps, with squares. The error 
grows approximately exponentially with the number of steps ahead of any given point. 
The computation was done by using 48.000 data points in a reconstructed phase space 
dy=3 and local maps with d,=3. 1000 different initial conditions were examined, and the 
average is what we have displayed. 

4.1.2. Chaotic Circuits. In Figure 48 we perform the same forecasting task as just 
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Figure 47. RMS prediction error for local linear and ~~ Figure 48. RMS prediction error for local linear and 
local quadratic map models for data from x(n) from 1оса! quadratic map models for data from Vp(n) 
the Lorenz system. Models were built in dg=d;=3 from the hysteretic nonlinear circuit. Models were 
using 7=10 as determined from the methods de- built in dg=d;=3 using T=6 as determined from the 

scribed in this article. The error is in units of the methods described in this article. The error is in 
size of the attractor Ry. The error grows ap- units of the size of the attractor Вд. The error grows 
proximately exponentialy at a rate dictated by the approximately exponentially at a rate dictated by 

largest Lyapunov exponent М, the largest Lyapunov exponent A4 
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done for the Lorenz model but using data from the hysteretic circuit discussed several 
times in this article. The data was from the voltage Vj and again 48.000 data points in 
dy=3 were used to make local linear and then local quadratic maps in d;=3. The average 
RMS error relative to the size of the attractor is shown in the figure with an average hav- 
ing been taken over 1000 starting sites. 

4.2. Global Models 

The collection of local polynomial (or other basis function) maps form a model 
which is useful over the whole attractor though likely to be of less value off the attractor. 
The shortcomings of such a global model are its discontinuities from neighbourhood to 
neighbourhood and its extremely large number of adjustable parameters. For polynomial 
models of order М in а, local dimensions we have approximately ‚М parameters at each 
time step. This is clearly a penalty for high accuracy. At the same time, it would be nice 
to have relatively simple continuous model describing the whole collection of data. A 
number of solely global models have been discussed which present a closed functional 
representation of the dynamics in the whole phase space (or, at least, on and near the 
whole attractor). The smoothness or analytic behavior of such models as well as the abil- 
ity to produce orbits over large regions of the phase space and study their behavior as 
model parameters are varied makes them quite attractive. 

Each method for producing global models uses some expansion of the dynamical 
vector field F(x) in a set of basis functions in Rd. In a sense this is precisely what we have 
described for local models, but we apply the idea over the whole attractor instead. The 
first such global method is to use polynomials again. Their advantage in local modeling 
where least square fitting works well, is now reduced by the extremely large number of 
data points and the necessity to use rather high-order polynomials. 

There is an attractive alternative approach to finding a polynomial representation of 
a global map. This measure-based functional reconstruction [46,47] uses orthogonal 
polynomials whose weghts are determined by the invariant density on the attractor. The 
method eliminates the problem of multiparameter optimization. Finding the coefficients 
of the polynomials and the coefficients of the function F(x) requires only the evaluation 
of moments of data points in phase space. 

The method works as follows. We introduce polynomials ¢,(x) on Rd: which are 
orthogonal with respect to the natural invariant density on the attractor 

J dtexp (%)0,(x)00(%) =, (62) 
and the polynomials are determined by a conventional Gram-Schmidt procedure starting 
from 

dfx) = 1. (63) 

The vector field F(x) which evolves data points y(k+1)=F(y(k)) is approximated 
in M" order as 

Fix) = Zs ет) о). (64) 
This differs from the local expansion of the same form by having the coefficients in- 
dependent of the phase space location where the approximation is being made; that is, it is 
a global fit. The coefficients c¢(m) are determined via 

е(т) =] асе (кф, (х)р(х) =UNEF(y(R)on(3(0)) = UNE Ly (k+1)0n(y(K)). (65) 
This demonstrates the power of the method directly. Once the orthogonal polynomials 

ф„(х) are determined from the data, the evaluation of the vector field is reduced to sums 

over powers of the data with themselves since the ф„(х) are polynomials. 
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Furthermore, the form of the sums involved allow one то establish the vector field 
from a given set of data and adaptively improve it as new data are measured. The best as- 
pect of the method, however, may be the robustness against contamination of the data 
[47]. There is no least squares parameter search involved, so no distances in state space 
needa be evaluated. The geometric nature of the method doesn’t rely on accurately de- 
termining distances and is thus not so sensitive to «noise» which spoils such distance 

evaluations. Further, by using the whole data set instead of just data in a local neighbour- 
hood a certain amount of averaging and thus «noise» filtering is done automatically. 

As an example of this method we show the results of its use in taking data from a 
‘map of the plane to itself and using data from one of the variables creating a global model 
which is then itself used to generate global Lyapunov exponents [47]. The particular issue 
we shall address has to do with the robustness of the global map in its prediction of the 
Lyapunov exponents in the presence of contaminated data. The data from the map is con- 
taminated by gaussian random numbers of zero mean and standard deviations of varying 
amounts. 

The map, called the Ikeda map in the literature, comes from a study of a pumped 
and lossy ring laser system and gives a representation of the amplitude and phase of the 
laser beam as it passes a plane cutting across the ring at some location. The amplitude and 
phase are embodied in a complex variable z(n)=x(n)+iy(n) where the index п identifies 
the first, second, ... passage across the plane [60,61] map of the plane to itself: 

z(n+1) = р + Bz{n) exp [ix - io/(1+lz(n)12)] (66) 

where p=1.0, B=0.76, к=0.4, о=6.0. The dimension of the attractor associated with this 
map is ds=1.4. The usual tests show that x(n) data from this system can be embedded in 
dz=3, and we use this information to make a global model utilizing ten orthogonal poly- 
-nomials in accord to the description just provided. With this global model, the Jacobian 
matrix evaluated along the trajectory is used to yield Lyapunov exponents. One of the ex- 
ponents is false and is identified by its behavior under time reversal. The other two ex- 
ponents are approximately A;=0.35 and №=-1.0. In Figure 49 we display the two true 
Lyapunov exponents as a function of the amplitude of the Gaussian random number noise 
added to the output of the map. 1100 data 
‘points from the map are used to create the ~~ 09} 
global polynomial map. The RMS level of _ 0.7} a 
the Ikeda map is about 0.7, so the largest § 0.5} в © 
contamination level which is a RMS level & 0,3? ° ° ° o 
of 0.1 is about a 14% noise level in am- 3 01| 
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exponents is shown in solid symbols. Using 
the local polynomial method described 
above [38,39] gives the output shown in 
open symbols. It is clear that the global 
polynomial method, which requires sub- 
stantially less computation, is much more 
robust against noise contamination. 

The present direction of nonlinear 
modeling combines features of local and 
global models. Consider, for example, the 
method of radial basis functions [24,44] 
which, as Casdagli notes [48], «is a global 
interpelation technique with good local- 

Figure 49. The global Lyapunov exponents for the 
Ikeda map of the plane to itself. The exponents are 
displayed as a function of the amplitude of Gaussian 
random noise added to the «observed» signal from 
the map. The RMS size of the signal is 0.7 in these 
units. The results in solid symbols comes from using 
a global orthogonal polynomial representation of the 

mapping x—F(x); the data in open circles comes 
from making local polynomial neighborhood to 
neighborhood maps as described in Section 3. The 
global polynomial method requires less computation 
and is more robust against contamination of the data 
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ization properties». In this method a local predictor F(y) is sought in the form 

F(y) = 55 c(n)@(lly- y(ml) (67) 
where Ф(Их!!) is some smooth function. The coefficients с(п) are chosen to minimize the 
residuals in the usual least squares fit to the data. Depending on the number of points №. 
used for reconstruction this method can be considered as local (small N.<<N) or global 
(N=N). 

Various choices for Ф(Их!!) will do. @(r)=(r2+c2)-# works well for В>-1 and p=0. 
If one adds a sum of polynomials to the sum of radial basis functions, then even in- 
creasing functions Ф(г) provide good localization properties. However, for a large num- 

ber of points N, this method is as computationally expensive as a usual least square fit. 
Numerical tests carried out in [48] show that for small number of data points radial basis | 
predictors do a better job than polynomial models although for larger amount of data 
(N=104) the local polynomial models seem to be superior. 

An interesting variant of radial basis functions is kernel density estimation [49]. In 
this method one estimates a smooth probability distribution from discrete data points. 
Each point is associated with its kernel which is a smooth function К(Ну- y(i)ll)) which 
typically decays with distance, but sometimes can even increase. Using a kernel chosen а 
priori a probability distribution 

p(x) =, K(Ix- (21) (68) 
or a conditional probability distribution 

p(xlz) = Z; КИх- y(i+1)I1) K(llz- y(i)I) (69) 

is estimated. p.(xlz) can then be used for conditional forecasting by the rule for the es- 
timated phase space point evolving from y(k) 

FU) = [ xp (xy (8). (70) 
Kernel density estimation usually provides the same accuracy as the first-order local 
predictors. 

Again, computing the conditional probability distribution, one can impose weights 
in order to attach more value to the points close to the starting point of prediction (both in 
time and in phase space). In fact, this leads to a class of models which are hybrids of local 
and global methods. Moreover, it allows one to construct a model which possesses not 
only good predicting properties but also preserves impoitant invariants of the dynamics. 
The prediction model by Abarbanel, Brown and Kadtke [50] belongs to this class. That 
mode! chooses the global map as 

(та) = Zo; y(k+1)e(y,y (kia), (71) 
where g(y,y(k);a) is the analog of the kernel function. It is near 1 for y=y(k) and vanishes 
rapidly away from there. The a are constants. To determine the a and the X minimize 

Se y(t) - 5 X Fay (k- na1),a)li2, (72) 

where Х,, n=1,..., L is a set of weights attached to the sequence of points y(k- п+1) ай of 
which are to be mapped into y(k+1) by maps Fn(y). It is clear that then F(y(k),a) will be 
close to y(k+1) as it provides an excellent interpolation function in phase space and in 
time. The free parameters in the kernel function g and the specific choice of the cost 
function allow one to predict forward accurately in time and satisfy additional constraints 
imposed by the dynamics-significant Lyapunov exponents and moments of the invariant 
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density distribution as determined by thie data will be Teproduced in [his Model. Ine ater 
does not follow automatically from the former. Indeed, it is shown in [50] that models 
which predict enormously accurately can have all negative Lyapunov exponents even 
when the data are chaotic. 

4.3. A Few Remarks about Model Making 

Using phase space information to establish evolution rules on the attractor has 
proven to be both quite easy and quite successful. If one can determine how whole neig- 
borhoods evolve into other neighborhoods in phase space, excellent interpolation func- 
tions using a wide variety of different basis functions have been made. Though we do not 
dwell on their failings were we to use global linear models to capture the evolution of 
these systems, we would easily find that the RMS prediction error would be the same size 
as the attractor. It is not surprising that such a direct application of tools developed for 
linear systems would not succeed in situations where multivariate signals are operating 
and global nonlinear properties, such as positive Lyapunov exponents, and the folding of 
the orbit back on itself due to the dissipative nature of the system are critical elements. 

The really important departure in model making is to view the system in the ap- 
propriate space, as dictated by the data. Once one does that and uses the phase space in- 
formation thus exposed, many routes to successful modeling of the system present them- 
selves. 

5. Summary and Conclusions 

The trajectory through the analysis of observed time series we have followed in this 
article is mapped out in tabular form in Table 1. It is clear that the tasks facing the analyst 
of a signal are essentially the same regardless of the linear or nonlinear nature of the 
source. The methods one adopts for the analysis are substantially different. The phase 
space methods used in the analysis of signals from nonlinear sources are quite usable in 
the case where the equations of motion governing the source are linear, but we suspect 
that at the present stage of development these methods do not yet compete with the well 
studied and carefully constructed linear Fourier space techiques available in the vast lit- 
erature on this subject. 

In the approach outlined in this article we have emphasized that from scalar meas- 
urements 5(п)=5(го+пт,) one can directly and efficiently go to the multivariate space of 
vectors y(n) in which the system attractor is geometrically simple. Indeed, we have em- 
phasized in an implicit way that in any smaller dimensional space, for example the one 
dimensional observation space of the s(n) themselves, there is ambiguity associated with 
false neighbors which interferes with one’s ability to make accurate models for pre- 

“diction. The ambiguities are precisely due to orbit points which should dwell in distant 
reaches of phase space and thus not evolve from each other in only a few time steps find- 

- ing themselves by projection nearby each other. Trying to model the evolution of these 
points into each other is basically an error when thought of from the point of view of the 
underlying multidimensional dynamics. 

Once one accepts that the state space in which one must view chaotic systems is 
multidimensional and understands that one has to devise time domain methods for work- 
ing in this space, then much of what we have presented is easier to grasp and build on. 
We have discussed essentially two kinds of dynamical invariants in this framework: frac- 
tal dimensions D, and local and global Lyapunov exponents A,(x,L); №. These have a 
nice intuitive sense about them and have a convenient physical and geometrial inter- 
pretation. We suspect they do not provide a complete set of invariants in the sense that 
knowing all that one could deduce about them from the data allows one to identify the 
source of the signal without ambiguity. A complete set of such invariants is not known to 
me, but a promising route to finding such invariants has been pursued in the work of Gil- 
more and others [51,52,53,54,55,56,57,58] on the topology of unstable periodic orbits 
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Table 1 

LINEAR SIGNAL PROCESSING NONLINEAR SIGNAL PROCESSING 

FINDING THE SPACE FINDING THE SPACE 

FOURIER TRANSFORMS PHASE SPACE RECONSTRUCTION 

Use Fourier space methods to tum Using time lagged variables, form 
differential equations or recursion coordinates for the phase space in dg 

relations into algebraic forms. dimensions: 
s(n) is observed; y{(n)=[s(n), s(n+T),..., s(n+(ds-1)T)] 

Fourier transform to Determine T and ас from average mutual 

S(fy= Z stn) ехр[ яп) information and. global false nearest 
neighbours 

CLASSIFY THE SIGNAL CLASSIFY THE SIGNAL 

Sharp Spectral Peaks Invariants of orbits. Lyapunov 
Resonant Frequencies of the system Exponents; Fractal Dimensions Dy; 

Unchanged under variation in forcing Moments of invariant distribution 
while system remains linear function in phase space 

Quantities independent of initial Quantities independent of initial 
conditions conditions 

MAKE MODELS, PREDICT, MAKE MODELS, PREDICT, 
CONTROL CONTROL 

$(п+1)= Zc;s(n- J) y(n) — y(n+1) as time evolution in а, 
Find parameters с; by least squares dimensional space determined by local 

method in scalar space. Make false nearest neighbors 
consistent with invariant classifiers y(n+1)=F{y(n),a109,...a,] 
(spectral peaks) Find parameters a; by least squares method in 

multidimensional space. Make consistent 
with invariant classifiers (Lyapunov ex- 
ponents, fractal dimensions) 

which lie within all strange attractors. That work is restricted to three dimensional phase 
space at this time, but seems to have great promise. 

The role of unstable periodic orbits in the behavior and understanding of strange 
attractors is a rapidly developing area of study. There is a folklore, backed up by math- 
ematical statements about systems which do not precisely correspond to those seen in 
physical settings, that within all strange attractors there lies a dense set of unstable pe- 
riodic orbits. The number of these orbits increases exponentially rapidly with their period, 
but the lowest order orbits can be identified in a given chaotic data set with some ease. 
The most striking utilization of these unstable orbits is the work of Он, Grebogi and 
Yorke [59] where it is shown how to change the dynamical system which produces the 
observed chaotic orbit into a «nearby» system with a time dependent parameter. This 
new, but nearby, system is designed to have a stable periodic orbit very close in phase 
space in to the previously unstable periodic orbit. This allows опе by making small al- 
terations in the parameter to drive the system to that now stabilized orbit. Adding dimen- 
sions to the state space to provide external guiding of an orbit is more or less a standard 
method in control theory, but the innovative twist here is to use the stable and unstable 
eigendirections of the local Jacobian matrices DF(x) to perform the guiding for you. 
Since the evolution along such directions is exponentially rapid in time, small alterations 

in parameters can cause large changes in the behavior of the «nearby» system. There is 
enormous engineering potential in this technique which has only begun to be realized. 
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This Kind of control is just one of the many topics we have not explored during our 
discussion here. Indeed, the number of items we have not even touched in the area of 
nonlinear dynamics and chaos could and does now fill numerous monographs. Some of 
the important topics more or less directly related to the analysis of signals includes the 
whole issue of signal separation, or as it is often labeled «noise reduction» [2]. This topic 
and the study of the behavior of chaotic signals under linear filtering operations leads one 
to the interesting subject of communications using chaotic signals. Viewed as a class of 
signals intermediate between regular sinusoidal behavior and high dimensional «noise» 
which is truly stochastic, it is clear that new practical opportunities abound in this do- 
main. In the study of chaos as another class of time series, rather than the approach we 
have taken here which is to view it as a window into interesting dynamics of systems, one 
can raise a gaggle of questions traditionally explored in time series analysis. These in- 
clude the study of nonstationary time series, methods for dealing with data which is not 
unifomly sampled in time, and data in which there are substantial gaps in the time record. 
All of these questions acquire renewed interest in the context of chaos and it is my hope 
that the tools provided in this review will allow the thorough exploration of these and 
other issues - all done in the multidimensional phase space in which these questions are 
property posed. 

This review has focused on applications and illustrations of the methods and tools 
in areas with which the author is familiar. This includes nonlinear circuits where we 
barely touched the surface of the literature on the subject. The study of chaotic hydrology 
exemplified by the behavior of the Great Salt Lake has immense practical importance. 
The data sets available in this arena are numerous, often subject to the gross uncerteinties 
associated with geophysical measurements, but of some real world importance. The 
records such as the one with which we illustrated our tools may also serve as the practical 
basis for evaluating the complex issue of global climate change. If one has accurate phase 
space models of systems which integrate in space and time such as the Great Salt Lake 
data, then changes in aspects of those models induced by human activity may allow de- 
finitive identification of climate evolution differing from the natural variations. In the 
study of chaos in laser systems we again utilized the data for illustration, but it should be 
clear that the practical applications of these studies are vast. We pointed to a fundamental 
question which absent these tools might never arise; namely, the role of spontaneous 
emission which acts as «intrinsic» quantum noise. With our tools we were able to dis- 
tinguish between chaotic and low dimensional intensity fluctuations in these lasers and 
high dimensional «noise» dominated operation. The latter may arise from the spontane- 
ous emission, but the matter is not yet settled. Finally the use of the methods to identify 
low dimensional aspects of high Reynolds number boundary layer flows may, coupled 
with control schemes of the kind alluded to just above, allow numerous practial applica- 
‘tions to emerge from flow in pipes in power plants to flow around vehicles in all environ- 
ments. In presenting these illustrations we actually had to pick and choose from an enor- 
mous set of equally interesting areas of study. The point has been to illustrate the wide 
applicability of the tools, and the opportunities which they provide. 

The study of this kind of signal has moved from the mathematics seminar room to 
the workplace of the experimental scientist and the design engineer. The fruit they will 
bear there over the coming decades is certain to be as unexpected as it is valuable in dis- 
tinct practical applications. An area where this review has not tread at all concerns the use 
of these methods in biological sciences, bioengineering, and medicine. I have no ex- 
perience in this area, but a clear sense pervades the literature of this realm on application 
that there may be more here than even in the promising applications to physical and me- 
chanical systems. 
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