ISSN 0869-6632 (Print)
ISSN 2542-1905 (Online)


For citation:

Koronovskii A. A., Kurovskaya M. K., Moskalenko O. I. On the possibility of explosive synchronization in small world networks. Izvestiya VUZ. Applied Nonlinear Dynamics, 2021, vol. 29, iss. 4, pp. 467-479. DOI: 10.18500/0869-6632-2021-29-4-467-479

This is an open access article distributed under the terms of Creative Commons Attribution 4.0 International License (CC-BY 4.0).
Full text PDF(Ru):
(downloads: 772)
Language: 
Russian
Article type: 
Article
UDC: 
530.182

On the possibility of explosive synchronization in small world networks

Autors: 
Koronovskii Aleksei Aleksandrovich, Saratov State University
Kurovskaya Maria Konstantinovna, Saratov State University
Moskalenko Olga Igorevna, Saratov State University
Abstract: 

The purpose of this work is to study the possibility of the existence of explosive chaotic synchronization phenomenon in small world networks of nonlinear oscillators in the same way as it has been observed for complex networks of nonlinear elements with a random or scale-free topologies of links between network nodes. Methods. In this work, along with numerical modeling, an analytical approach has been used to describe the behavior of network nonlinear elements below the threshold of the occurrence of a completely synchronous state of all network oscillators. Results. It has been shown that in networks of nonlinear oscillators with topologies of links between nodes being the “ring” or “small world” type, with an increase in the coupling strength, an abrupt transition to the completely synchronous dynamics of all network oscillators is possible, just as it happens within the random and scale-free networks where the explosive synchronization phenomenon has been discovered and studied. With the help of theoretical consideration, a mechanism leading to the emergence of this abrupt transition to a synchronous state in ring and small-world networks has been revealed. This mechanism is associated with the formation of two independent synchronous clusters coexisting within network. Conclusion. The paper considers the mechanisms leading to a sharp “explosive” transition to completely synchronous dynamics of all elements in ring and small world networks of nonlinear oscillators, analytical relations are obtained that describe this transition and make it possible to explain the revealed phenomenon.

Acknowledgments: 
This work was supported by Russian Science Foundation, project No. 19-12-00037
Reference: 
  1. Pikovsky AS, Rosenblum MG, Kurths J. Synchronization: A Universal Concept in Nonlinear Sciences. Cambridge University Press; 2001. 411 p. DOI: 10.1017/CBO9780511755743.
  2. Boccaletti S, Latora V, Moreno V, Chavez M, Hwang DU. Complex networks: Structure and dynamics. Phys. Rep. 2006;424(4–5):175–308. DOI: 10.1016/j.physrep.2005.10.009
  3. Boccaletti S, Koronovsky AA, Trubetskov DI, Khramov AE, Khramova AE. Stability of the synchronous state of an arbitrary network of coupled elements. Radiophys. Quantum Electron. 2006;49(10):826–833. DOI: 10.1007/s11141-006-0118-x.
  4. Pecora LM, Carroll TL. Synchronization in chaotic systems. Phys. Rev. Lett. 1990;64(8):821–824. DOI: 10.1103/PhysRevLett.64.821.
  5. Pecora LM, Carroll TL. Driving systems with chaotic signals. Phys. Rev. A. 1991;44(4):2374–2383. DOI: 10.1103/PhysRevA.44.2374.
  6. Rulkov NF, Sushchik MM, Tsimring LS, Abarbanel HDI. Generalized synchronization of chaos in directionally coupled chaotic systems. Phys. Rev. E. 1995;51(2):980–994. DOI: 10.1103/PhysRevE.51.980.
  7. Rosenblum MG, Pikovsky AS, Kurths J. Phase synchronization of chaotic oscillators. Phys. Rev. Lett. 1996;76(11):1804–1807. DOI: 10.1103/PhysRevLett.76.1804.
  8. Osipov GV, Pikovsky AS, Rosenblum MG, Kurths J. Phase synchronization effect in a lattice of nonidentical Rossler oscillators. Phys. Rev. E. 1997;55(3):2353–2361. DOI: 10.1103/PhysRevE.55.2353.
  9. Rosenblum MG, Pikovsky AS, Kurths J. From phase to lag synchronization in coupled chaotic oscillators. Phys. Rev. Lett. 1997;78(22):4193–4196. DOI: 10.1103/PhysRevLett.78.4193.
  10. Hramov AE, Koronovskii AA. An approach to chaotic synchronization. Chaos. 2004;14(3): 603–610. DOI: 10.1063/1.1775991.
  11. Koronovskii AA, Moskalenko OI, Trubetskov DI, Khramov AE. Generalized synchronization and noise-induced synchronization: The same type of behavior of coupled chaotic systems. Dokl. Phys. 2006;51(4):189–192. DOI: 10.1134/S1028335806040070.
  12. Koronovskii AA, Hramov AE, Moskalenko OI, Popov PV, Filatov RA, Starodubov AV, Dmitriev BS, Zharkov YD. Generalized chaotic synchronization in the microwave frequency range. In: Koronovskii AA, Trubetskov DI, Hramov AE, editors. Methods of Nonlinear Dynamics and Chaos Theory in Problems of Microwave Electronics. In 2 volumes. Vol. 2. Non-stationary and Chaotic Processes. Ch. 9. M.: FIZMATLIT; 2009. P. 286–315 (in Russian).
  13. Vadivasova TE, Anishchenko VS. Relationship between frequency and phase characteristics of chaos: Two criteria of synchronization. J. Commun. Technol. Electron. 2004;49(1):69–75.
  14. Arenas A, D´iaz-Guilera A, Kurths J, Moreno Y, Zhou C. Synchronization in complex networks. Phys. Rep. 2008;469(3):93–153. DOI: 10.1016/j.physrep.2008.09.002.
  15. Arenas A, Diaz-Guilera A, Perez-Vicente CJ. Synchronization reveals topological scales in complex networks. Phys. Rev. Lett. 2006;96(11):114102. DOI: 10.1103/PhysRevLett.96.114102.
  16. Moreno Y, Pacheco AF. Synchronization of Kuramoto oscillators in scale-free networks. EPL. 2004;68(4):603. DOI: 10.1209/epl/i2004-10238-x.
  17. Leyva I, Sevilla-Escoboza R, Buldu JM, Sendina-Nadal I, Gomez-Gardenes J, Arenas A, Moreno Y, Gomez S, Jaimes-Reategui R, Boccaletti S. Explosive first-order transition to synchrony in networked chaotic oscillators. Phys. Rev. Lett. 2012;108(16):168702. DOI: 10.1103/PhysRevLett.108.168702.
  18. Gomez-Gardenes J, Gomez S, Arenas A, Moreno Y. Explosive synchronization transitions in scale-free networks. Phys. Rev. Lett. 2011;106(12):128701. DOI: 10.1103/PhysRevLett.106.128701.
  19. Leyva I, Navas A, Sendina-Nadal I, Almendral JA, Buldu JM, Zanin M, Papo D, Boccaletti S. Explosive transitions to synchronization in networks of phase oscillators. Sci. Rep. 2013;3:1281. DOI: 10.1038/srep01281.
  20. Pazo D. Thermodynamic limit of the first-order phase transition in the Kuramoto model. Phys. Rev. E. 2005;72(4):046211. DOI: 10.1103/PhysRevE.72.046211.
  21. Zhu L, Tian L, Shi D. Criterion for the emergence of explosive synchronization transitions in networks of phase oscillators. Phys. Rev. E. 2013;88(4):042921. DOI: 10.1103/PhysRevE.88.042921.
  22. Peron TKDM, Rodrigues FA. Determination of the critical coupling of explosive synchronization transitions in scale-free networks by mean-field approximations. Phys. Rev. E. 2012;86(5):056108. DOI: 10.1103/PhysRevE.86.056108.
  23. Zou Y, Pereira T, Small M, Liu Z, Kurths J. Basin of attraction determines hysteresis in explosive synchronization. Phys. Rev. Lett. 2014;112(11):114102. DOI: 10.1103/PhysRevLett.112.114102.
  24. Peron TKDM, Rodrigues FA. Explosive synchronization enhanced by time-delayed coupling. Phys. Rev. E. 2012;86(1):016102. DOI: 10.1103/PhysRevE.86.016102.
  25. Kuramoto Y. Self-entrainment of a population of coupled non-linear oscillators. In: Araki H, editor. International Symposium on Mathematical Problems in Theoretical Physics. Vol. 39 of Lecture Notes in Physics. Springer, Berlin, Heidelberg; 1975. P. 420–422. DOI: 10.1007/BFb0013365.
  26. Acebron JA, Bonilla LL, Perez-Vicente CJ, Ritort F, Spigler R. The Kuramoto model: A simple paradigm for synchronization phenomena. Rev. Mod. Phys. 2005;77(1):137–185. DOI: 10.1103/RevModPhys.77.137.
  27. Hu X, Boccaletti S, Huang W, Zhang X, Liu Z, Guan S, Lai CH. Exact solution for first order synchronization transition in a generalized Kuramoto model. Sci. Rep. 2014;4:7262. DOI: 10.1038/srep07262.
  28. Boccaletti S, Almendral JA, Guan S, Leyva I, Liu Z, Sendina-Nadal I, Wang Z, Zou Y. Explosive transitions in complex networks’ structure and dynamics: Percolation and synchronization. Phys. Rep. 2016;660:1–94. DOI: 10.1016/j.physrep.2016.10.004.
  29. Watts DJ, Strogatz SH. Collective dynamics of ‘small-world’ networks. Nature. 1998;393(6684): 440–442. DOI: 10.1038/30918.
  30. Koronovskii AA, Kurovskaya MK, Moskalenko OI, Hramov A, Boccaletti S. Self-similarity in explosive synchronization of complex networks. Phys. Rev. E. 2017;96(6):062312. DOI: 10.1103/PhysRevE.96.062312.
  31. Gomez-Gardenes J, Moreno Y, Arenas A. Paths to synchronization on complex networks. Phys. Rev. Lett. 2007;98(3):034101. DOI: 10.1103/PhysRevLett.98.034101.
  32. Gomez-Gardenes J, Moreno Y, Arenas A. Synchronizability determined by coupling strengths and topology on complex networks. Phys. Rev. E. 2007;75(6):066106. DOI: 10.1103/PhysRevE.75.066106.
  33. Stout J, Whiteway M, Ott E, Girvan M, Antonsen TM. Local synchronization in complex networks of coupled oscillators. Chaos. 2011;21(2):025109. DOI: 10.1063/1.3581168.
Received: 
22.04.2021
Accepted: 
12.06.2021
Published: 
30.07.2021