ISSN 0869-6632 (Print)
ISSN 2542-1905 (Online)


For citation:

Nikitin A. A., Komlev A. E., Nikitin A. A., Ustinov A. B. Tunable spin-wave delay line based on ferrite and vanadium dioxide. Izvestiya VUZ. Applied Nonlinear Dynamics, 2022, vol. 30, iss. 5, pp. 605-616. DOI: 10.18500/0869-6632-003006, EDN: TXDSAP

This is an open access article distributed under the terms of Creative Commons Attribution 4.0 International License (CC-BY 4.0).
Full text PDF(Ru):
Full text PDF(En):
(downloads: 27)
Language: 
Russian
Article type: 
Article
UDC: 
537.86
EDN: 

Tunable spin-wave delay line based on ferrite and vanadium dioxide

Autors: 
Nikitin Aleksei Aleksandrovich, Sankt-Peterburg Electrotechnical University "LETI"
Komlev Andrey Evgenievich, Sankt-Peterburg Electrotechnical University "LETI"
Nikitin Andrey A., Sankt-Peterburg Electrotechnical University "LETI"
Ustinov Aleksej Borisovich, Sankt-Peterburg Electrotechnical University "LETI"
Abstract: 

One of the key elements for modern microwave circuits is a delay line, which is widely utilized for the signal generation as well as processing. Spin-wave delay lines based on ferrite films provide a high delay time and small dimensions. Typically, the performance characteristics of such lines are tuned by the variation of an externally applied magnetic field characterized by some drawbacks. The phenomenon of a metal–insulator transition (MIT) in the phase change materials permits to improve the performance characteristics of the spin-wave delay lines. In particular, this concept allows to reduce the power consumption and improve the control speed of a delay time. Aim. Development of a tunable spin-wave delay line based on ferrite and vanadium dioxide films, as well as the study of its performance characteristics. Methods. Experimental investigations were carried out for the delay line composed of the yttrium iron garnet (YIG) and vanadium dioxide (VO2) films. The ferrite waveguide was fabricated from a single-crystal YIG film grown on a gallium gadolinium garnet substrate. A vanadium dioxide film was formed on a silicon dioxide substrate by DC reactive magnetron sputtering. The microwave measurements were carried out using the vector network analyzer R&S®R ZVA40. Results. It was shown that heating of the VO2 film induces a sufficient drop of its resistance that causes the transformation of the spin-wave dispersion characteristic. This leads to the decrease in the group velocity of the propagating waves providing a growth of a delay time. Namely, experimental structure of 5-mm length offers a tunable time delay range from 130 up to 150 ns at the operating frequency of 4.33 GHz. Conclusion. A proof-of-principle for the MIT control of the delay time composed on the YIG-VO2 structure has been presented. It was shown that a switch of VO2 film from the isolating into conducting state produces a 15% change in the delay time. The considered microwave delay lines look favorable for applications as a complimentary part to the traditional approach for general computing and microwave signal processing. 

Acknowledgments: 
This work was supported by Ministry of Education and Science of Russian Federation (Project “Goszadanie”) grant No. 075-01024-21-02 by 29.09.2021 (Project FSEE-2021-0015)
Reference: 
  1. Shahoei H, Yao J. Delay lines. In: Wiley Encyclopedia of Electrical and Electronics Engineering. Hoboken, New Jersey: Wiley; 2014. P. 1–15. DOI: 10.1002/047134608X.W8234.
  2. Ishak WS. Magnetostatic wave technology: a review. Proc. IEEE. 1988;76(2):171–187. DOI: 10.1109/5.4393.
  3. d’Allivy Kelly O, Anane A, Bernard R, Ben Youssef J, Hahn C, Molpeceres AH, Carretero C, Jacquet E, Deranlot C, Bortolotti P, Lebourgeois R, Mage JC, de Loubens G, Klein O, Cros V, Fert A. Inverse spin Hall effect in nanometer-thick yttrium iron garnet/Pt system. Appl. Phys. Lett. 2013;103(8):082408. DOI: 10.1063/1.4819157.
  4. Costa JD, Figeys B, Sun X, Van Hoovels N, Tilmans HA, Ciubotaru F, Adelmann C. Compact tunable YIG-based RF resonators. Appl. Phys. Lett. 2021;118(16):162406. DOI: 10.1063/5.0044993.
  5. Lammel M, Scheffler D, Pohl D, Swekis P, Reitzig S, Piontek S, Reichlova H, Schlitz R, Geishendorf K, Siegl L, Rellinghaus B, Eng LM, Nielsch K, Goennenwein STB, Thomas A. Atomic layer deposition of yttrium iron garnet thin films. Phys. Rev. Mater. 2022;6(4):044411. DOI: 10.1103/PhysRevMaterials.6.044411.
  6. Adam JD. Analog signal processing with microwave magnetics. Proc. IEEE. 1988;76(2):159–170. DOI: 10.1109/5.4392.
  7. Adam JD, Daniel MR, Okeeffe TW. Magnetostatic wave devices. Microw. J. 1982;25:95–99.
  8. Chang KW, Owens JM, Carter RL. Linearly dispersive time-delay control of magnetostatic surface wave by variable ground-plane spacing. Electron. Lett. 1983;19(14):546–547. 10.1049/el: 19830370.
  9. Ustinov AB, Demidov VE, Kalinikos BA. Electronically tunable nondispersive magnetostatic wave delay line. Electron. Lett. 2001;37(19):1161–1162. DOI: 10.1049/el:20010809.
  10. Vysotskii SL, Kazakov GT, Kozhevnikov AV, Nikitov SA, Romanov AV, Filimonov YA. Nondispersive delay line on magnetostatic waves. Tech. Phys. Lett. 2006;32(8):667–669. DOI: 10.1134/ S1063785006080098.
  11. Kabos P, Stalmachov VS. Magnetostatic Waves and Their Application. Dordrecht: Springer; 1994. 303 p. DOI: 10.1007/978-94-011-1246-8.
  12. Veselov AG, Vysotskiy SL, Kazakov GT, Sukharev AG, Filimonov YA. Surface magnetostatic waves in metal-plated yttrium iron garnet films. J. Commun. Technol. Electron. 1994;39:102–107.
  13. Vopson MM. Fundamentals of multiferroic materials and their possible applications. Crit. Rev. Solid State Mater. Sci. 2015;40(4):223–250. DOI: 10.1080/10408436.2014.992584.
  14. Palneedi H, Annapureddy V, Priya S, Ryu J. Status and perspectives of multiferroic magnetoelectric composite materials and applications. Actuators. 2016;5(1):9. DOI: 10.3390/act5010009.
  15. Ustinov AB, Drozdovskii AV, Nikitin AA, Semenov AA, Bozhko DA, Serga AA, Hillebrands B, Lahderanta E, Kalinikos BA. Dynamic electromagnonic crystal based on artificial multiferroic heterostructure. Commun. Phys. 2019;2(1):137. DOI: 10.1038/s42005-019-0240-7.
  16. Fetisov YK, Srinivasan G. Electrically tunable ferrite-ferroelectric microwave delay lines. Appl. Phys. Lett. 2005;87(10):103502. DOI: 10.1063/1.2037860.
  17. Shi R, Shen N, Wang J, Wang W, Amini A, Wang N, Cheng C. Recent advances in fabrication strategies, phase transition modulation, and advanced applications of vanadium dioxide. Appl. Phys. Rev. 2019;6(1):011312. DOI: 10.1063/1.5087864.
  18. Ruzmetov D, Gopalakrishnan G, Ko C, Narayanamurti V, Ramanathan S. Three-terminal field effect devices utilizing thin film vanadium oxide as the channel layer. J. Appl. Phys. 2010;107(11):114516. DOI: 10.1063/1.3408899.
  19. Zhou Y, Ramanathan S. Mott memory and neuromorphic devices. Proc. IEEE. 2015;103(8):1289– 1310. DOI: 10.1109/JPROC.2015.2431914.
  20. Safi TS, Zhang P, Fan Y, Guo Z, Han J, Rosenberg ER, Ross C, Tserkovnyak Y, Liu L. Variable spin-charge conversion across metal-insulator transition. Nat. Commun. 2020;11(1):476. DOI: 10.1038/s41467-020-14388-9.
  21. Morin FJ. Oxides which show a metal-to-insulator transition at the Neel temperature. Phys. Rev. Lett. 1959;3(1):34–36. DOI: 10.1103/PhysRevLett.3.34.
  22. Andreeva NV, Turalchuk PA, Chigirev DA, Vendik IB, Ryndin EA, Luchinin VV. Electron impact processes in voltage-controlled phase transition in vanadium dioxide thin films. Chaos, Solitons & Fractals. 2021;142:110503. DOI: 10.1016/j.chaos.2020.110503.
  23. Cavalleri A, Toth C, Siders CW, Squier JA, Raksi F, Forget P, Kieffer JC. Femtosecond structural dynamics in VO2 during an ultrafast solid-solid phase transition. Phys. Rev. Lett. 2001;87(23):237401. DOI: 10.1103/PhysRevLett.87.237401.
  24. Kikuzuki T, Lippmaa M. Characterizing a strain-driven phase transition in VO2. Appl. Phys. Lett. 2010;96(13):132107. DOI: 10.1063/1.3380599.
  25. Nikitin AA, Vitko VV, Nikitin AA, Ustinov AB, Karzin VV, Komlev AE, Kalinikos BA, Lahderanta E. Spin-wave phase shifters utilizing metal–insulator transition. IEEE Magn. Lett. 2018;9:3706905. DOI: 10.1109/LMAG.2018.2874172.
  26. Nikitin AA, Vitko VV, Nikitin AA, Ustinov AB, Kalinikos BA. Microwave tunable devices on the YIG-VO2 structures. J. Phys. Conf. Ser. 2019;1400(4):044001. DOI: 10.1088/1742- 6596/1400/4/044001.
  27. Nikitin AA, Nikitin AA, Ustinov AB, Komlev AE, Lahderanta E, Kalinikos BA. Metal–insulator switching of vanadium dioxide for controlling spin-wave dynamics in magnonic crystals. J. Appl. Phys. 2020;128(18):183902. DOI: 10.1063/5.0027792.
  28. Cueff S, John J, Zhang Z, Parra J, Sun J, Orobtchouk R, Ramanathan S, Sanchis P. VO2 nanophotonics. APL Photonics. 2020;5(11):110901. DOI: 10.1063/5.0028093.
  29. Watt S, Kostylev M, Ustinov AB, Kalinikos BA. Implementing a magnonic reservoir computer model based on time-delay multiplexing. Phys. Rev. Appl. 2021;15(6):064060. DOI: 10.1103/ PhysRevApplied.15.064060.
  30. Nikitin AA, Nikitin AA, Ustinov AB, Watt S, Kostylev MP. Theoretical model for nonlinear spin-wave transient processes in active-ring oscillators with variable gain and its application for magnonic reservoir computing. J. Appl. Phys. 2022;131(11):113903. DOI: 10.1063/5.0081142.
  31. Chumak AV, Kabos P, Wu M, Abert C, Adelmann C, Adeyeye AO, Akerman J, Aliev FG, Anane A, Awad A, Back CH, Barman A, Bauer GEW, Becherer M, Beginin EN, Bittencourt VASV, Blanter YM, Bortolotti P, Boventer I, Bozhko DA, Bunyaev SA, Carmiggelt JJ, Cheenikundil RR, Ciubotaru F, Cotofana S, Csaba G, Dobrovolskiy OV, Dubs C, Elyasi M, Fripp KG, Fulara H, Golovchanskiy IA, Gonzalez-Ballestero C, Graczyk P, Grundler D, Gruszecki P, Gubbiotti G, Guslienko K, Haldar A, Hamdioui S, Hertel R, Hillebrands B, Hioki T, Houshang A, Hu CM, Huebl H, Huth M, Iacocca E, Jungfleisch MB, Kakazei GN, Khitun A, Khymyn R, Kikkawa T, Klaui M, Klein O, Klos JW, Knauer S, Koraltan S, Kostylev M, Krawczyk M, Krivorotov IN, Kruglyak VV, Lachance-Quirion D, Ladak S, Lebrun R, Li Y, Lindner M, Macedo R, Mayr S, Melkov GA, Mieszczak S, Nakamura Y, Nembach HT, Nikitin AA, Nikitov SA, Novosad V, Otalora JA, Otani Y, Papp A, Pigeau B, Pirro P, Porod W, Porrati F, Qin H, Rana B, Reimann T, Riente F, Romero-Isart O, Ross A, Sadovnikov AV, Safin AR, Saitoh E, Schmidt G, Schultheiss H, Schultheiss K, Serga AA, Sharma S, Shaw JM, Suess D, Surzhenko O, Szulc K, Taniguchi T, Urbanek M, Usami K, Ustinov AB, van der Sar T, van Dijken S, Vasyuchka VI, Verba R, Viola Kusminskiy S, Wang Q, Weides M, Weiler M, Wintz S, Wolski SP, Zhang X. Advances in magnetics roadmap on spin-wave computing. IEEE Trans. Magn. 2022;58(6):0800172. DOI: 10.1109/TMAG.2022.3149664. 
Received: 
02.06.2022
Accepted: 
14.07.2022
Published: 
30.09.2022