ISSN 0869-6632 (Print)
ISSN 2542-1905 (Online)


For citation:

Bakunin V. L., Denisov G. G., Zavolsky N. A., Moiseev M. A. Zones of stable single-mode generation in overmoded gyrotrons. Izvestiya VUZ. Applied Nonlinear Dynamics, 2012, vol. 20, iss. 6, pp. 67-81. DOI: 10.18500/0869-6632-2012-20-6-67-81

This is an open access article distributed under the terms of Creative Commons Attribution 4.0 International License (CC-BY 4.0).
Full text PDF(Ru):
(downloads: 172)
Language: 
Russian
Article type: 
Article
UDC: 
621.385.69

Zones of stable single-mode generation in overmoded gyrotrons

Autors: 
Bakunin Vladimir Lazarevich, Institute of Applied Physics of the Russian Academy of Sciences
Denisov Grigorij Gennadevich, Institute of Applied Physics of the Russian Academy of Sciences
Zavolsky Nikolaj Aleksandrovich, Samara State University
Moiseev Mark Andreevich, Institute of Applied Physics of the Russian Academy of Sciences
Abstract: 

During numerical simulations of the model of gyrotron with fixed field-structure, zones of stable single-mode generation of the work mode are analyzed on the plane of parameters «magnetic field – beam current». It is shown that area and sizes of the zones are strongly dependent on the spectral density of eigen-frequencies of the resonator and on number of considered parasit modes. With increase of spectral density the point of highest attainable efficiency of stable single-mode generation shifts to the region of lower currents and simultaneously this value of efficiency decreases. In the region of higher currents stable single-mode generation exists in soft self-excitation regime of the work mode, while in the region of hard self-excitation of the work mode multimode generation with power of parasit modes much less than power of the work mode arises. 

Reference: 
  1. Litvak АG, Denisov GG, Myasnikov VE, Tai EM, Azizov EA, Ilin VI. Development in Russia of megawatt power gyrotrons for fusion. J. Infrared Milli. Teraherz Waves. 2011;32(3):337–342. DOI: 10.1007/s10762-010-9743-8.
  2. Alikaev VV, Denisov GG, Zapevalov VE, Kurbatov VI, Litvak AG, Myasnikov VE, Tai EM. Gyrotrons for TCB. In: Vacuum Microwave Electronics: Collection of Reviews. Nizhny Novgorod: IAP RAS; 2002. P. 71 (in Russian).
  3. Kuraev AA, Trubetskov DI, editors. Methods of Nonlinear Dynamics and Chaos Theory in Problems of Microwave Electronics. Vol. 1. Stationary Processes. Moscow: Fizmatlit; 2009. 288 p. (in Russian).
  4. Thumm M. State-Of-The-Art of High Power Gyro-Devices and Free Electron Masers. Karlsruhe: KIT; 2010.
  5. Nusinovich GS. Mode interaction in gyrotrons. Int. J. Electron. 1981;51(4):457–474. DOI: 10.1080/00207218108901349.
  6. Petelin MI. Electronic mode selection in a gyrotron. In: Gyrotron. Collection of Scientific Papers. Gorky: IAP AS USSR; 1981. P. 77–85 (in Russian).
  7. Nusinovich GS. Introduction To The Physics of Gyrotrons. The Johns Hopkins University Press, Baltimore; 2004. 352 p.
  8. Ginzburg NS, Nusinovich GS, Zavolsky NA. Theory of non-stationary processes in gyrotrons with low Q resonators. Int. J. Electron. 1986;61(6):881–894. DOI: 10.1080/00207218608920927.
  9. Zavolsky NA, Nusinovich GS. Nonstationary processes in a gyrotron with a non-fixed hf field structure. Sov. J. Commun. Technol. Electron. 1991;36(1):135 (in Russian).
  10. Zavolsky NA, Nusinovich GS, Pavelyev AB. Stability of single-mode oscillations and nonstationary processes in gyrotrons with oversized low-Q resonators. In: Girotron. Collection of Scientific Papers. Gorky: IAP AS USSR; 1989. P. 84–113 (in Russian).
  11. Moiseev MA, Nusinovich GS. Concerning the theory of multimode oscillation in a gyromonotron. Radiophys. Quantum Electron. 1094;17(11):1305–1311. DOI: 10.1007/BF01042032.
  12. Blyakhman LG, Nusinovich GS. Dynamics of multimode electron masers. Radio Engineering and Electronic Physics. 1982;27(5):996–1003 (in Russian).
  13. Zapevalov VE, Nusinovich GS. The theory of amplitude-phase mode interactions in electron masers. Radiophys. Quantum Electron. 1989;32(3):269–276. DOI: 10.1007/BF01038938.
  14. Vlasov SN, Zagryadskaya LI, Petelin MI. Resonators and waveguides having “whispering gallery” modes for cyclotron-resonance masers. Radiophys. Quantum Electron. 1973;16(11):1348–1353. DOI: 10.1007/BF01080919.
  15. Dumbrajs O, Glyavin MY, Zapevalov VE, Zavolsky NA. Influence of reflections on mode competition in gyrotrons. IEEE Transactions on Plasma Science. 2000;28(3):588–596. DOI: 10.1109/27.887680.
  16. Cai SY, Antonsen TM, Saraph Jr G, Levush B. Multifrequency theory of high power gyrotron oscillators. Int. J. Electron. 1992;72(5–6):759–777. DOI: 10.1080/00207219208925613.
  17. Nusinovich GS, Erm RE. Efficiency of an MCR monotron with a Gaussian longitudinal distribution of a high-frequency field. Electronic Engineering. Series 1. Microwave Electronics. 1972;(8):55–60 (in Russian).
  18. Glyavin MY, Nusinovich GS. Stability of single-mode self-oscillations in a gyrotron with synchronous interaction of modes. Sov. J. Commun. Technol. Electron. 1991;36(3):512 (in Russian).
  19. Dumbrajs O, Anderer J, Illy S, Piosczyk B, Thumm M, Zavolsky NA. Multifrequency operation of a gyrotron. IEEE Transactions on Plasma Science. 1999;27(2):327–329. DOI: 10.1109/27.772258.
  20. Carmel Y, Chu KR, Read ME, Klim KJ, Arn B, Dialetis D, Fliet A. Mode competition, suppression, and efficiency enhancement in overmoded gyrotron oscillators. Int. J. Infrared Milli. Waves. 1982;3(5):645–665. DOI: 10.1007/BF01009726.
  21. Kuraev AA, Kovalev IS, Kolosov SV. Numerical Optimization Methods in Problems of Microwave Electronics. Minsk: Nauka I Tekhnika; 1975. 296 p. (in Russian).
  22. Nusinovich GS. Methods for supplying voltages to a pulsed gyromonotron, providing high efficiency in the single-mode generation mode. Electronic Engineering. Series 1. Microwave Electronics. 1974;(3):44 (in Russian).
  23. Levush B, Antonsen TM. Mode competition and control in high-power gyrotron oscillators. IEEE Transactions on Plasma Science. 1990;18(3):260–272. DOI: 10.1109/27.55895.
  24. Grudiev A, Raguin JY, Schunemann K. Numerical study of mode competition in coaxial cavity gyrotrons with corrugated insert. Int. J. Infrared Milli. Waves. 2003;24(2):173–187. DOI: 10.1023/A:1021890602624.
  25. Bogomolov YL, Bratman VL, Ginzburg NS, Petelin MI, Yunakovsky AD. Nonstationary generation in free electron lasers. Optics Communications. 1981;36(3):209–212. DOI: 10.1016/0030-4018(81)90359-X.
  26. Ginzburg NS, Petelin MI, Sergeev AS. On the mechanism of self-modulation onset in free electron lasers. Optics Communications. 1985;55(4):283–288. DOI: 10.1016/0030-4018(85)90345-1. 
Received: 
24.04.2012
Accepted: 
21.06.2012
Published: 
29.03.2013
Short text (in English):
(downloads: 117)