ISSN 0869-6632 (Print)
ISSN 2542-1905 (Online)


For citation:

Afenchenko V. O., Ezerskij A. B. Dislocation’s dynamics in hexagonal lattices arising in Benard-Marangoni convection. Izvestiya VUZ. Applied Nonlinear Dynamics, 2000, vol. 8, iss. 2, pp. 43-56. DOI: 10.18500/0869-6632-2000-8-2-43-56

This is an open access article distributed under the terms of Creative Commons Attribution 4.0 International License (CC-BY 4.0).
Full text PDF(Ru):
(downloads: 0)
Language: 
Russian
Article type: 
Article
UDC: 
532.529.2

Dislocation’s dynamics in hexagonal lattices arising in Benard-Marangoni convection

Autors: 
Afenchenko Vladimir Olegovich, Institute of Applied Physics of the Russian Academy of Sciences
Ezerskij Aleksandr Borisovich, Institute of Applied Physics of the Russian Academy of Sciences
Abstract: 

It is shown in experiments а! the penta—hepta—defect in а Bénard convective hexagonal lattice arises as a result of the attraction of two dislocations having opposite topological charges and belonging to different modes. It is elucidated that the rapprochement of dislocations occurs along a corridor connecting these topological charges. Inside the corridor large gradients of the field summed of phases of the modes organised into hexagonal structure are registered. It is shown that depending on the initial phase dislocations either attracted to each other or went toward boundaries. Comparison of dislocation’s trajectories in experiment and numerical calculations is done.

Key words: 
Acknowledgments: 
The work was supported by the RFBR (grant № 99-02-16493), and International Center for Advanced Research Foundation in Nizhny Novgorod, grant №. 99-2-02.
Reference: 
  1. Koschmieder EL. Benard cells and Taylor vortices. J. Fluid. Mech. 1993;253:722-723.
  2. Velarde MG, Normand C. Convection. Sci. Аm. 1980;243(1):93-108.
  3. Bragard J, Velarde MG. Benard convection flows. J. Non-Equilib. Thermodyn. 1997;22(1):1-19. DOI:10.1515/jnet.1997.22.1.1.
  4. Bragard J, Velarde MG. Benard-Marangoni convection: Planforms and related theoretical predictions. J. Fluid Mech. 1998;368:165-194. DOI:10.1017/s0022112098001669.
  5. Cerisier Р, Perez-Garcia C, Jamond C, Pantaloni J. Wavelength selection in Benard-Marangoni convection.  Phys. Rev. А. 1987;35(4):1949. DOI: 10.1103/PhysRevA.35.1949-1952.
  6. Walden RW, Ahlers G. Non-Boussinesq and penetrative convection in a cylindrical cell. J. Fluid. Mech. 1981;109:89-114. DOI: 10.1017/S0022112081000955.
  7. Ciliberto S, Pampaloni E, Perez-Garcia С. Competition between different symmetries in convective patterns. Phys. Rev. Lett. 1988;61(10):1198-1201. DOI: 10.1103/PhysRevLett.61.1198.
  8. Ciliberto S, Coullet Р, Lega J. Defects in roll-hexagon competition. Phys. Rev. Lett. 1990;65(19):2370-2373. DOI:10.1103/PhysRevLett.65.2370.
  9. Bodenschatz E, de Bruyn JR, Ahlers G, Cannell DS. Transitions between patterns in thermal convection. Phys. Rev. Lett. 1991;67(22):3078-3081. DOI: 10.1103/PhysRevLett.67.3078.
  10. Vigil RD, Ouyang Q, Swinney HL. Turing patterns in a simple gel reactor. Physica А. 1992;188:17-25.
  11. Perez-Garcia C, Cerisier Р, Ocelli R. Pattern selection in the Benard-Marangoni Instability. In: Westfreid JE, Brand HR, Manneville P, Albinet G, Boccara N, editors. Propagation in systems far from equilibrium. Berlin: Springer—Verlag; 1988. P. 232-239.
  12. Cross MC, Hohenberg РC. Pattern formation outside of equilibrium. Rev. Mod. Phys. 1991;65(3):851-1122. DOI: 10.1103/RevModPhys.65.851.
  13. Rabinovich M, Tsimring L. Dynamics of dislocations in hexagonal patterns. Phys. Rev. E. 1994;49(1):35-38. DOI: 10.1103/PhysRevE.49.R35.
  14. Rasenat S, Steinberg V, Rehberg I. Experimental studies of defect dynamics and interaction in electrohydrodynamic convection. Phys. Rev. А. 1990;42(10):5998-6008. DOI: 10.1103/physreva.42.5998.
  15. Ezersky AB, Ermoshin DA, Kiyashko SV. Dynamics of defects in parametrically excited capillary ripples. Phys. Rev. Е. 1995;51(5):4411-4417. DOI: 10.1103/physreve.51.4411.
  16. Busse FH. Non-linear properties of thermal convection. Rep. Prog. Phys. 1978;41:1929-1967. DOI: 10.1088/0034-4885/41/12/003.
  17. Belliustin NS, Kuznetsov SO, Nuidel IV, Yakhno VG. Neural networks with close nonlocal coupling for analyzing composite image. Neurocomputing.1991;3(5-6):231-246. DOI: 10.1016/0925-2312(91)90005-V.
  18. Afenchenko VO, Ezersky AB, Ermoshin DA. Dynamics of dislocations in spatially periodic structures. Bulletin of the Russian Academy of Sciences: Physics. 1996;60(12):146-156. (in Russian).
Received: 
07.12.1999
Accepted: 
04.02.2000
Published: 
25.05.2000