ISSN 0869-6632 (Print)
ISSN 2542-1905 (Online)


For citation:

Pavlov A. N., Sosnovtseva O. V. Application of double-wavelet analysis to study modulation phenomena in dynamics of nephrons. Izvestiya VUZ. Applied Nonlinear Dynamics, 2004, vol. 12, iss. 6, pp. 105-117. DOI: 10.18500/0869-6632-2004-12-6-105-117

This is an open access article distributed under the terms of Creative Commons Attribution 4.0 International License (CC-BY 4.0).
Full text PDF(Ru):
(downloads: 0)
Language: 
Russian
Article type: 
Article
UDC: 
517.9

Application of double-wavelet analysis to study modulation phenomena in dynamics of nephrons

Autors: 
Pavlov Aleksej Nikolaevich, Saratov State University
Sosnovtseva Olga Vladimirovna, Danmarks Tekniske Universitet
Abstract: 

Based on the double-wavelet analysis, the paper proposes a method to study interaction phenomena of rhythmic components in nonstationary multimode dynamics. Possibilities and limitations of the approach are illustrated for a number of test examples. Application of the double-wavelet analysis is considered for tubular pressure signals from rat nephrons in order to quantify the modulation phenomena of the fast (myogenic) dynamics of nephrons by the slow rhythm caused by the tubulo-glomerular feedback mechanism. It is shown that interaction between the two mechanisms is stronger in hypertensive rats than in normotensive rats.

Key words: 
Acknowledgments: 
The authors would like to thank E. Mosekilde, N.-H. Holstein-Rathlou and D.J. Marsh for providing experimental data and for numerous discussions. The work was supported by the grant INTAS 01-2061. A.N. Pavlov thanks individual support with grants from the President of Russia (MK-2512.2004.2), Ministry of Education and Science of the Russian Federation and CRDF (Y1-P-06-06).
Reference: 
  1. Stefanovska А, Braci¢ M. Physics of the human cardiovascular system. Contemporary Physics. 1999;40(1):31–35. DOI: 10.1080/001075199181693.
  2. Braun HA. Bade H, Hensel H. Static аnd dynamic discharge patterns оf bursting cold fibers related to hypothetical receptor mechanisms. Pfiligers Arch. 1980;386(1):1–9. DOI: 10.1007/BF00584180.
  3. Goldbeter A. Biochemical Oscillations and Cellular Rhythms. Cambridge: Cambridge Univesity Press. 1998, 632 p. DOI: 10.1017/CBO9780511608193.
  4. Tuckwell HC. Introduction to Theoretical Neurobiology. Cambridge: Cambridge Univesity Press, 1998. W.1.
  5. Beuter A, Edwards R. Using frequency domain characteristics to discriminate physiological and parkinsonian tremors. J. Clin. Neurophysiol. 1999;16(5):484–494.  DOI: 10.1097/00004691-199909000-00010.
  6. Hoffman U, Yanar А, Franzeck UK, Edvards JM, Bollinger А. The frequency histogram: a new method for the evaluation of laser Doppler flux motion. Microvascular Res. 1990;40:293–301. DOI: 10.1016/0026-2862(90)90028-p.
  7. Holstein-Rathlou NH, He J, Wagner AJ, Marsh DJ. Patterns of blood pressure variability in normotensive ап hypertensive rats. Am. J. Physiol. 1990;269:R1230–9. DOI: 10.1152/ajpregu.1995.269.5.R1230.
  8. Sturis J, Mosekilde E, Cauter VЕ. Modeling modulatory effects оn pulsatility. Methods in Neurosciences. 1994;20:393
  9. Schdfer C, Rosenblum MG, Abel H, Kurths J. Synchronization in the human cardiorespiratory system. Phys. Rev. E. 1999;60(1):857–870. DOI: 10.1103/PhysRevE.60.857.
  10. Anishchenko VS, Balanov AG, Janson NB, Igosheva NB, Bordugov GV. Entrainment between heart rate ап weak noninvasive forcing. Int. J. of Bifurcation and Chaos. 2000;10(10):2339–2348. DOI:10.1142/S0218127400001468.
  11. Kopell N, Ermentrout GB, Whittington МА, Traub RD. Gamma rhythms аnd beta rhythms have different synchronization properties. USA: Proc. Nat. Acad. Sci. 2000;97(4):1867–1872. DOI: 10.1073/pnas.97.4.1867.
  12. Tass P, Rosenblum MG, Weule J, Kurths J, Pz'kovsky А, Volkmann J, Schnitzler A, Freund HJ. Detection of n:m phase locking from noisy data: application 10 magnetoencephalography. Phys. Rev. Lett. 1998;81(15):3291–3294. DOI: 10.1103/PhysRevLett.81.3291.
  13. Daubechies I. Ten Lectures оп Wavelets. Philadelphia: S.I.A.M, 1992. 341 p.
  14. Grossmann A, Morlet J. Decomposition of hardy functions into square integrable wavelets оf constant shape. S.I.A.M. J. Math. Anal. 1984;15(4):723–736. DOI: 10.1137/0515056.
  15. Ivanov PCh, Nunes LA, Goldberger AL, Havlin S, Rosenblum MG, Struzik ZR, Stanley НЕ. Multifractality in human heartbeat dynamics. Nature. 1999;399(6735): 461–465. DOI: 10.1038/20924.
  16. Muzy JF, Bacry E, Arneodo А. Wavelets and multifractal formalism for singular signals: application to turbulence data. Phys. Rev. Lett. 1991;67:3515–3518. DOI: 10.1103/PhysRevLett.67.3515.
  17. Sosnovtseva ОК, Paviov AN, Mosekilde E, Holstein-Rathiou NH, Marsh DJ. Double-wavelet approach 10 study frequency and amplitude modulation in renal autoregulation. Phys. Rev. E. 2004;70(3):031915. DOI: 10.1103/PhysRevE.70.031915.
  18. Anishchenko VS. Dynamical Chaos - Models and Experiments. Singapore: World Scientific, 1995. 440 p.
  19. Sosnoviseva QV, Postnov DE, Nekrasov AM, Mosekilde E, Holstein-Rathiou NH. Phase multistability analysis of self-modulated oscillations. Phys. Rev. Е. 2002;66:036224. DOI: 10.1103/PhysRevE.66.036224.
  20. Holstein-Rathlou NH, Leyssac РР. TGF-mediated oscillations in the proximal intratubular pressure: differences between spontaneously hypertensive rats and Wistar-Kyoto rats. Acta Physiol. Scand. 1986;126(3):333–339. DOI: 10.1111/j.1748-1716.1986.tb07824.x.
  21. Yip KP, Holstein-Rathlou NH, Marsh DJ. Mechanisms of temporal variation in single-nephron blood flow in rats. Am. J. Physiol. 1993;262:F427–34. DOI: 10.1152/ajprenal.1993.264.3.F427.
  22. Chon KH, Chen YM, Marmarelis VZ, Marsh DJ, Holstein-Rathlou NH. Detection of interaction between myogenic and TGF mechanisms using nonlinear analysis. Am. J. Physiol. 1994;267:F160–73. DOI: 10.1152/ajprenal.1994.267.1.F160.
  23. Sosnovtseva ОК, Paviov AN, Mosekilde E, Holstein-Rathlou NH. Bimodal oscillations in nephron autoregulation. Phys. Rev. E. 2002;66(6):061909. DOI: 10.1103/PhysRevE.66.061909.
Received: 
20.01.2005
Accepted: 
19.04.2005
Published: 
15.06.2005