ISSN 0869-6632 (Print)
ISSN 2542-1905 (Online)


For citation:

Navrotskaya E. V., Kulminskiy D. D., Ponomarenko V. I., Prokhorov M. D. Estimation of impulse action parameters using a network of neuronlike oscillators. Izvestiya VUZ. Applied Nonlinear Dynamics, 2022, vol. 30, iss. 4, pp. 495-512. DOI: 10.18500/0869-6632-2022-30-4-495-512, EDN: DOBQUT

This is an open access article distributed under the terms of Creative Commons Attribution 4.0 International License (CC-BY 4.0).
Full text PDF(Ru):
Full text PDF(En):
Language: 
Russian
Article type: 
Article
UDC: 
537.86
EDN: 

Estimation of impulse action parameters using a network of neuronlike oscillators

Autors: 
Navrotskaya Elena Vladimirovna, Saratov State University
Kulminskiy Danil Dmitrievich, Saratov Branch of Kotel`nikov Institute of Radiophysics and Electronics of Russian Academy of Sciences
Ponomarenko Vladimir Ivanovich, Saratov Branch of Kotel`nikov Institute of Radiophysics and Electronics of Russian Academy of Sciences
Prokhorov Mihail Dmitrievich, Saratov Branch of Kotel`nikov Institute of Radiophysics and Electronics of Russian Academy of Sciences
Abstract: 

Aim of the study is to develop a method for estimating the parameters of an external periodic impulse action using a spiking network of neuronlike oscillators. Methods. The spiking activity of a network consisting of coupled nonidentical neuronlike FitzHugh–Nagumo oscillators was studied, depending on the parameters of the periodic impulse action. To estimate the amplitude of the external impulse signal, we detuned the FitzHugh–Nagumo oscillators, which were in a stable state of equilibrium in the absence of an external action, by the threshold parameter responsible for the excitation of the oscillator. To estimate the frequency of excitatory pulses, we detuned the FitzHugh–Nagumo oscillators by the parameter characterizing the ratio of time scales, the value of which determines the natural frequency of oscillators. We also changed the duration of external pulses. Results. It is shown that the number of spikes generated by a network of nonidentical FitzHugh–Nagumo oscillators has a monotonic dependence on the amplitude of the external pulse signal and a nonmonotonic dependence on the frequency of the pulse signal. The number of spikes generated by the network remains constant over a wide range of external pulse durations. A method for estimating the amplitude and frequency of impulse action is proposed. The method efficiency is demonstrated in numerical simulations and in a radio physical experiment. Conclusion. The proposed method allows one to estimate the amplitude of an external pulse signal, knowing its frequency, and estimate the frequency of this signal, knowing its amplitude. The method can be used in robotics when solving the problems of information processing related to the motion control of mobile robots. 

Acknowledgments: 
This study was supported by the Russian Science Foundation, Grant No. 22-22-00150, https://rscf.ru/project/22-22-00150/
Reference: 
  1. Haykin S. Neural Networks and Learning Machines. Upper Saddle River, New Jersey: Prentice Hall; 2009. 906 p.
  2. Ripley BD. Pattern Recognition and Neural Networks. Cambridge: Cambridge University Press; 1996. 403 p. DOI: 10.1017/CBO9780511812651.
  3. Egmont-Petersen M, de Ridder D, Handels H. Image processing with neural networks — a review. Pattern Recognition. 2002;35(10):2279–2301. DOI: 10.1016/S0031-3203(01)00178-9.
  4. Dwarakish GS, Rakshith S, Natesan U. Review on applications of neural network in coastal engineering. Artificial Intelligent Systems and Machine Learning. 2013;5(7):324–331.
  5. Frolov N, Maksimenko V, Luttjohann A, Koronovskii A, Hramov A. Feed-forward artificial neural network provides data-driven inference of functional connectivity. Chaos. 2019;29(9):091101. DOI: 10.1063/1.5117263.
  6. Hramov AE, Maksimenko VA, Pisarchik AN. Physical principles of brain–computer interfaces and their applications for rehabilitation, robotics and control of human brain states. Phys. Rep. 2021;918:1–133. DOI: 10.1016/j.physrep.2021.03.002.
  7. McCulloch WS, Pitts W. A logical calculus of the ideas immanent in nervous activity. Bulletin of Mathematical Biophysics. 1943;5(4):115–133. DOI: 10.1007/BF02478259.
  8. Rabinovich MI, Varona P, Selverston AI, Abarbanel HDI. Dynamical principles in neuroscience. Rev. Mod. Phys. 2006;78(4):1213–1265. DOI: 10.1103/RevModPhys.78.1213.
  9. Dmitrichev AS, Кasatkin DV, Klinshov VV, Kirillov SY, Maslennikov OV, Shchapin DS, Nekorkin VI. Nonlinear dynamical models of neurons: Review. Izvestiya VUZ. Applied Nonlinear Dynamics. 2018;26(4):5–58 (in Russian). DOI: 10.18500/0869-6632-2018-26-4-5-58.
  10. Quiroga RQ, Panzeri S. Principles of Neural Coding. Boca Raton: CRC Press; 2013. 663 p. DOI: 10.1201/b14756. 
  11. Yu D, Deng L. Automatic Speech Recognition: A Deep Learning Approach. London: Springer; 2015. 321 p. DOI: 10.1007/978-1-4471-5779-3.
  12. Hossain MS, Muhammad G. Emotion recognition using deep learning approach from audio-visual emotional big data. Information Fusion. 2019;49:69–78. DOI: 10.1016/j.inffus.2018.09.008.
  13. Kasabov NK. Evolving Connectionist Systems: The Knowledge Engineering Approach. London: Springer; 2007. 451 p. DOI: 10.1007/978-1-84628-347-5.
  14. Lobov S, Mironov V, Kastalskiy I, Kazantsev V. A spiking neural network in sEMG feature extraction. Sensors. 2015;15(11):27894–27904. DOI: 10.3390/s151127894.
  15. Virgilio CD, Sossa JH, Antelis JM, Falcon LE. Spiking Neural Networks applied to the classification of motor tasks in EEG signals. Neural Netw. 2020;122:130–143. DOI: 10.1016/j.neunet.2019.09.037.
  16. Lobov SA, Chernyshov AV, Krilova NP, Shamshin MO, Kazantsev VB. Competitive learning in a spiking neural network: Towards an intelligent pattern classifier. Sensors. 2020;20(2):500. DOI: 10.3390/s20020500.
  17. Wang X, Hou ZG, Lv F, Tan M, Wang Y. Mobile robots’ modular navigation controller using spiking neural networks. Neurocomputing. 2014;134:230–238. DOI: 10.1016/j.neucom.2013.07.055.
  18. Chou TS, Bucci LD, Krichmar JL. Learning touch preferences with a tactile robot using dopamine modulated STDP in a model of insular cortex. Front. Neurorobot. 2015;9:6. DOI: 10.3389/fnbot.2015.00006.
  19. Bing Z, Meschede C, Rohrbein F, Huang K, Knoll AC. A survey of robotics control based on learning-inspired spiking neural networks. Front. Neurorobot. 2018;12:35. DOI: 10.3389/fnbot.2018.00035.
  20. Lobov SA, Mikhaylov AN, Shamshin M, Makarov VA, Kazantsev VB. Spatial properties of STDP in a self-learning spiking neural network enable controlling a mobile robot. Front. Neurosci. 2020;14:88. DOI: 10.3389/fnins.2020.00088.
  21. Croisier H, Dauby PC. Continuation and bifurcation analysis of a periodically forced excitable system. J. Theor. Biol. 2007;246(3):430–448. DOI: 10.1016/j.jtbi.2007.01.017.
  22. Feoktistov AV, Anishchenko VS. Dynamics of the FitzHugh–Nagumo system under external periodic force. Izvestiya VUZ. Applied Nonlinear Dynamics. 2011;19(5):35–44 (in Russian). DOI: 10.18500/0869-6632-2011-19-5-35-44.
  23. Novikov N, Gutkin B. Role of synaptic nonlinearity in persistent firing rate shifts caused by external periodic forcing. Phys. Rev. E. 2020;101(5):052408. DOI: 10.1103/PhysRevE.101.052408.
  24. Eidum DM, Henriquez CS. Modeling the effects of sinusoidal stimulation and synaptic plasticity on linked neural oscillators. Chaos. 2020;30(3):033105. DOI: 10.1063/1.5126104.
  25. Rooy M, Novikov NA, Zakharov DG, Gutkin BS. Interaction between PFC neural networks ultraslow fluctuations and brain oscillations. Izvestiya VUZ. Applied Nonlinear Dynamics. 2020;28(1):90–97. DOI: 10.18500/0869-6632-2020-28-1-90-97.
  26. Andreev AV, Ivanchenko MV, Pisarchik AN, Hramov AE. Stimulus classification using chimeralike states in a spiking neural network. Chaos, Solitons & Fractals. 2020;139:110061. DOI: 10.1016/j.chaos.2020.110061.
  27. Ponomarenko VI, Kulminskiy DD, Andreev AV, Prokhorov MD. Assessment of an external periodic force amplitude using a small spike neuron network in a radiophysical experiment. Tech. Phys. Lett. 2021;47(2):162–165. DOI: 10.1134/S1063785021020255.
  28. Bezruchko BP, Smirnov DA. Constructing nonautonomous differential equations from experimental time series. Phys. Rev. E. 2001;63(1):016207. DOI: 10.1103/PhysRevE.63.016207.
  29. Smirnov DA, Sysoev IV, Seleznev EP, Bezruchko BP. Reconstructing nonautonomous system models with discrete spectrum of external action. Tech. Phys. Lett. 2003;29(10):824–827. DOI: 10.1134/1.1623857.
  30. Yakhno YV, Molkov JI, Mukhin DN, Loskutov EM, Feigin AM. Reconstruction of an evolution operator as a technique of analysis of epileptiform electric brain activity. Izvestiya VUZ. Applied Nonlinear Dynamics. 2011;19(6):156–172 (in Russian). DOI: 10.18500/0869-6632-2011-19-6- 156-172.
  31. Sysoeva MV, Ponomarenko VI, Prokhorov MD, Sysoev IV. Reconstruction of time-delay systems under external periodic driving. Russian Journal of Nonlinear Dynamics. 2013;9(4):613–625 (in Russian). DOI: 10.20537/nd1304001.
  32. Dahlem MA, Hiller G, Panchuk A, Scholl E. Dynamics of delay-coupled excitable neural systems. Int. J. Bifurc. Chaos. 2009;19(2):745–753. DOI: 10.1142/S0218127409023111.
  33. Plotnikov SA, Lehnert J, Fradkov AL, Scholl E. Adaptive control of synchronization in delay-coupled heterogeneous networks of FitzHugh–Nagumo nodes. Int. J. Bifurc. Chaos. 2016;26(4): 1650058. DOI: 10.1142/S0218127416500589.
  34. Lindner B, Garc´ıa-Ojalvo J, Neiman A, Schimansky-Geier L. Effects of noise in excitable systems. Phys. Rep. 2004;392(6):321–424. DOI: 10.1016/j.physrep.2003.10.015.
  35. Tass PA. Phase Resetting in Medicine and Biology: Stochastic Modelling and Data Analysis. Berlin: Springer; 1999. 329 p. DOI: 10.1007/978-3-540-38161-7.
  36. Holt AB, Kormann E, Gulberti A, Potter-Nerger M, McNamara CG, Cagnan H, Baaske MK, Little S, Koppen JA, Buhmann C, Westphal M, Gerloff C, Engel AK, Brown P, Hamel W, Moll CKE, Sharott A. Phase-dependent suppression of beta oscillations in Parkinson’s disease patients. J. Neurosci. 2019;39(6):1119–1134. DOI: 10.1523/JNEUROSCI.1913-18.2018.
  37. Mau ETK, Rosenblum M. Optimizing charge-balanced pulse stimulation for desynchronization. Chaos. 2022;32(1):013103. DOI: 10.1063/5.0070036.
  38. Kulminskiy DD, Ponomarenko VI, Prokhorov MD, Hramov AE. Synchronization in ensembles of delay-coupled nonidentical neuronlike oscillators. Nonlinear Dyn. 2019;98(1):735–748. DOI: 10.1007/s11071-019-05224-x.
  39. Kulminskiy DD, Ponomarenko VI, Sysoev IV, Prokhorov MD. A new approach to the experimental study of large ensembles of radioengineering oscillators with complex couplings. Tech. Phys. Lett. 2020;46(2):175–178. DOI: 10.1134/S1063785020020236.
  40. Shchapin DS. Dynamics of two neuronlike elements with inhibitory feedback. J. Commun. Technol. Electron. 2009;54(2):175–184. DOI: 10.1134/S1064226909020089.
  41. Sysoev IV, Prokhorov MD, Ponomarenko VI, Bezruchko BP. Reconstruction of ensembles of coupled time-delay systems from time series. Phys. Rev. E. 2014;89(6):062911. DOI: 10.1103/PhysRevE.89.062911.
  42. Kurkin SA, Kulminskiy DD, Ponomarenko VI, Prokhorov MD, Astakhov SV, Hramov AE. Central pattern generator based on self-sustained oscillator coupled to a chain of oscillatory circuits. Chaos. 2022;32(3):033117. DOI: 10.1063/5.0077789.
Received: 
12.05.2022
Accepted: 
26.05.2022
Published: 
01.08.2022