ISSN 0869-6632 (Print)
ISSN 2542-1905 (Online)


For citation:

Kazantsev V. B., Nekorkin V. I. Principles of control and coordination of movement basing on neiro-dynamics. Izvestiya VUZ. Applied Nonlinear Dynamics, 2001, vol. 9, iss. 1, pp. 38-48. DOI: 10.18500/0869-6632-2001-9-1-38-48

This is an open access article distributed under the terms of Creative Commons Attribution 4.0 International License (CC-BY 4.0).
Full text PDF(Ru):
(downloads: 0)
Language: 
Russian
Article type: 
Article
UDC: 
621.373.1

Principles of control and coordination of movement basing on neiro-dynamics

Autors: 
Kazantsev Viktor Borisovich, Institute of Applied Physics of the Russian Academy of Sciences
Nekorkin Vladimir Isaakovich, Institute of Applied Physics of the Russian Academy of Sciences
Abstract: 

Some principles of control and coordination of movement basing оп central nervous system dynamics are considered. Using neurobiological view of the problem and nonlinear dynamics theory а new architecture of movement control and «fine tuning» is presented. It includes discrete control block mimicing functions of the olivo—cercbellar circuit in central nervous system of humans and animals. For illustration, we apply the principles to the control of simplest locomotion of a hexapod robot prototype.

Key words: 
Acknowledgments: 
The work was supported by the Russian Foundation for Basic Research (grant 00-02-16400).
Reference: 
  1. Kandel ER, Schwartz IH, Jessell TM, editors. Principles of Neural Science. Third Edition. USA: Prentice-Hall; 1991. 1135 p.
  2. Llinas R. The intrinsic electrophysiological properties of mammalian neurons: insight into central nervous system function. USA: Science. 1988;242:1654–1664. DOI: 10.1126/science.3059497.  
  3. Welsh JP, Llinas R. Some organizing principles for the control of movement based оп olivocerebellar physiology. In: de Zeeuw CI, Strata P, Voodg,  editors. Progress in Brain Research. 1997;114:449–461. DOI: 10.1016/s0079-6123(08)63380-4.
  4. Pellionisz А, Llinas R. Tensor theory оf brain function. The cerebellum аs а space-time metric tensor. Lecture Notes in Biomathematics. Berlin: Springer-Verlag. 1982;45:394. DOI:10.1007/978-3-642-46466-9_23.
  5. Llinas R, Oscillations in CNS neurons: a possible role for cortical interneurons in the generation of 40-Hz oscillations. In: Basar E, Freeman WJ, Heiss WD, Lehmann D, Lopes da Silva  FH, Speckmann EJ, editors. Induced Rhythms in the brain. Berlin: Birkhauser; 1992. 269–283.
  6. Llinas R, Yarom Y. Oscillatory properties оf guinea-pig inferior olivary neurones and their pharmacalogical modulation: an in vitro study. J. Physiol. 1986;376:163–182. DOI: 10.1113/jphysiol.1986.sp016147.
  7. Schweighofer N, Doya K, Kawato M. Electrophysiological properties of inferior olive neurons: а compartmental model. Journal of Neurophysiology. 1999;82:804–817. DOI: 10.1152/jn.1999.82.2.804.
  8. Grillner S. Neural networks for vertebrate locomotion. Scientific American.  1996;274(1):64–69. DOI: 10.1038/scientificamerican0196-64.
  9. Ekeberg О. A combined neuronal and mechanical model of fish swimming. Biol. Cybern. 1993;69:363–374. DOI: 10.1007/BF00199436.
  10. Ekeberg О. Lansner А, Grillner S. The neural control of fish swimming studied through numerical simulations. USA: Adaptive Behavior, Massach. Inst. Technol. 1995;3(4):363.
  11. Arena Р, Fortuna L, Branciforte L. Reaction-diffusion CNN algorithms to generate and control artificial locomotion. IEEE Trans. Circuits and Systems. 1999;46(2):253–260. DOI: 10.1109/81.747195.
  12. Cymbalyuk GS, Borisyuk RM, Miiller-Wilm U, Cruse H. Oscillatory network controlling six-legged locomotion. Optimization оf model parameters. Neural Networks. 1998;11(7-8):1449–1460. DOI: 10.1016/s0893-6080(98)00049-5.
  13. Abarbanel GDI, Rabinovich MI, Selverston A, Bazhenov MB, Huerta R, Suschik MM, Rubchinsky LL. Synchronization in neural ensembles. Phys. Usp. 1996;166(4):363–390. DOI: 10.1070/PU1996v039n04ABEH000141.
  14. Borisyuk GM, Borisyuk PM, Kazanovich YB, Luzyanina TB, Turova TS, Tsymbaliuk GS. Oscillatory neural networks. Mathematical results and applications. Mathematical Modeling. 1992; 4(12):3–43.
  15. Cruse H. What mechanisms coordinate leg movement in walking anthropods? Trends in Neurosciences. 1990;13(1):15–21. DOI: 10.1016/0166-2236(90)90057-h.
  16. Andronov AA, Witt AA, Haykin SE. Theory of vibrations. Moscow: Fizmatizd, 1959. 916 p.
  17. Nekorkin VI, Makarov VA, Kazantsev VB, Velarde MG. Spatial disorder and pattem formation in lattices of coupled bistable systems. Physica D. 1997;100(3-4):330–342. DOI: 10.1016/S0167-2789(96)00202-3.
  18. Kazantsev BB, Nekorkin VI, Velarde MG. A model of a neuron with oscillatory activity below the excitation threshold. Radiophysics and Quantum Electronics. 1998;41(12):1623
  19. Nekorkin VI, Kazantsev VB, Velarde MG. Spike-burst and other oscillations in a system composed of two coupled, drastically different elements. Eur. Phys. J. B. 2000;16:147–155.
  20. Haken G. Information and self-organization. Macroscopic Approach to Complex Systems. Moscow: Mir, 1991. 240 p.
Received: 
21.04.2001
Accepted: 
26.05.2001
Published: 
05.06.2001