ISSN 0869-6632 (Print)
ISSN 2542-1905 (Online)


For citation:

Zimnyakov D. А., Sviridov A. P., Omelchenko A. I., Trifonov V. V., Agafonov D. N., Zhakharov P. V., Kuznetsova L. V. Speckle diagnostics of relaxation processes in non-stationary scattering systems. Izvestiya VUZ. Applied Nonlinear Dynamics, 2002, vol. 10, iss. 3, pp. 188-204. DOI: 10.18500/0869-6632-2002-10-3-188-204

This is an open access article distributed under the terms of Creative Commons Attribution 4.0 International License (CC-BY 4.0).
Full text PDF(Ru):
Language: 
English
Article type: 
Article
UDC: 
535.361

Speckle diagnostics of relaxation processes in non-stationary scattering systems

Autors: 
Zimnyakov Dmitry Александрович, Yuri Gagarin State Technical University of Saratov
Sviridov Alexander P., Institute on Laser and Information Technologies
Omelchenko Alexander I., Institute on Laser and Information Technologies
Trifonov Valery V., Federal State Budgetary Institute of Science Institute of Problems of Precise Mechanics and Control of the Russian Academy of Sciences
Agafonov Dmitry Nikolaevich, Saratov State University
Zhakharov Pavel V., Saratov State University
Kuznetsova Liana V., Saratov State University
Abstract: 

Coherent optical method of the study of non-stationary mass transfer in scattering systems оn the basis of statistical analysis оf spatial-temporal fluctuations of speckle intensity is considered. Non-stationary mass transfer in the case оf saturating liquid phase evaporation from a disordered porous layer and structure modification of IR-laser-mediated cartilage tissue are discussed as the possible applications of the developed speckle-diagnostical technique. For liquid phase evaporation from а porous layer, the specific feature such as the anomalous broadening of spectra of speckle intensity fluctuations with decrease оf the liquid phase evaporation rate was found out. This feature is caused by peculiarities оf development of the fractal-like interface between liquid and gaseous phases in а porous layer. In the case оf the thermally induced structure modification оf а cartilage tissue, the hysteresis-like form оf dependence of the time-averaged contrast оf speckle-modulated tissue image оn the tissue temperature inside the treatment zone is characteristical. The effect оf cartilage thermal modification is presumably caused by the «bound-to-free water» transition in the proteoglycane aggregates аs one оf the basic components of the tissue structure.

Key words: 
Acknowledgments: 
This work was supported in part by CRDF grant REC-006 and by RFBR grant № 01-02-17493.
Reference: 
  1. Pine DJ, Weitz DA, Chaikin PM, Herbolzheimer Е. Diffusing-light spectroscopy. Phys. Rev. Lett. 1988;60(12):1134-1137. DOI: 10.1103/PhysRevLett.60.1134.
  2. Maret G, Maret G. Multiple light scattering from disordered media. The effect оf Brownian motion оf scatterers. Z. Phys. B. 1987;65(4):409-413. DOI: 10.1007/BF01303762.
  3. Menon N, Durian DJ. Diffusing-wave spectroscopy of dynamic in a three-dimensional granular flow. Science. 1997;275(5308):1920-1922. DOI: 10.1126/science.275.5308.1920.
  4. Kao MH, Yodh AG, Pine DJ. Observation of Brownian motion on the time scale of hydrodynamic interactions. Phys. Rev. Lett. 1993;70(2):242-245. DOI: 10.1103/physrevlett.70.242.
  5. Yodh AG, Georgiades N, Pine DJ. Diffusing-wave interferometry. Optics Communications. 1991;83(1-2):56-59. DOI: 10.1016/0030-4018(91)90521-E.
  6. Boas DA, Bizheva KK, Siegel AM. Using dynamic low-coherence interferometry to image Brownian motion within highly scattering media. Optics Letters. 1998;23(5):1087-1089. DOI: 10.1364/ol.23.000319.
  7. Stern MD. In vivo evaluation of microcirculation by coherent light scattering. Nature. 1975;254(5495):56-58. DOI: 10.1038/254056a0.
  8. Essex TJH, Byrne РО. A laser Doppler scanner for imaging blood flow in skin. J. Biomed. Eng. 1991;13(3):189-194. DOI: 10.1016/0141-5425(91)90125-Q.
  9. Boas DA, Yodh AG. Spatially varying dynamical properties оf turbid media probed with diffusing temporal light correlation. J. Opt. Soc. Аm. A. 1997;14(1):192-215. DOI: 10.1364/JOSAA.14.000192.
  10. Fercher AF, Briers JD. Flow visualization by means of single-exposure speckle photography. Optics Communications. 1981;37(5):326-330. DOI: 10.1016/0030-4018(81)90428-4.
  11. Briers JD, Webster S. Laser speckle contrast analysis (LASCA): а nonscanning, full-field technique for monitoring capillary blood flow. J. Biomed. Opt. 1996;1(2):174-179. DOI: 10.1117/12.231359.
  12. Sadhwani А, Schomacker KT, Tearney GJ, Nishioka NS. Determination of Teflon thickness with laser speckle. I. Potential for burn depth diagnostics. Appl. Opt. 1996;35(28):5727-5735. DOI: 10.1364/ao.35.005727.
  13. Jacques SL, Kirkpatrick SJ. Acoustically modulated speckle imaging of biological tissues. Opt. Lett. 1998;23(11):879-881. DOI: 10.1364/ol.23.000879.
  14. Dunn AK, Bolay H, Moskowitz MA, Boas DA. Dynamic imaging оf cerebral blood flow using laser speckle. Journal of Cerebral Blood Flow and Metabolism. 2001;21(3):195-201. DOI: 10.1097/00004647-200103000-00002.
  15. van Albada MP, Lagendijk А. Observation оf weak localization оf light in a random medium. Phys. Rev. Lett. 1985;55(24):2692-2695. DOI: 10.1103/PhysRevLett.55.2692.
  16. Wolf P, Maret С. Weak localization and coherent backscattering оf photons in disordered media. Phys. Rev. Lett. 1985;55(24):2696-2699. DOI: 10.1103/physrevlett.55.2696.
  17. Akkermans E, Wolf PE, Maynard R, Маret С. Theoretical study of the coherent backscattering of light by disordered media. J. Phys. France. 1998;49(1):77-98.
  18. Stephen MJ. Temporal fluctuations in wave propagation in random media. Phys. Rev. В. 1988;37(1):1-5. DOI: 10.1103/physrevb.37.1.
  19. MacKintosh FC, John S. Diffusing-wave spectroscopy and multiple scattering оf light in correlated random media. Phys. Rev. B. 1989;40(4):2382-2406. DOI: 10.1103/physrevb.40.2383.
  20. John S, Stephen M. Wave propagation and localization in a long-range correlated random potential. Phys. Rev. B. 1983;28(11):6358-6369. DOI: 10.1103/PhysRevB.28.6358.
  21. Ackerson BJ, Dougherty RL, Reguigui NM, Nobbman U. Correlation transfer: application of radiative transfer solution methods to photon correlation problems. J. Thermophys. And Heat Trans. 1992;6(4):577-588. DOI: 10.2514/3.11537.
  22. MacKintosh FC, Zhu JX, Pine DJ, Weitz DA. Polarization memory of multiply scattered light. Phys. Rev. B. 1989;40(13):9342-9345. DOI: 10.1103/PhysRevB.40.9342.
  23. Bicout Р, Brosseau C, Martinez AS, Schmitt JM. Depolarization оf multiply scattering waves by spherical diffusers: influence оf size parameter. Phys. Rev. E. 1994;49(2):1767-1770. DOI: 10.1103/physreve.49.1767.
  24. Zimnyakov DA, Tuchin VV. About interrelations оf distinctive scales оf depolarization and decorrelation of optical fields т multiple scattering. JETP Letters. 1998;67:455-460.
  25. Zimnyakov DA. On some manifestations оf similarity in multiple scattering of coherent light. Waves in Random Media. 2000;10:417-434.
  26. Zimnyakov DA, Zakharov PV, Trifonov VA, Chanilov OI. Study оf interface evolution in porous media with the use оf dynamic light scattering. JETP Letters. 2001;74(4):216-221. DOI: 10.1134/1.1413555.
  27. Lemieux P-A, Vera MU, Durian DJ. Diffusing-light spectroscopies beyond the diffusion limit: The role оf ballistic transport and anisotropic scattering. Phys. Rev. E. 1998;57(4):4498-4515. DOI: 10.1103/PhysRevE.57.4498.
  28. Shaw TM. Drying as an immiscible displacement process with fluid counterflow. Phys. Rev. Lett. 1987;59(15):1671-1674. DOI: 10.1103/PhysRevLett.59.1671.
  29. Pietronero L, Tosatti E, editors. Fractals in Physics. North-Holland, Amsterdam; 1986. 489 p.
  30. Feder J. Fractals. New York: Plenum Press; 1988. 284 p. DOI: 10.1007/978-1-4899-2124-6.
  31. Sobol E, Sviridov A, Omel’chenko А, Bagratashvili V, Kitai M, Harding E, Jones N, Jumel K, Mertig M, Pompe W, Ovchinnikov Y, Shekhter A, Svistuchkin V. Laser reshaping оf cartilage. Biotech Genetic Eng Rev. 2000;17:553-577. DOI: 10.1080/02648725.2000.10648005.
  32. Wong JF, Milner TE, Kim HH, Nelson JS, Sobol EN. Stress relaxation of porcine septal cartilage during Nd:YAG (1.32(m) laser irradiation: mechanical, optical, and thermal responses. Journal оf Biomedical Optics. 1998;3(4):409-414. DOI: 10.1117/1.429896.
  33. Sobol E, Sviridov А, Omel’ chenko А, Bagratashvili V, Bagratashvili М, Popov V. Mechanism of laser-induced stress relaxation in cartilage. Proc. SPIE. 1997;2975:310-315. DOI: 10.1117/12.275495.
  34. Wall MS, Deng X-H, Torzilli PA, Doly SB, O’Brien SJ, Warren RF. Thermal modification оf collagen. J. Shoulder Elbow Surg. 1999;8(4):339-344. DOI: 10.1016/S1058-2746(99)90157-X.
  35. Bagratashvili V, Bagratashvili N, Sviridov А, Sobol E, Omel’chenko А, Tsypina S, Gapontsev V, Samartsev I, Feldchtein Е, Kurano R. Kinetics оf water transfer and stress relaxation in cartilage heated with 1.56 mm fiber laser. Proc. SPIE. 2000;3914:102-107. DOI: 10.1117/12.388027.
  36. Hale GM, Querry MR. Optical constants оf water in the 200 nm to 200 mm wavelength region. Applied Optics. 1973;12(3):555-563. DOI: 10.1364/ao.12.000555.
  37. Wong BJ, Milner TE, Harrington A, Ro J, Dao X, Sobol EN, Nelson JS. Feedback-controlled laser-mediated cartilage reshaping. Arch. Facial Plast. Surg. 1999;1(4):282-287. DOI: 10.1001/archfaci.1.4.282.
  38. Maitland DJ, Walsh JT. Quantitative measurements of linear birefringence during heating of native collagen. Lasers in Surgery and Medicine. 1997;20(3):310-318. DOI: 10.1002/(sici)1096-9101(1997)20:3<310::aid-lsm10>3.0.co;2-h.
  39. Sobol EN, Bagratashvili VN, Sviridov AP, Omel’ chenko AL, Ovchinnikov YM, Shekhter AB, Helidonis Е. Cartilage shaping under laser radiation. Proc. SPIE. 1994;2128:43-47.
  40. Sviridov AP, Sobol EN, Jones N, Lowe J. Effect of Holmium laser radiation оn stress, temperature and structure in cartilage. Lasers in Medical Science. 1998;13(1):73-77. DOI: 10.1007/BF00592962.
  41. Jamieson AM, Blackwell J, Reihanian H, Ohno H, Gupta R, Carrino DA, Caplan AL, Tang LH, Rosenberg L.C. Thermal and solvent stability оf proteoglycan aggregates by quasielastic laser light-scattering. Carbohydrate Research. 1987;160:329-341. DOI: 10.1016/0008-6215(87)80321-x.
Received: 
25.06.2002
Accepted: 
05.08.2002
Available online: 
12.01.2024
Published: 
30.09.2002