ISSN 0869-6632 (Online)
ISSN 2542-1905 (Print)


Cite this article as:

Arzhanuhina D. S., Kuznecov S. P. System of three nonautonomous oscillators with hyperbolic chaos part i the model with dynamics on attractor governed by arnold’s cat map on torus. Izvestiya VUZ, 2012, vol. 20, iss. 6, pp. 56-66. DOI: https://doi.org/10.18500/0869-6632-2012-20-6-56-66

Language: 
Russian
Heading: 

System of three nonautonomous oscillators with hyperbolic chaos part i the model with dynamics on attractor governed by arnold’s cat map on torus

Autors: 
Arzhanuhina Darja Sergeevna, Saratov State University
Kuznecov Sergej Petrovich, Saratov Branch of Kotel`nikov Institute of Radiophysics and Electronics of Russian Academy of Sciences
Abstract: 

In this paper a system of three coupled nonautonomous self­oscillatory elements is studied, in which the behavior of oscillators phases on a period of the coefficients variation in the equations corresponds to the Anosov map demonstrating chaotic dynamics. Results of numerical studies allow us to conclude that the attractor of the Poincare map can be viewed as an object roughly represented by a two­dimensional torus embedded in the sixdimensional phase space of the Poincare map, on which the dynamics is the hyperbolic chaos intrinsic to Anosov’s systems.

DOI: 
10.18500/0869-6632-2012-20-6-56-66
References: 

1. Кузнецов С.П. Динамический хаос (курс лекций). М.: Изд-во Физматлит, 2001. 296 с. 2. Берже П., Помо И., Видаль К. Порядок в хаосе. О детерминистском подходе к  турбулентности. М.: Мир, 1991. 368 с. 3. Шустер Г. Детерминированный хаос. М.: Мир, 1988. 240 с. 4. Лихтенберг А., Либерман М. Регулярная и стохастическая динамика. М.: Мир, 1984. 528 с. 5. Анищенко В.С., Вадивасова Т.Е., Астахов В.В. Нелинейная динамика хаотических и стохастических систем. Фундаментальные основы и избранные проблемы / Под ред. В.С. Анищенко. Саратов: Изд-во Сарат. ун-та, 1999. 368 с. 6. Afraimovich V. and Hsu S.-B. Lectures on chaotic dynamical systems. AMS/IP Studies in Advanced Mathematics, Vol.28. American Mathematical Society, Providence RI, International Press, Somerville, MA, 2003. 7. Гукенхеймер Дж., Холмс П. Нелинейные колебания, динамические системы и бифуркации векторных полей. М.; Ижевск: Ин-т компьютерных исследований. 2002. 559 с. 8. Devaney R.L. An Introduction to Chaotic Dynamical Systems. NY: Addison–Wesley, 1989. 9. Shilnikov L. Mathematical problems of nonlinear dynamics: A tutorial // Int. J. of Bif. & Chaos. 1997. Vol. 7, No 9. 1353. 10. Кузнецов С.П. Гиперболические странные аттракторы систем, допускающих физическую реализацию // Изв. вузов. ПНД. 2009. Т. 17, No 4. C. 5. 11. Кузнецов С.П. Пример неавтономной системы с непрерывным временем, имеющей аттрактор типа Плыкина в отображении Пуанкаре // Нелинейная динамика. 2009. Т. 5, No 3. C. 403. 12. Кузнецов С.П. Динамический хаос и однородно гиперболические аттракторы: от математики к физике // Успехи физических наук. 2011 Т. 181, No 2. C. 121. 13. Кузнецов С.П., Селезнев Е.П. Хаотическая динамика в физической системе со странным аттрактором типа Смейла–Вильямса // ЖЭТФ. 2006. Т. 129, вып. 2. C. 400. 14. Belykh V., Belykh I., Mosekilde E. Hyperbolic Plykin attractor can exist in neuron models // International Journal of Bifurcation and Chaos. 2005. Vol. 15, No 11. 3567. 15. Kuznetsov S.P. Plykin type attractor in electronic device simulated in MULTISIM // CHAOS. 2011. Vol. 21. 043105. 16. Isaeva O.B., Jalnine A.Yu., Kuznetsov S.P. Arnold’s cat map dynamics in a system of coupled nonautonomous van der Pol oscillators // Phys. Rev. E. 2006. Vol. 74. 046207. 17. Kuznetsov S.P., Pikovsky A. Autonomous coupled oscillators with hyperbolic strange attractors // Physica. 2007. Vol. D232. P. 87. 18. Coudene Y. Pictures of Hyperbolic Dynamical Systems // Notices of the American Mathematical Society. 2006. Vol. 53, No 1. P. 8.

Short text (in English):