ISSN 0869-6632 (Print)
ISSN 2542-1905 (Online)


For citation:

Yeryomka V. D., Kopot M. A., Kulagin O. P. 32 GHz сold cathode magnetron with spaсe harmonics – nonlinear analytical calculation and 3d-simulation. Izvestiya VUZ. Applied Nonlinear Dynamics, 2014, vol. 22, iss. 3, pp. 53-62. DOI: 10.18500/0869-6632-2014-22-3-53-62

This is an open access article distributed under the terms of Creative Commons Attribution 4.0 International License (CC-BY 4.0).
Full text PDF(Ru):
(downloads: 351)
Language: 
Russian
Article type: 
Article
UDC: 
621.385.6

32 GHz сold cathode magnetron with spaсe harmonics – nonlinear analytical calculation and 3d-simulation

Autors: 
Yeryomka Viktor Danilovich, A.Ya. Usikov Institute for Radiophysics and Electronics National Academy of Sciences of Ukraine
Kopot Mihail Andreevich, Kharkiv National University of Radio Electronics
Kulagin Oleg Pavlovich, A.Ya. Usikov Institute for Radiophysics and Electronics National Academy of Sciences of Ukraine
Abstract: 

The analytical estimation of the optimal parameters fulfilled for pulsed magnetrons with cold  secondary-emission cathodes, operating at a frequency of 32 GHz with anode voltage of 8 kV and  with magnetic field of about 0.4 Tesla. As shown, the geometry of the magnetron interaction space  can ensure an interaction between electrons and the high-frequency field as for the (−1)-th space  harmonic of π/2-oscillations, so for (+1)- th space harmonic π-oscillations in the drift-orbit  resonance mode. Three-dimensional numerical experiments show that both modifications of the tube  can provide the required power characteristics. The possibility to use the chosen non-linear  analytical model for  preliminary calculations of the operating parameters of the non-classical M- type spatia-lharmonics tubes is confirmed.

Reference: 
  1. Gritsaenko SV, Yeryomka VD, Kopot’ MA, Kulagin OP. et.al. MULTICAVITY COLD SECONDARYEMISSION CATHODE MAGNETRON:ACHIEVEMENTS, PROBLEMS, PROSPECTS. Radiophysics and Electronics. 2005;10(special issue):499–529.
  2. Schliefer ED. Calculation of multiresonator magnetrons. Moscow: MPEI; 1966. 143 p. (In Russian)
  3. Babenko MI, Vigdorchik IM, Polovin RV, Yanovsky MS. Side cathode magnetron. Kharkov: IRE NASU; 1974. 47 p. (In Russian)
  4. Kulagin OP, Yeryomka VD. Optimal conditions for drift-orbital resonance in M-type devices. IEEE Trans. Plasma Science. June. 2004;32(3):1181–1186. DOI: 10.1109/CRMICO.2014.6959360
  5. Kulagin OP, Eryomka HP. Drift-orbital modes in magnetron millimeter wave generators. Radiophysics and Electronics. Kharkov: IRE NASU; 2003;8(3):81.
  6. Avtomonov NI, Sosnytskiy SV, Vavriv DM. Dependence of magnetron characteristics on the secondary-emission yield of cold cathode. Problems of atomic science and technology. Plasma Electronics and New Methods of Acceleration. 2006;5:225–228.
  7. Kapitsa SM. High-capacity electronics. Moscow: AS USSR; 1962. 195 p. (In Russian).
  8. Weinstein LA. Lectures on ultra-high frequency electronics. Moscow: Sov. Radio; 1973. 400 p. (In Russian).
  9. Yeryomka VD, Kopot’ MA, Kulagin OP, Tishchenko AS, Naumenko VD,  Suvorov AN, Jung-Il Kim. Simulation and experimental breadboarding of 35 GHz spatial harmonic magnetrons with cold cathode. 20Th Int. Crimean Conference “Microwave&Telecommunication Technology”(CriMiCo’2010).Crimea,Ukraine. 2010. V. 1. p. 310.
  10. Rodney J, Vaughan M. A new formula for secondary emission yield. IEEE Trans-action on electron devices. 1989;36(9):1963–1967. DOI: 10.1109/16.34278
  11. Rodney J, Vaughan M. Secondary emission formulas. IEEE Transaction on electron devices. 1993;40(4):830–833.
Received: 
05.05.2014
Accepted: 
29.05.2014
Published: 
31.10.2014
Short text (in English):
(downloads: 92)