ISSN 0869-6632 (Print)
ISSN 2542-1905 (Online)


For citation:

Kruglov V. P. Circular non-­autonomous generator of hyperbolic chaos. Izvestiya VUZ. Applied Nonlinear Dynamics, 2010, vol. 18, iss. 5, pp. 132-147. DOI: 10.18500/0869-6632-2010-18-5-132-147

This is an open access article distributed under the terms of Creative Commons Attribution 4.0 International License (CC-BY 4.0).
Full text:
(downloads: 104)
Language: 
Russian
Heading: 
Article type: 
Article
UDC: 
517.9

Circular non-­autonomous generator of hyperbolic chaos

Autors: 
Kruglov Vjacheslav Pavlovich, Saratov Branch of Kotel`nikov Institute of Radiophysics and Electronics of Russian Academy of Sciences
Abstract: 

A scheme of circular system is introduced, which is supposed to generate hyperbolic chaos. Its operation is based on doubling of phase on each complete cycle of the signal transmission through the feedback ring. That is a criterion for the attractor of Smale– Williams type to exist. Mathematically, the model is described by the fourth order nonautonomous system of ordinary differential equations. The equations for slowly varying complex amplitudes are derived, and the Poincare return map is obtained. Numerical simulation data are presented. The attractor of Smale–Williams type is observed in the Poincare cross-section. The computations indicate that the dynamics of phases is described approximately by the Bernoulli map. Lyapunov exponents for the Poincare map are estimated, and their dependence on parameters is plotted. Smooth dependence of the largest Lyapunov exponent on parameters supports the structural stability of the observed attractor.

Reference: 
  1. Kuznetsov SP. Hyperbolic strange attractors of physically realizable systems. Izvestiya VUZ. Applied Nonlinear Dynamics. 2009;17(4):5–34. DOI: 10.18500/0869-6632-2009-17-4-5-34.
  2. Sinai YaG. How mathematicians study chaos. Mat. Pros. Moscow: MCCME. 2001;3(5):32–46 (in Russian).
  3. Sinai YaG. Stochasticity of Dynamic Systems. In: Gaponov AV. Nonlinear Waves. Moscow: Nauka; 1979. 192 p. (in Russian).
  4. Kuznetsov SP. Dynamic chaos. Moscow: Fizmatlit; 2006. 290 p. (in Russian).
  5. Shilnikov L. Mathematical Problems of Nonlinear Dynamics: A Tutorial. International Journal of Bifurcation and Chaos. 1997;7(9):1953–2001. DOI: 10.1142/S0218127497001527.
  6. Loskutov AYu, Mikhailov AS. Principles of the theory of complex systems. Moscow-Izhevsk: SIC «Regular and chaotic dynamics», Institute of Computer Science; 2007. 620 p. (in Russian).
  7. Kuznetsov SP. Example of a physical system with a hyperbolic attractor of a Smale–Williams type. Phys. Rev. Lett. 2005;95:144101. DOI: 10.1103/PhysRevLett.95.144101.
  8. Kuznetsov SP, Seleznev EP. A strange attractor of the Smale-Williams type in the chaotic dynamics of a physical system. Journal of Experimental and Theoretical Physics. 2006;102(2):355–364. DOI: 10.1134/S1063776106020166.
  9. Kuznetsov AP, Sataev IR. Verification of hyperbolicity conditions for a chaotic attractor in a system of coupled nonautonomous van der Pol oscillators. Izvestiya VUZ. Applied Nonlinear Dynamics. 2006;14(5):3–29 (in Russian). DOI: 10.18500/0869-6632-2006-14-5-3-29.
  10. Dmitriev AS, Kislov VYa. Stochastic oscillations in radiophysics and electronics. Moscow: Nauka; 1989. 280 p. (in Russian).
  11. TSTOOL Home Page: http://www.physik3.gwdg.de/tstool/
  12. Van der Pol B. A theory of the amplitude of free and forced triode vibrations. Radio Review. 1920;1:701-710:754–762.
  13. Bogoliyubov NN, Mitropolsky YuA. Asymptotic methods in the theory of nonlinear oscillations. Gostekhizdat; 1958. 406 p. (in Russian).
  14. Andronov AA, Witt AA, Haikin SE. Theory of oscillations. 2nd ed. Moscow: Fizmatgiz; 1959. 916 p. (in Russian).
  15. Kuznetsov AP, Kuznetsov SP, Ryskin NM. Nonlinear oscillations. Moscow: Fizmatlit; 2005. 292 p. (in Russian).
Received: 
04.03.2010
Accepted: 
14.05.2010
Published: 
31.12.2010
Short text (in English):
(downloads: 84)