ISSN 0869-6632 (Print)
ISSN 2542-1905 (Online)


For citation:

Vladimirov S. N., Negrul V. V. Comparative analysis of some chaotic synchronous communication systems. Izvestiya VUZ. Applied Nonlinear Dynamics, 2000, vol. 8, iss. 6, pp. 53-64. DOI: 10.18500/0869-6632-2000-8-6-53-64

This is an open access article distributed under the terms of Creative Commons Attribution 4.0 International License (CC-BY 4.0).
Full text PDF(Ru):
(downloads: 0)
Language: 
Russian
Heading: 
Article type: 
Article
UDC: 
621.391

Comparative analysis of some chaotic synchronous communication systems

Autors: 
Vladimirov Sergey Nikolaevich, National Research Tomsk State University
Negrul Vladimir Viacheslavovich, National Research Tomsk State University
Abstract: 

The task of experimental investigation of some synchronous chaotic communication systems in order to compare their qualitative and energy features is formulated and solved in this paper. The first of investigated systems was а receiver—transmitter device with additive mixing of an informative component to a chaotic carrying signal, second — а device with nonlinear injecting о informative component into the source of chaotic oscillations, third — a structure of communication combining the additive mixing at the transmitting side and synchronous chaotic response at the receiving side. For objective comparison of obtained results the systems being analyzed were realized on a basis of the same radiophysic model of autogenerator with three-dimensional phase space. 
The physical experiments have shown that under the condition of confidential transmitting of analogous signals for the first two kinds of the systems а quality of signal restored in their receivers is nearly same. However the use of a nontrivial approach in combining the additive mixing informative component at the transmitting side and the synchronous chaotic response at the receiving side allows to improve essentially a quality of informative component being restored and to increase an enegy potential of the communication channel.

Key words: 
Reference: 
  1. Ресоrа LM, Carroll TL. Synchronization in chaotic systems. Phys. Rev. Lett. 1990;64(8):821-824. DOI: 10.1103/PhysRevLett.64.821.
  2. Kocarev L, Halle KS, Eckert K, Chua L, Parlitz U. Experimental demonstration о secure communications via chaotic synchronization. Int. J. Bifurc. Chaos. 1992;2(3):709-713. DOI: 10.1142/S0218127492000823.
  3. Parlitz U, Chua L, Kocarev L, Halle K, Shang А. Transmission оf digital signals by chaotic synchronization. Int. J. Bifurc. Chaos. 1992;2(4):973-977. DOI: 10.1142/S0218127492000562.
  4. Belskii YuL, Dmitriev AS. Transmission of information using deterministic chaos. Telecommunications and Radio Engineering. 1993;38(7):1310-1315. (in Russian).
  5. Cuomo KM, Oppenheim АV. Circuit implementation оf synchronized chaos with applications to communications. Phys. Rev. Lett. 1993;71(1):65-68. DOI: 10.1103/PhysRevLett.71.65.
  6. Volkovslii AR, Rulkov NV. Synchronous chaotic response of a nonlinear information transmission system with a chaotic carrier. Tech. Phys. Lett. 1993;9(3):71-75. (in Russian).
  7. Kozlov AK, Shalfeev VD. Control of chaotic oscillations in generators with a delayed phase auto-tuning loop. Izvestiya VUZ. Applied Nonlinear Dynamics. 1994;2(2):36-48. (in Russian).
  8. Dmitriev АS, Panas АI, Starkov SO. Experiments оn speech and music signals transmission using chaos. Int. J. Bifurc. Chaos. 1995;5(4):1249-1254. DOI: 10.1142/S0218127495000910.
  9. Dmitriev AS, Panas AI, Starkov SO, Kuzmin LV. Experiments on RF band communications using chaos. Int. J. Bifurc. Chaos. 1997;7(11):2511-2527. DOI: 10.1142/S0218127497001680.
  10. Vladimirov SN, Negrul VV. Control оf output signal entropy of the deterministic chaotic oscillations sources. In: Proc. The 3—rd international symposium SIB- CONVERS’99. 18—20 Мау, Tomsk, Russia. 1999. Vol. 2. P.333.
  11. Short KM. Step toward unmasking secure communication. Int. J. Bifurc. Chaos. 1994;4(4):959-977. DOI: 10.1142/S021812749400068X.
  12. Baker GL, Golub JP, Blackbum JA. Inverting chaos: Extracting system parameters from experimental data. Chaos. 1996;6(4):528-533.  DOI: 10.1063/1.166200.
  13. Ресоrа LM, Carrol TL, Jonson G, Marr D. Volume—preserving and volume-expanding synchronized chaotic system. Phys. Rev. E. 1997;56(5):5090-5100. DOI: 10.1103/PhysRevE.56.5090.
  14. Anishchenko VS, Pavlov AN, Yanson NB. Reconstruction of dynamic systems in applications to solve the problem of information protection. Tech. Phys. 1998;68(12):1-8. (in Russian).
  15. Mathiazhagan С. Deciphering secure chaotic communication [Electronic resource] Los Alamos National Laboratory. 3 Мау 1999. Availiable from http://xxx.lanl.gov/abs/chao—dyn/ 9905001
Received: 
25.07.2000
Accepted: 
18.12.2000
Published: 
25.03.2001