ISSN 0869-6632 (Print)
ISSN 2542-1905 (Online)

For citation:

Efimov A. V., Shabunin A. V. Formation and evolution of the spatial structures in the system of chemical reactions on the catalityc surface: Monte Carlo simulation. Izvestiya VUZ. Applied Nonlinear Dynamics, 2006, vol. 14, iss. 2, pp. 47-63. DOI: 10.18500/0869-6632-2006-14-2-47-63

This is an open access article distributed under the terms of Creative Commons Attribution 4.0 International License (CC-BY 4.0).
Full text PDF(Ru):
(downloads: 222)
Article type: 

Formation and evolution of the spatial structures in the system of chemical reactions on the catalityc surface: Monte Carlo simulation

Efimov Anton Viktorovich, Saratov State University
Shabunin Aleksej Vladimirovich, Saratov State University

The cluster formation in the cyclic (4+1)-Lattice – Lotka–Volterra model is studied by Kinetic Monte Carlo simulations on a square lattice support. The features of cluster size distribution, spatial autocorrelation function and other dependences of the spatial dynamics of the system are under consideration. The role of cluster formation process and it effect on the systems dynamics is studied in this work. We show that the external mixing added to the initial scheme leads to the periodic self-oscillations appearance. 

Key words: 
  1. Ertl G. Oscillatory kinetics and spatio-temporal self-organization in reactions at solid surfaces. Science. 1991;254(5039):1750–1755. DOI: 10.1126/science.254.5039.1750.
  2. Wintterlin J. Scanning tunneling microscopy studies of catalytic reactions. Adv. Catal. 2000;45:131–206. DOI: 10.1016/S0360-0564(02)45014-6.
  3. Ertl G, Norton PR, Rustig J. Kinetic oscillations in the platinum-catalyzed oxidation of CO. Phys. Rev. Lett. 1982;49:177–180.
  4. Imbihl R, Ertl G. Oscillatory kinetics in heterogeneous catalysis. Chem. Rev. 1995;95(3):697–733. DOI: 10.1021/CR00035A012.
  5. Shvartsman SY, Schutz E, Imbihl R, Kevrekidis IG. Dynamics on microcomposite catalytic surfaces: The effect of active boundaries. Phys. Rev. Lett. 1999;83:2857–2860.
  6. Voss C, Kruse N. Chemical wave propogation and rate oscillations during the NO2 /H2 reaction over Pt. Ultramicroscopy. 1998;73:211–216. DOI: 10.1016/S0304-3991(97)00158-7.
  7. Slinko M, Fink T, Loher T, Madden HH, Lombardo SJ, Imbihl R, Ertl G. The NO+H2 reaction on Pt(100) – steady-state and oscillatory kinetics. Surface Science. 1992;264:157–170. DOI: 10.1016/0039-6028(92)90174-5.
  8. Hartmann N, Madix RJ. Dynamical rearrangements of the (2 × 1) O adlayer during CO oxidation on Cu(110). Surface Science. 2002;516(3):230–236. DOI: 10.1016/S0039-6028(02)02050-2.
  9. Ziff RM, Gulari E, Barshad Y. Kinetic phase transitions in an irreversible surface-reaction model. Phys Rev Lett. 1986;56(24):2553–2556. DOI: 10.1103/PhysRevLett.56.2553.
  10. Brosilow BJ, Gulari E, Ziff RM. Boundary effects in a surface reaction model for CO oxidation. J. Chem. Phys. 1993;98(1):674–677. DOI: 10.1063/1.464612.
  11. Zhdanov VP. Surface restructuring and kinetic oscillations in heterogeneous catalytic reactions. Phys. Rev. E. 1999;60(6):7554–7557. DOI: 10.1103/PHYSREVE.60.7554.
  12. Zhdanov VP. Surface restructuring, kinetic oscillations, and chaos in heterogeneous catalytic reactions. Phys. Rev. E. 1999;59(6):6292. DOI: 10.1103/PhysRevE.59.6292.
  13. Voss C, Kruse N. Field ion microscopy during an ongoing surface reaction: NO/H2 on Pt. Applied Surface Science. 1994;87/88:127–133.
  14. Nicolis G, Prigogine I. Self-organization in Nonequilibrium Systems. New York: Wiley; 1977.
  15. Albano EV. Monte Carlo simulations of surface chemical reactions: Irreversible phase transitions and oscillatory behaviour. Computer Physics Communications. 1999;121-122:388–391.
  16. Albano EV, Marro J. Monte Carlo study of the CO- poisoning dynamics in a model for the catalytic oxidation of CO. J. Chem. Phys. 2000;113(22):10279.
  17. Tammaro M, Evans JW. Chemical diffusivity and wave propagation in surface reactions: lattice-gas model mimicking CO-oxidation with high CO-mobility. J. Chem. Phys. 1998;108(2):762–773.
  18. Liu DJ, Evans JW. Symmetry-breaking and percolation transitions in a surface reaction model with superlattice ordering. Phys. Rev. Lett. 2000;84(5):955–958. DOI: 10.1103/PhysRevLett.84.955.
  19. De Decker Y, Baras F, Kruse N, Nicolis G. Modeling the NO + H2 reaction on a Pt field emitter tip: Mean-field analysis and Monte-Carlo simulations. J. Chem. Phys. 2002;117(22): 10244–10257. DOI: 10.1063/1.1518961.
  20. Provata A, Nicolis G, Baras F. Oscillatory dynamics in low dimensional lattices: A lattice Lotka-Volterra model. J. Chem. Phys. 1999;110(17):8361–8368. DOI: 10.1063/1.478746.
  21. Tsekouras GA, Provata A. Fractal properties of the lattice Lotka-Volterra model. Phys. Rev. E. 2002;65(2):016204. DOI: 10.1103/PhysRevE.65.016204.
  22. Frachebourg L, Krapivsky PL, Ben-Naim E. Spatial organization in cyclic Lotka-Volterra systems. Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics. 1996;54(6):6186–6200. DOI: 10.1103/physreve.54.6186.
  23. Efimov A, Shabunin A, Astakhov V, Provata A. Chaotic dynamics of chemical reactions in low-dimensional substrates: Mean-Field and Monte-Carlo approaches. Izvestiya VUZ. Applied Nonlinear Dynamics. 2003;11(2):72–80.
Short text (in English):
(downloads: 67)