ISSN 0869-6632 (Print)
ISSN 2542-1905 (Online)

Cite this article as:

Efimov A. V., Shabunin A. V. Formation and evolution of the spatial structures in the system of chemical reactions on the catalityc surface: monte carlo simulation. Izvestiya VUZ. Applied Nonlinear Dynamics, 2006, vol. 14, iss. 2, pp. 47-63. DOI:


Formation and evolution of the spatial structures in the system of chemical reactions on the catalityc surface: monte carlo simulation

Efimov Anton Viktorovich, Saratov State University
Shabunin Aleksej Vladimirovich, Saratov State University

The cluster formation in the cyclic (4+1)-Lattice – Lotka–Volterra model is studied by Kinetic Monte Carlo simulations on a square lattice support. The features of cluster size distribution, spatial autocorrelation function and other dependences of the spatial dynamics of the system are under consideration. The role of cluster formation process and it e?ect on the systems dynamics is studied in this work. We show that the external mixing added to the initial scheme leads to the periodic self-oscillations appearance.

Key words: 

1. Ertl G. Oscillatory kinetics and spatiotemporal self-organization in reactions at solid surfaces // Science. 1991. Vol. 254. P. 1750. 2. Wintterlin J. Scanning tunneling microscopy studies of catalytic reactions // Adv. Catal. 2000. Vol. 45. P. 131. 3. Ertl G., Norton P.R. and Rustig J. Kinetic oscillations in the platinum-catalyzed oxidation of CO // Phys. Rev. Lett. 1982. Vol. 49. P. 177. 4. Imbihl R. and Ertl G. Oscillatory kinetics in heterogeneous catalysis // Chem. Rev. 1995. Vol. 95. P. 697. 5. Shvartsman S.Y., Schutz E., Imbihl R. and Kevrekidis I.G. Dynamics on microcomposite catalytic surfaces: The effect of active boundaries // Phys. Rev. Lett. 1999. Vol. 83. P. 2857. 6. Voss C. and Kruse N. Chemical wave propogation and rate oscillations during the NO2 /H2 reaction over Pt // Ultramicroscopy. 1998. Vol. 73. P. 211. 7. Slinko M., Fink T., Loher T., Madden H.H., Lombardo S.J., Imbihl R. and Ertl G. The NO+H2 reaction on Pt(100) – steady-state and oscillatory kinetics // Surface Science. 1992. Vol. 264. P. 157. 8. Hartmann N. and Madix R.J. Dynamical rearrangements of the (2 ? 1) O adlayer during CO oxidation on Cu(110) // Surface Science. 2002. Vol. 516. P. 230. 9. Ziff R.M., Gulari E., Barshad Y. Kinetic phase transitions in irreversible surfacereaction model // Phys. Rev. Lett. 1986. Vol. 56. P. 2553. 10. Brosilow B.J., Gulari E., Ziff R.M. Boundary effects in a surface reaction model for CO oxidation // J. Chem. Phys. 1993. Vol. 98. P. 674. 11. Zhdanov V.P. Surface restructuring and kinetic oscillations in heterogeneous catalytic reactions // Phys. Rev. E. 1999. Vol. 60. P. 7554. 12. Zhdanov V.P. Surface restructuring, kinetic oscillations, and chaos in heterogeneous catalytic reactions // Phys. Rev. E. 1999. Vol. 59. P. 6292. 13. Voss C., Kruse N. Field ion microscopy during an ongoing surface reaction: NO/H2 on Pt // Applied Surface Science. 1994. Vol. 87/88. P. 127. 14. Nicolis G. and Prigogine I. Self-organization in Nonequilibrium Systems. New York.: Wiley, 1977. 15. Albano E.V. Monte Carlo simulations of surface chemical reactions: Irreversible phase transitions and oscillatory behaviour // Computer Physics Communications. 1999. Vol. 121-122. P. 388. 16. Albano E.V. and Marro J. Monte Carlo study of the CO- poisoning dynamics in a model for the catalytic oxidation of CO // J. Chem. Phys. 2000. Vol. 113. P. 10279. 17. Tammaro M. and Evans J.W. Chemical diffusivity and wave propagation in surface reactions: lattice-gas model mimicking CO-oxidation with high CO-mobility // J. Chem. Phys. 1998. Vol. 108. P. 762. 18. Liu D.J. and Evans J.W. Symmetry-breaking and percolation transitions in a surface reaction model with superlattice ordering // Phys. Rev. Lett. 2000. Vol. 84. P. 955. 19. De Decker Y., Baras F., Kruse N. and Nicolis G. Modeling the NO + H2 reaction on a Pt field emitter tip: Mean-field analysis and Monte-Carlo simulations // J. Chem. Phys. 2002. Vol. 117. P. 10244. 20. Provata A., Nicolis G. and Baras F. Oscillatory dynamics in low dimensional lattices: A lattice Lotka-Volterra model // J. Chem. Phys. 1999. Vol. 110. P. 8361. 21. Tsekouras G.A. and Provata A. Fractal properties of the lattice Lotka-Volterra model // Phys. Rev. E. 2002. Vol. 65. art. no 016204. 22. Frachebourg L., Krapivsky P.L. and Ben-Naim E. Spatial organization in cyclic Lotka-Volterra systems // Phys. Rev. E. 1996. Vol. 54. P. 6186. 23. Efimov A., Shabunin A., Astakhov V. and Provata A. Chaotic dynamics of chemical reactions in low-dimensional substrates: Mean-Field and Monte-Carlo approaches // Изв. вузов. Прикладная нелинейная динамика. 2003. Т. 11, No 2. С. 72.

Short text (in English):
(downloads: 8)
Full text:
(downloads: 75)