ISSN 0869-6632 (Print)
ISSN 2542-1905 (Online)


For citation:

Turukina L. V., Pikovsky A. S. Hyperbolic chaos in a system of nonlinear coupled Landau-Stuart oscillators. Izvestiya VUZ. Applied Nonlinear Dynamics, 2009, vol. 17, iss. 2, pp. 99-113. DOI: 10.18500/0869-6632-2009-17-2-99-113

This is an open access article distributed under the terms of Creative Commons Attribution 4.0 International License (CC-BY 4.0).
Full text PDF(Ru):
(downloads: 223)
Language: 
Russian
Heading: 
Article type: 
Article
UDC: 
517.9

Hyperbolic chaos in a system of nonlinear coupled Landau-Stuart oscillators

Autors: 
Turukina L. V., Saratov State University
Pikovsky Arkady Samuilovich, Potsdam University
Abstract: 

Chaotic dynamics of a system of four nonlinear coupled non-identical LandauStuart oscillators is considered. Subsystems are activated alternately by pairs due to a slow variation of their parameters responsible for the Andronov–Hopf bifurcation. It is shown, that system dynamics depends of coupling type. Different types of phase map (Bernoulli type map) are obtained in Poincare section depending of coupling. Some systems with different type of coupling corresponded to «maximum» and «minimum» chaos are investigated. 

Reference: 
  1. Sinai YG. Stochasticity of dynamic systems. Nonlinear waves. Moscow: Nauka; 1979, 192 p. (In Russian).
  2. Shilnikov L. Mathematical problems of nonlinear dynamics: A Tutorial. Int. J. of Bif. & Chaos. 1997;7(9):1353–2001.
  3. Katok AB, Hasselblatt B. Introduction to the modern theory of dynamic systems. Moscow: Faktorial; 1999. 768 p. (In Russian).
  4. Hookenheimer J., Holmes F. Nonlinear oscillations, dynamic systems, and vector field bifurcations. Izhevsk-Moscow: Institute of Computer Sciences; 2002. 559 p. (In Russian).
  5. Anishchenko VS, Astakhov VV, Vadivasova TE, Neiman AB, Strelkova GI, Schimansky-Geier L. Nonlinear Effects in Chaotic and Stochastic Systems. Izhevsk-Moscow: Institute of Computer Sciences; 2003. (In Russian).
  6. Kuznetsov SP. Example of a physical system with a hyperbolic attractor of a Smale–Williams type. Phys. Rev. Lett. 2005;95(14):144101. DOI: 10.1103/PhysRevLett.95.144101.
  7. Kuznetsov SP, Seleznev EP. A strange attractor of the Smale-Williams type in the chaotic dynamics of a physical system. Journal of Experimental and Theoretical Physics. 2006;102(2):355–364. DOI: 10.1134/S1063776106020166.
  8. Kuznetsov AP, Sataev IR. Verification of hyperbolicity conditions for a chaotic attractor in a system of coupled nonautonomous van der Pol oscillators. Izvestiya VUZ. Applied Nonlinear Dynamics. 2006;14(5):3–29. DOI: 10.18500/0869-6632-2006-14-5-3-29.
  9. Kuznetsov SP, Sataev IR. Hyperbolic attractor in a system of coupled non-autonomous van der Pol oscillators: Numerical test for expanding and contracting cones. Physics Letters A. 2007;365(1–2):97–104. DOI: 10.1016/j.physleta.2006.12.071.
  10. Isaeva OB, Jalnine Ayu, Kuznetsov SP. Arnold’s cat map dynamics in a system of coupled nonautonomous van der Pol oscillators. Phys. Rev. E. 2006;74(4):046207. DOI: 10.1103/PhysRevE.74.046207.
  11. Kuptsov PV, Kuznetsov SP. Transition to a synchronous chaos regime in a system of coupled non-autonomous oscillators presented in terms of amplitude equations. Nelin. Dinam. 2006;2(3):307–331.
  12. Isaeva OB, Kuznetsov SP, Osbaldestin AH. A system of alternately excited coupled non-autonomous oscillators manifesting phenomena intrinsic to complex analytical maps. Physica D. 2008;237(7):873–884. DOI: 10.1016/j.physd.2007.11.002.
  13. Kuznetsov SP, Pikovsky A.S. Autonomous coupled oscillators with hyperbolic strange attractors. Physica D. 2007;232:87–102. DOI: 10.1016/j.physd.2007.05.008.
  14. Kuznetsov AP, Kuznetsov SP, Pikovsky AS, Turukina LV. Chaotic dynamics in the systems of coupling nonautonomous oscillators with resonance and nonresonance communicator of the signal. Izvestiya VUZ. Applied Nonlinear Dynamics. 2007;15(6):75–85. DOI: 10.18500/0869-6632-2007-15-6-75-85.
  15. Kuznetsov SP, Pikovsky AS. Hyperbolic chaos in the phase dynamics of a Q-switched oscillator with delayed nonlinear feedbacks. Europhysics Letters. 2008;28(1):10013. DOI: 10.1209/0295-5075/84/10013.
Received: 
11.01.2009
Accepted: 
11.01.2009
Published: 
30.06.2009
Short text (in English):
(downloads: 86)