ISSN 0869-6632 (Print)
ISSN 2542-1905 (Online)

For citation:

Pavlov E. S., Vysotskii S. L., Kozhevnikov A. V., Dudko G. M., Filimonov Y. A. Influence of parametric instability of magnetostatic surface spin waves on formation of defect modes in one-dimensional magnonic crystal with defect. Izvestiya VUZ. Applied Nonlinear Dynamics, 2017, vol. 25, iss. 2, pp. 74-88. DOI: 10.18500/0869-6632-2017-25-2-74-88

This is an open access article distributed under the terms of Creative Commons Attribution 4.0 International License (CC-BY 4.0).
Full text PDF(Ru):
(downloads: 85)
Article type: 

Influence of parametric instability of magnetostatic surface spin waves on formation of defect modes in one-dimensional magnonic crystal with defect

Pavlov Evgenij Sergeevich, Kotel'nikov Institute of Radioengineering and Electronics of Russian Academy of Sciences
Vysotskii S. L., Saratov Branch of Kotel`nikov Institute of Radiophysics and Electronics of Russian Academy of Sciences
Kozhevnikov Aleksandr Vladimirovich, Saratov Branch of Kotel`nikov Institute of Radiophysics and Electronics of Russian Academy of Sciences
Dudko Galina Mihajlovna, Saratov Branch of Kotel`nikov Institute of Radiophysics and Electronics of Russian Academy of Sciences
Filimonov Y. A., Saratov Branch of Kotel`nikov Institute of Radiophysics and Electronics of Russian Academy of Sciences

Propagation of nonlinear magnetostatic surface waves through the one-dimensional magnonic crystal based on yttrium-iron garnet film with the defect of periodic array was experimentally studied. Interest in the study of the magnonic crystals with defects is caused by the possibility of exciting of defect modes inside the forbidden gaps of MSSW spectrum that can be used to enhance the non-linear effects and signals control in the microwave range. The studied structure was developed by etching of the periodic array of grooves with the defect in the form of increasing of the one separation width between two grooves up to the period of the surface structure. Magnetostatic surface waves were excited in the structure. Frequency dependencies of transmission and reflection coefficients were studied for different levels of the pump signal using a microwave network analyzer. It was found that defect mode fade out as a result of three-magnon process. The threshold power for this process is less than the same parameter for Bragg resonance as a result of effect of local increasing of spin wave field as well as because of formation of non-equilibrium region of spin wave propagation that is localized near the defect. The shift of defect mode frequency and Bragg forbidden gap toward long wavelength limit of MSSW spectrum was found in the condition of four-magnon process at high pumping level as a result of change of MSSW dispersion at large angles of magnetization precession.   

  1. Nikitov S.A. Kalyabin D.V., Lisenkov I.V., Slavin A.N., Barabanenkov Yu.N., Osokin S.A., Sadovnikov A.V., Beginin E.N., Morozova M.A., Sharaevsky Yu.P., Filimonov Yu.A., Khivintsev Yu.V., Vysotsky S.L., Sakharov V.K., Pavlov E.S. Magnonics: A new research area in spintronics and spin wave electronics. Physics – Uspekhi. 2015. Vol. 58, No. 10. P. 1002–1028.
  2. Chumak A.V., Serga A.A., Hillebrands B., Kostylev M.P. Scattering of backward spin waves in a one-dimensional magnonic crystal. Appl. Phys. Lett. 2008. Vol. 93. P. 022508.
  3. Lee K.S., Han D.S., Lim S.K. Physical origin and generic control of magnonic band gaps of dipole-exchange spin waves in width-modulated nanostrip waveguides. Phys. Rev. Lett. 2009. Vol. 102. P. 127202.
  4. Gulyaev Yu.V., Nikitov S.A., Plesskii V.P. The propagation of magnetostatic waves in a normally magnetized ferrite plate with periodically uneven surfaces. Sov. Phys. Solid State. 1980. Vol. 22, No. 9. P.1651–1652.
  5. Nikitov S.A., Taihades Ph., Tsai C.S. Spin waves in periodic magnetic structures – magnonic crystals. Journ. Magn. Magn. Mater. 2001. Vol. 0236. P. 320–330.
  6. Ignatchenko V.A., Mankov Y.I., Мaradudin A.A. Spectrum of waves in randomly modulated multilayers. Phys. Rev. B. 1999. Vol. 59. P. 42– 45.
  7. Kruglyak V.V., Kuchko A.N. Spectrum of spin waves propagating in a periodic magnetic structure. Physica B: Condensed Matter. 2003. Vol. 339, No. 2–3. P. 130–133.
  8. Kuchko A.N., Sokolovskii M. L., Kruglyak V.V. The Physics of Metals and Metallography. 2006. Vol. 101, No. 6. P. 513–518.
  9. Kruglyak V.V., Kuchko A.N. Damping of spin waves in a real magnonic crystal. Journ. Magn. Magn. Mater. 2004. Vol. 272–276, No. 1. P. 302–303.
  10. Tkachenko V.S., Kruglyak V.V, Kuchko A.N. Spin waves in a magnonic crystal with sine-like interfaces. Journ. Mag. Mag. Mater. 2006. Vol. 307, No. 1. P. 48–52.
  11. Ignatchenko V.A., Mankov Y.I., Maradudin A.A. Wave spectrum of multilayers with finite thicknesses of interfaces. Phys. Rev. B. 2000. Vol. 62, No. 3. P. 2181–2184.
  12. Filimonov Yu.A., Pavlov E.S., Vysotskii S.L., Nikitov S.A. Magnetostatic surface wave propagation in a one-dimensional magnonic crystal with broken translational symmetry. Appl. Phys. Lett. 2012. Vol. 101. P. 242408.
  13. Pavlov E.S., Filimonov Yu.A. Spin-wave bistability in a nonlinear Bragg resonators based on ferrite magnonic crystal. Nelineinyi mir. 2015. Vol. 13, No. 2. P. 35–36 (in Russian).
  14. Gurevich A.G., Melkov G.A. Magnetization Oscillations and Waves. CRC Press, 1996. 456 p.
  15. Ustinov A.B., Drozdovskii A.V., Kalinikos B.A. Multifunctional nonlinear magnonic devices for microwave signal processing. Appl. Phys. Lett. 2010. Vol. 96. P. 142513.
  16. Vysotsky S.L., Kozhevnikov A.V., Kazakov G.T., Nikitov S.A., Filimonov Yu.A. Magnetostatic surface waves parametric instability in two-dimensional 2D magnonic crystals. Izvestiya VUZ. Applied Nonlinear Dynamics. 2007. Vol. 15, No. 3. P. 58–73 (in Russian).
  17. Vysotsky S.L., Nikitov S.A., Novitsky N.N., Pavlov E.S., Stognij A.I., Filimonov Yu.A. Influence of first order parametric instability on formation of forbidden gaps in spectra of magnetostatic surface waves in one-dimensional ferrite magnonic crystal. Izvestiya VUZ. Applied Nonlinear Dynamics. 2012. Vol. 20, No. 2. P. 3–11(in Russian).
  18. Medvedev V.V., Fetisov Yu.K. Voprosy Kibernetiki: Ustroystva i Sistemy. M.: MIREA, 1983. P. 171 (in Russian).
  19. Soljacic M., Joannopoulos J.D. Enhancement of nonlinear effects using photonic crystals. Nature Mater. 2004. Vol. 3. P. 211–219.
  20. Khanikae A.B., Baryshev A.V., Fedyanin A.A., et al. Anomalous Faraday effect of a system with extraordinary optical transmittance. Optics Express. 2007. Vol. 15. P. 6612.
  21. Kai Di, Vanessa Li Zhang, Meng Hau Kuok, Hock Siah Lim, Ser Choon Ng. Band structure of magnonic crystals with defects: Brillouin spectroscopy and micromagnetic simulations. Phys. Rev. B. 2014. Vol. 90. P. 060405.
  22. Kozhevnikov A.V., Nikitov S.A., Filimonov Yu.A. Attenuation of non-linear surface magnetostatic waves in ferrite films. J. de Physique IV. Colloque C1. 1997. Vol. 7. P. 401–402.
  23. Kazakov G.T., Kozhevnikov A.V., Filimonov Yu.A. The effect of parametrically excited spin waves on the dispersion and damping of magnetostatic surface waves in ferrite films. Zh. Eksp. Teor. Fiz. 1999. Vol. 115, No. 1. С. 1–15.
  24. Kazakov G.T., Kozhevnikov A.V., Filimonov Yu.A. Four-magnon decay of magnetostatic surface waves in yttrium iron garnet films. Physics of the Solid State. 1997. Vol. 39, No. 2. P. 288–295.
  25. Gulyaev Yu.V., Nikitov S.A., Plesskii V.P. Reflection of surface magnetostatic waves from the periodically corrugated part of the ferrite slab surface. Sov. J. Telecom. Radioeng. 1981. Vol. 26, No. 11. P. 2282–2291.
  26. Suhl H. The theory of ferromagnetic resonance at high signal powers. J. Phys. Chem. Sol. 1957. Vol. 1, No. 4. P. 209–227.
  27. Lukomskiy V.P. Nelineynie magnitostaticheskie volny v ferromagnitnih plastinah. Ukr. Fiz. Zhurn. 1978. Vol. 23, No. 1. P. 134–139 (in Russian).
  28. Vashkovsky A.V., Stalmachov V.S., Sharaevsky Yu.P. Magnitostaticheskie Volny v Electronike Sverhvysokih Chastot. Saratov: Izd-vo SGU, 1993. 312 p. (in Russian).
  29. Tsankov M.A., Chen M., Patton C.E. Magnetostatic wave dynamic magnetization response in yttrium iron garnet films. J. Appl. Phys. 1996. Vol. 79, No. 3. P. 1595–1603.
Short text (in English):
(downloads: 123)