ISSN 0869-6632 (Print)
ISSN 2542-1905 (Online)


For citation:

Seleznev M. E., Nikulin Y. V., Khivintsev Y. V., Vysotskii S. L., Kozhevnikov A. V., Sakharov V. K., Dudko G. M., Pavlov E. S., Filimonov Y. A. Influence of three-magnon decays on electromotive force generation by magnetostatic surface waves in integral YIG – Pt structures. Izvestiya VUZ. Applied Nonlinear Dynamics, 2022, vol. 30, iss. 5, pp. 617-643. DOI: 10.18500/0869-6632-003008

This is an open access article distributed under the terms of Creative Commons Attribution 4.0 International License (CC-BY 4.0).
Full text PDF(Ru):
Full text PDF(En):
(downloads: 15)
Language: 
Russian
Article type: 
Article
UDC: 
537.86
EDN: 

Influence of three-magnon decays on electromotive force generation by magnetostatic surface waves in integral YIG – Pt structures

Autors: 
Seleznev M. E., Saratov State University
Nikulin Y. V., Saratov Branch of Kotel`nikov Institute of Radiophysics and Electronics of Russian Academy of Sciences
Khivintsev Y. V., Saratov State University
Vysotskii S. L., Saratov Branch of Kotel`nikov Institute of Radiophysics and Electronics of Russian Academy of Sciences
Kozhevnikov Aleksandr Vladimirovich, Saratov Branch of Kotel`nikov Institute of Radiophysics and Electronics of Russian Academy of Sciences
Sakharov Valentin Konstantinovich, Saratov Branch of Kotel`nikov Institute of Radiophysics and Electronics of Russian Academy of Sciences
Dudko Galina Mihajlovna, Saratov Branch of Kotel`nikov Institute of Radiophysics and Electronics of Russian Academy of Sciences
Pavlov Evgenij Sergeevich, Kotel'nikov Institute of Radioengineering and Electronics of Russian Academy of Sciences
Filimonov Y. A., Saratov Branch of Kotel`nikov Institute of Radiophysics and Electronics of Russian Academy of Sciences
Abstract: 

The purpose of this work is to find out the influence of three-magnon decay processes on the electromotive force (EMF (U)) generated by propagating magnetostatic surface waves (MSSW) with the help of the inverse spin Hall effect in the “yttrium-iron garnet (YIG) – platinum (Pt)” structure. Methods. The experiments were carried out using the delay line structures based on YIG films with the thickness of 8.8 and 14.6 µm, on the surface of which antennas were formed for MSSWs excitation and reception and a Pt film between antennas. Results. It was shown that the three-magnon parametric instability can significantly change the character of EMF dependences on frequency and on power of MSSW that resulted both from the effect of power limitation and from the participation of parametric spin waves (PSW) and secondary spin waves (SSW) in the processes of electron-magnon scattering on the YIG/Pt border. Conclusion. It was demonstrated that the effect of amplification of EMF generation at the frequencies that are close to the long-wavelength border of the MSSW spectrum is related with the PSW and SSW population of the region of anisotropic dipole-exchange spin waves spectrum, which is characterized by the presence of singularities in the magnon density of states (Van Hove singularities).

Acknowledgments: 
The work was supported by RSF grant No. 22-19-00500
Reference: 
  1. Kajiwara Y, Harii K, Takahashi S, Ohe J, Uchida K, Mizuguchi M, Umezawa H, Kawai H, Ando K, Takanashi K, Maekawa S, Saitoh E. Transmission of electrical signals by spin-wave interconversion in a magnetic insulator. Nature. 2010;464(7286):262–266. DOI: 10.1038/nature08876.
  2. Sinova J, Valenzuela SO, Wunderlich J, Back CH, Jungwirth T. Spin Hall effects. Rev. Mod. Phys. 2015;87(4):1213–1260. DOI: 10.1103/RevModPhys.87.1213.
  3. Althammer M. Pure spin currents in magnetically ordered insulator/normal metal heterostructures. J. Phys. D: Appl. Phys. 2018;51(31):313001. DOI: 10.1088/1361-6463/aaca89.
  4. Jungfleisch MB, Chumak AV, Vasyuchka VI, Serga AA, Obry B, Schultheiss H, Beck PA, Karenowska AD, Saitoh E, Hillebrands B. Temporal evolution of inverse spin Hall effect voltage in a magnetic insulator-nonmagnetic metal structure. Appl. Phys. Lett. 2011;99(18):182512. DOI: 10.1063/1.3658398.
  5. Agrawal M, Vasyuchka VI, Serga AA, Kirihara A, Pirro P, Langner T, Jungfleisch MB, Chumak AV, Papaioannou ET, Hillebrands B. Role of bulk-magnon transport in the temporal evolution of the longitudinal spin-Seebeck effect. Phys. Rev. B. 2014;89(22):224414. DOI: 10.1103/PhysRevB. 89.224414.
  6. Rezende SM, Rodr´iguez-Suarez RL, Cunha RO, Rodrigues AR, Machado FLA, Fonseca Guerra GA, Lopez Ortiz JC, Azevedo A. Magnon spin-current theory for the longitudinal spin-Seebeck effect. Phys. Rev. B. 2014;89(1):014416. DOI: 10.1103/PhysRevB.89.014416.
  7. Saitoh E, Ueda M, Miyajima H, Tatara G. Conversion of spin current into charge current at room temperature: Inverse spin-Hall effect. Appl. Phys. Lett. 2006;88(18):182509. DOI: 10.1063/ 1.2199473.
  8. Chumak AV, Vasyuchka VK, Serga AA, Hillebrands B. Magnon spintronics. Nature Physics. 2015;11(6):453–461. DOI: 10.1038/nphys3347.
  9. Nikitov SA, Kalyabin DV, Lisenkov IV, Slavin AN, Barabanenkov YN, Osokin SA, Sadovnikov AV, Beginin EN, Morozova MA, Sharaevsky YP, Filimonov YA, Khivintsev YV, Vysotsky SL, Sakharov VK, Pavlov ES. Magnonics: a new research area in spintronics and spin wave electronics. Phys. Usp. 2015;58(10):1002–1028. DOI: 10.3367/UFNe.0185.201510m.1099.
  10. Ando K, Ieda J, Sasage K, Takahashi S, Maekawa S, Saitoh E. Electric detection of spin wave resonance using inverse spin-Hall effect. Appl. Phys. Lett. 2009;94(26):262505. DOI: 10.1063/ 1.3167826.
  11. Hahn C, de Loubens G, Viret M, Klein O, Naletov VV, Ben Youssef J. Detection of microwave spin pumping using the inverse spin Hall effect. Phys. Rev. Lett. 2013;111(21):217204. DOI: 10.1103/ PhysRevLett.111.217204.
  12. Ganzhorn K, Klingler S, Wimmer T, Geprags S, Gross R, Huebl H, Goennenwein STB. Magnon-based logic in a multi-terminal YIG/Pt nanostructure. Appl. Phys. Lett. 2016;109(2):022405. DOI: 10.1063/1.4958893.
  13. Balinskiy M, Chiang H, Gutierrez D, Khitun A. Spin wave interference detection via inverse spin Hall effect. Appl. Phys. Lett. 2021;118(24):242402. DOI: 10.1063/5.0055402.
  14. Avci CO, Quindeau A, Pai CF, Mann M, Caretta L, Tang AS, Onbasli MC, Ross CA, Beach GSD. Current-induced switching in a magnetic insulator. Nature Materials. 2017;16(3):309–314. DOI: 10.1038/nmat4812.
  15. Cornelissen LJ, Liu J, van Wees BJ, Duine RA. Spin-current-controlled modulation of the magnon spin conductance in a three-terminal magnon transistor. Phys. Rev. Lett. 2018;120(9):097702. DOI: 10.1103/PhysRevLett.120.097702.
  16. Hamadeh A, d’Allivy Kelly O, Hahn C, Meley H, Bernard R, Molpeceres AH, Naletov VV, Viret M, Anane A, Cros V, Demokritov SO, Prieto JL, Munoz M, de Loubens G, Klein O. Full control of the spin-wave damping in a magnetic insulator using spin-orbit torque. Phys. Rev. Lett. 2014;113(19):197203. DOI: 10.1103/PhysRevLett.113.197203.
  17. Padron-Hernandez E, Azevedo A, Rezende SM. Amplification of spin waves by thermal spin-transfer torque. Phys. Rev. Lett. 2011;107(19):197203. DOI: 10.1103/PhysRevLett.107.197203.
  18. Lauer V, Bozhko DA, Bracher T, Pirro P, Vasyuchka VI, Serga AA, Jungfleisch MB, Agrawal M, Kobljanskyj YV, Melkov GA, Dubs C, Hillebrands B, Chumak AV. Spin-transfer torque based damping control of parametrically excited spin waves in a magnetic insulator. Appl. Phys. Lett. 2016;108(1):012402. DOI: 10.1063/1.4939268.
  19. Tveten EG, Brataas A, Tserkovnyak Y. Electron-magnon scattering in magnetic heterostructures far out of equilibrium. Phys. Rev. B. 2015;92(18):180412. DOI: 10.1103/PhysRevB.92.180412.
  20. 20. Van Hove L. The occurrence of singularities in the elastic frequency distribution of a crystal. Physical Review. 1953;89(6):1189–1193. DOI: 10.1103/PhysRev.89.1189.
  21. 21. Damon RW, Eshbach JR. Magnetostatic modes of a ferromagnet slab. Journal of Physics and Chemistry of Solids. 1961;19(3–4):308–320. DOI: 10.1016/0022-3697(61)90041-5.
  22. 22. Nikulin YV, Seleznev МЕ, Khivintsev YV, Sakharov VК, Pavlov ES, Vysotskii SL, Kozhevnikov AV, Filimonov YA. EMF generation by propagating magnetostatic surface waves in integrated thin-film Pt/YIG structure. Semiconductors. 2020;54(12):1721–1724. DOI: 10.1134/S106378262012026X.
  23. De Wames RE, Wolfram T. Dipole-exchange spin waves in ferromagnetic films. J. Appl. Phys. 1970;41(3):987–993. DOI: 10.1063/1.1659049.
  24. Seleznev ME, Nikulin YV, Sakharov VK, Khivintsev YV, Kozhevnikov AV, Vysotskii SL, Filimonov UA. Influence of the resonant interaction of surface magnetostatic waves with exchange modes on the emf generation in yig/pt structures. Tech. Phys. 2021;91(10):1504–1508 (in Russian). DOI: 10.21883/JTF.2021.10.51363.136-21.
  25. Sandweg CW, Kajiwara Y, Chumak AV, Serga AA, Vasyuchka VI, Jungfleisch MB, Saitoh E, Hillebrands B. Spin pumping by parametrically excited exchange magnons. Phys. Rev. Lett. 2011;106(21):216601. DOI: 10.1103/PhysRevLett.106.216601.
  26. Kurebayashi Н, Dzyapko O, Demidov VE, Fang D, Ferguson AJ Demokritov SO. Controlled enhancement of spin-current emission by three-magnon splitting. Nature Materials. 2011;10(9):660– 664. DOI: 10.1038/nmat3053.
  27. Kurebayashi H, Dzyapko O, Demidov VE, Fang D, Ferguson AJ, Demokritov SO. Spin pumping by parametrically excited short-wavelength spin waves. Appl. Phys. Lett. 2011;99(16):162502. DOI: 10.1063/1.3652911.
  28. Sakimura H, Tashiro T, Ando K. Nonlinear spin-current enhancement enabled by spin-damping tuning. Nat. Commun. 2014;5:5730. DOI: 10.1038/ncomms6730.
  29. Manuilov SA, Du CH, Adur R, Wang HL, Bhallamudi VP, Yang FY, Hammel PC. Spin pumping from spinwaves in thin film YIG. Appl. Phys. Lett. 2015;107(4):042405. DOI: 10.1063/1.4927451.
  30. Watanabe S, Hirobe D, Shiomi Y, Iguchi R, Daimon S, Kameda M, Takahashi S, Saitoh E. Generation of megahertz-band spin currents using nonlinear spin pumping. Scientific Reports. 2017;7(1):4576. DOI: 10.1038/s41598-017-04901-4.
  31. Ando K, Saitoh E. Spin pumping driven by bistable exchange spin waves. Phys. Rev. Lett. 2012;109(2):026602. DOI: 10.1103/PhysRevLett.109.026602.
  32. Noack TB, Vasyuchka VI, Bozhko DA, Heinz B, Frey P, Slobodianiuk DV, Prokopenko OV, Melkov GA, Kopietz P, Hillebrands B, Serga AA. Enhancement of the spin pumping effect by magnon confluence process in YIG/Pt bilayers. Physica Status Solidi (B). 2019;256(9):1900121. DOI: 10.1002/pssb.201900121.
  33. Castel V, Vlietstra N, Ben Youssef J, Van Wees BJ. Platinum thickness dependence of the inverse spin-Hall voltage from spin pumping in a hybrid yttrium iron garnet/platinum system. Appl. Phys. Lett. 2012;101(13):132414. DOI: 10.1063/1.4754837.
  34. Castel V, Vlietstra N, Van Wees BJ, Ben Youssef J. Frequency and power dependence of spincurrent emission by spin pumping in a thin-film YIG/Pt system. Phys. Rev. B. 2012;86(13):134419. DOI: 10.1103/PhysRevB.86.134419.
  35. Jungfleisch MB, Chumak AV, Kehlberger A, Lauer V, Kim DH, Onbasli MC, Ross CA, Klaui M, Hillebrands B. Thickness and power dependence of the spin-pumping effect in Y3Fe5O12/Pt heterostructures measured by the inverse spin Hall effect. Phys. Rev. B. 2015;91(13):134407. DOI: 10.1103/PhysRevB.91.134407.
  36. Chumak AV, Serga AA, Jungfleisch MB, Neb R, Bozhko DA, Tiberkevich VS, Hillebrands B. Direct detection of magnon spin transport by the inverse spin Hall effect. Appl. Phys. Lett. 2012;100(8):082405. DOI: 10.1063/1.3689787.
  37. Gurevich AG, Melkov GA. Magnetization Oscillations and Waves. Boca Raton: CRC Press; 1996. 464 p.
  38. Vashkovskii AV, Stalmakhov VS, Sharaevskii YP. Magnetostatic Waves in High-Frequency Electronics. Saratov: Saratov State University Publishing; 1993. 312 p. (in Russian).
  39. L’vov VS. Nonlinear Spin Waves. Moscow: Nauka; 1987. 272 p. (in Russian).
  40. Polzikova NI, Raevskii AO, Temiryazev AG. Influence of exchange interaction on boundary of three-magnon decay of Damon-Eshbach wave in YIG thin films. Soviet Physics, Solid State. 1984;26(11):3506–3508 (in Russian).
  41. Iguchi R, Ando K, Qiu Z, An T, Saitoh E, Sato T. Spin pumping by nonreciprocal spin waves under local excitation. Appl. Phys. Lett. 2013;102(2):022406. DOI: 10.1063/1.4775685.
  42. Agrawal M, Serga AA, Lauer V, Papaioannou ET, Hillebrands B, Vasyuchka VI. Microwave induced spin currents in ferromagnetic-insulator|normal-metal bilayer system. Appl. Phys. Lett. 2014;105(9):092404. DOI: 10.1063/1.4894636.
  43. Balinsky M, Ranjbar M, Haidar M, Durrenfeld P, Khartsev S, Slavin A, Akerman J, Dumas RK. Spin pumping and the inverse spin-hall effect via magnetostatic surface spin-wave modes in Yttrium-Iron garnet/platinum bilayers. IEEE Magn. Lett. 2015;6:3000604. DOI: 10.1109/LMAG. 2015.2471276.
  44. Sandweg CW, Kajiwara Y, Ando K, Saitoh E, Hillebrands B. Enhancement of the spin pumping efficiency by spin wave mode selection. Appl. Phys. Lett. 2010;97(25):252504. DOI: 10.1063/ 1.3528207.
  45. d’Allivy Kelly O, Anane A, Bernard R, Ben Youssef J, Hahn C, Molpeceres AH, Carret´ ero C, ´ Jacquet E, Deranlot C, Bortolotti P, Lebourgeois R, Mage JC., de Loubens G, Klein O, Cros V, Fert A. Inverse spin Hall effect in nanometer-thick yttrium iron garnet/Pt system. Appl. Phys. Lett. 2013;103(8):082408. DOI: 10.1063/1.4819157.
  46. Khivintsev YV, Filimonov YA, Nikitov SA. Spin wave excitation in yttrium iron garnet films with micron-sized antennas. Appl. Phys. Lett. 2015;106(5):052407. DOI: 10.1063/1.4907626.
  47. Kholid FN, Hamara D, Terschanski M, Mertens F, Bossini D, Cinchetti M, McKenzie-Sell L, Patchett J, Petit D, Cowburn R, Robinson J, Barker J, Ciccarelli C. Temperature dependence of the picosecond spin Seebeck effect. Appl. Phys. Lett. 2021;119(3):032401. DOI: 10.1063/5.0050205.
  48. Mednikov AM. Nonlinear effects under the propagation of surface spin waves in YIG films. Soviet Physics, Solid State. 1981;23(1):242–245 (in Russian).
  49. Temiryazev AG. The mechanism of transformation of magnetostatic surface waves in the conditions of three-magnon decay. Soviet Physics, Solid State. 1987;29(2):313–319 (in Russian).
  50. Kazakov GT, Kozhevnikov AV, Filimonov YA. Four-magnon decay of magnetostatic surface waves in yttrium iron garnet films. Physics of the Solid State. 1997;39(2):288–295. DOI: 10.1134/ 1.1129801.
  51. Kazakov GT, Kozhevnikov AV, Filimonov YA. The effect of parametrically excited spin waves on the dispersion and damping of magnetostatic surface waves in ferrite films. J. Exp. Theor. Phys. 1999;88(1):174–181. DOI: 10.1134/1.558780.
  52. Bugaev AS, Galkin OL, Gulyaev YV, Zilberman PE. Electrons’drag by magnetostatic wave in a layered ferrite-metal structure. Sov. Tech. Phys. Lett. 1982;8(8):485–488 (in Russian).
  53. Veselov AG, Vysotsky SL, Kazakov GT, Sukharev AG, Filimonov YA. Magnetostatic surface waves in metallized YIG films. J. Commun. Technol. Electron. 1994;39(12):2067–2074 (in Russian).
  54. Kapelrud A, Brataas A. Spin pumping and enhanced gilbert damping in thin magnetic insulator films. Phys. Rev. Lett. 2013;111(9):097602. DOI: 10.1103/PhysRevLett.111.097602.
  55. Kapelrud A, Brataas A. Spin pumping, dissipation, and direct and alternating inverse spin Hall effects in magnetic-insulator/normal-metal bilayers. Phys. Rev. B. 2017;95(21):214413. DOI: 10.1103/PhysRevB.95.214413.
  56. Gulyaev YV, Bugaev AS, Zil’berman PE, Ignat’ev IA, Konovalov AG, Lugovskoi AV, Mednikov AM, Nam BP, Nikolaev EI. Giant oscillations in the transmission of quasi-surface spin waves through a thin yttrium-iron garnet (YIG) film. JETP Lett. 1979;30(9):565–568.
  57. Lugovskoi AV, Scheglov VV. Spectrum of exchange and non-exchange spin wave excitations in ferrite garnets films. Radio Engineering and Electronic Physics. 1982;27(3):518–524 (in Russian).
  58. Sakharov VK, Khivintsev YV, Vysotskii SL, Stognij AI, Dudko GM, Filimonov YA. Influence of input signal power on magnetostatic surface waves propagation in yttrium-iron garnet films on silicon substrates. Izvestiya VUZ. Applied Nonlinear Dynamics. 2017;25(1):35–51 (in Russian). DOI: 10.18500/0869-6632-2017-25-1-35-51.
  59. Zil’berman PE, Kulikov VM, Tikhonov VV, Shein IV. Nonlinear effects in the propagation of surface magnetostatic waves in yttrium iron garnet films in weak magnetic fields. J. Exp. Theor. Phys. 1991;72(5):874–881.
  60. Medved’ AV, Kryshtal RG, Osipenko VA, Popkov AF. MSW modes transformation under their scattering on surface acoustic wave in YIG. Sov. Phys. Tech. Phys. 1988;58(12):2315–2322 (in Russian).
  61. Donahue MJ, Porter DG. OOMMF User’s Guide. Interagency Report NISTIR 6376. Gaithersburg, MD: National Institute of Standards and Technology; 1999. 94 p. DOI: 10.6028/NIST.IR.6376.
  62. Dvornik M, Au Y, Kruglyak VV. Micromagnetic simulations in magnonics. In: Demokritov S, Slavin A, editors. Magnonics. Topics in Applied Physics. Vol 125. Berlin: Springer; 2013. P. 101–115. DOI: 10.1007/978-3-642-30247-3_8.
  63. Sakharov VK, Khivintsev YV, Dudko GM, Dzhumaliev AS, Vysotskii SL, Stognij AI, Filimonov YA. particularities of spin wave propagation in magnonic crystals with nonuniform magnetization distribution across the thickness. Physics of the Solid State. 2022;64(9):1255–1262 (in Russian). DOI: 10.21883/FTT.2022.09.52815.11HH.
Received: 
22.08.2022
Accepted: 
07.09.2022
Published: 
30.09.2022