ISSN 0869-6632 (Print)
ISSN 2542-1905 (Online)


For citation:

Blashke D. B., Prozorkevich A. V., Filatov A. V., Shkirmanov D. S. Laser acceleration of heavy ion beams in vacuum. Izvestiya VUZ. Applied Nonlinear Dynamics, 2008, vol. 16, iss. 1, pp. 124-134. DOI: 10.18500/0869-6632-2008-16-1-124-134

This is an open access article distributed under the terms of Creative Commons Attribution 4.0 International License (CC-BY 4.0).
Full text:
(downloads: 88)
Language: 
Russian
Article type: 
Article
UDC: 
530.145

Laser acceleration of heavy ion beams in vacuum

Autors: 
Blashke David B., University of Rostock
Prozorkevich Aleksandr Vasilevich, Saratov State University
Filatov Andrej Viktorovich, Saratov State University
Shkirmanov Dmitrij Sergeevich, Saratov State University
Abstract: 

The possibility of heavy ion additional acceleration in laser beams is investigated. The main observation is the existence of a big variety of acceleration modes due to many fitting parameters even for only one Gaussian beam and for crossed ones even more so. An essentially non-monotonic dependence of energy gain on relevant variables such as initial velocity or pulse duration is found which makes the search for the most effective acceleration modus very complex. There is a threshold level for the intensity (∼ 1025 W/cm2 ) when the ion moves in the capture mode in one direction. The crossed beam scheme is at least three times more effective than one beam scheme within the considered range of parameters. However, such a scheme works only for certain phasing of the beams which is difficult to provide at such field intensity. Moreover, the other nonlinear effects as pair creation and vacuum polarization can also be active.

Key words: 
Reference: 
  1. Shimoda K. Proposal for an electron accelerator using an optical maser. Appl. Opt. 1962;1(1):33–35. DOI: 10.1364/AO.1.000033.
  2. Ashkin A. Acceleration and trapping of particles by radiation pressure. Phys. Rev. Lett. 1970;24(4):156–159. DOI: 10.1103/PhysRevLett.24.156.
  3. Tajima T, Dawson JM. Laser electron accelerator. Phys. Rev. Lett. 1979;43(4):267–270. DOI: 10.1103/PhysRevLett.43.267.
  4. Malka V et al. Electron acceleration by a wake field forced by an intense ultrashort laser pulse. Science. 2002;298(5598):1596–1600. DOI: 10.1126/science.1076782.
  5. Patel N. Accelerator physics: The plasma revolution. Nature. 2007;449(7159):133–135. DOI: 10.1038/449133a.
  6. Roth M et al. Fast ignition by intense laser-accelerated proton beams. Phys. Rev. Lett. 2001;86(3):436–439. DOI: 10.1103/PhysRevLett.86.436.
  7. Bychenkov VY, Rozmus W, Maksimchuk A, Umstadter D, Capjack CE. Fast ignitor concept with light ions. Plasma Phys. Rep. 2001;27(12):1017–1020. DOI: 10.1134/1.1426135.
  8. Atzeni S, Temporal M, Honrubia JJ. A first analysis of fast ignition of precompressed ICF fuel by laser-accelerated protons. Nucl. Fusion. 2002;42(3):L1. DOI: 10.1088/0029-5515/42/3/101.
  9. Maksimchuk A et al. TH-C-230A-06: high-energy proton acceleration driven by ultra-intense ultra-clean laser pulses. Med. Phys. 2006;33:2272.
  10. Borghesi M, Campbell DH, Schiavi A, Haines MG, Willi O. Electric field detection in laser-plasma interaction experiments via the proton imaging technique. Phys. Plasmas. 2002;9(5):2214–2220. DOI: 10.1063/1.1459457.
  11. Mourou G, Tajima T, Bulanov SV. Optics in the relativistic regime. Rev. Mod. Phys. 2006;78(2):309–371. DOI: 10.1103/RevModPhys.78.309.
  12. Ren J, Cheng W, Li S, Suckewer S. A new method for generating ultraintenseand ultrashort laser pulses. Nature Physics. 2007;3(10):732–736. DOI: 10.1038/nphys717.
  13. Blumenfeld I et al. Physicists pitch biggest accelerator. Nature. 2007;445(7129):694. DOI: 10.1038/445694a.
  14. Available from: http://nucloserv.jinr.ru/index.htm.
  15. Blaschke DB, Prozorkevich AV, Smolyansky SA, Shkirmanov DS, Chubaryan M. Laser acceleration of ion beams. In: Mulser P and Schlegel T, editors. GSI Report 2007-03, ILIAS, Ion and Laser Beam Interaction and Application Studies. Darmschtadt: GSI; 2007. P. 34–37.
  16. Bahari A, Taranukhin VD. Laser acceleration of electrons in vacuum up to energies of ∼ 10ev. Quantum Electronics. 2004;34(2):129–134. DOI: 10.1070/QE2004v034n02ABEH002597.
  17. Ringwald A. Pair production from vacuum at the focus of an X-ray free electron laser. Phys. Lett. B. 2001;510(1–4):107–116. DOI: 10.1016/S0370-2693(01)00496-8.
  18. Roberts CD, Schmid SM, Vinnik DV. Quantum effects with an Х-ray free electron laser. Phys. Rev. Lett. 2002;89(15):153901. DOI: 10.1103/PhysRevLett.89.153901.
  19. Blaschke DB, Prozorkevich AV, Roberts CD, Schmidt SM, Smolyansky SA. Pair production and optical lasers. Phys. Rev. Lett. 2006;96(14):140402. DOI: 10.1103/PhysRevLett.96.140402.
  20. Salamin YI, Hu SX, Hatsagortsyan KZ, Keitel CH. Relativistic high-power laser-matter interactions. Phys. Rep. 2006;427(2–3):41–155. DOI: 10.1016/j.physrep.2006.01.002.
  21. Scully MO, Zubairy MS. Simple laser accelerator: Optics and particle dynamics. Phys. Rev. A. 1991;44(4):2656–2663. DOI: 10.1103/PhysRevA.44.2656.
  22. Gesellschaft für Schwerionenforschung [Electronic resource]. Available from: http://www.gsi.de/forschung/phelix.
  23. Facilities/ AstraWeb/Astra Gemini Home [Electronic resource]. Available from: http://www.clf.rl.ac.uk.
  24. Haaland CM. Laser electron acceleration in vacuum. Opt. Commun. 1995;114(3–4):280–284. DOI: 10.1016/0030-4018(94)00565-C.
  25. Esarey E, Sprangle R, Krall J. Laser acceleration of electrons in vacuum. Phys. Rev. E. 1995;52(5):5443–5453. DOI: 10.1103/PhysRevE.52.5443.
  26. Huang YC, Zheng D, Tulloch WM, Byer RL. Proposed structure for a crossed-laser beam, GeV per meter gradient, vacuum electron linear accelerator. Appl. Phys. Lett. 1996;68(6):753–755. DOI: 10.1063/1.116731.
  27. Salamin YI, Keitel CH. Subcycle high electron acceleration by crossed laser beams. Appl. Phys. Lett. 2000;77(8):1082–1084. DOI: 10.1063/1.1289649.
  28. Salamin YI, Mocken GR, Keitel CH. Relativistic electron dynamics in intense crossed laser beams: Acceleration and Compton harmonics. Phys. Rev. E. 2003;67(1):016501. DOI: 10.1103/PhysRevE.67.016501.
  29. Aiello A, Woerdman H. The reflection of a Maxwell–Gaussian beam by a planar surface. arXiv:0710.1643. arXiv Preprint; 2007. Available from: https://arxiv.org/abs/0710.1643.
  30. Faure J, Rechatin C, Norlin A, Lifschitz A, Glinec Y, Malka V. Controlled injection and acceleration of electrons in plasma wakefields by colliding laser pulses. Nature. 2006;444(2006):737–739. DOI: 10.1038/nature05393.
  31. Blaschke DB, Prozorkevich AV, Smolyansky SA, Tarakanov AV. Observable manifestation of an electron–positron plasma created by the field of an optical laser. Journal of Physics: Conference Series. 2006;35(1):121–126. DOI: 10.1088/1742-6596/35/1/010.
  32. Blaschke DB, Filatov AV, Egorova IA, Prozorkevich AV, Smolyansky SA. Observable effects caused by vacuum pair creation in the field of high-power optical lasers. In: Proc. SPIE. Saratov Fall Meeting 2006: Laser Physics and Photonics, Spectroscopy and Molecular Modeling VII. Vol. 6537. SPIE; 2007. P. 653708.
Received: 
27.12.2007
Accepted: 
27.12.2007
Published: 
29.02.2008
Short text (in English):
(downloads: 74)